
Record Management

Shan-Hung Wu & DataLab
CS, NTHU

Outline

• Overview
• Design Considerations for Record Manager
• Implementation Considerations for Record

Manager
• The VanillaCore Record Manager

2

Where?

3

Data Access Layers

4

Record Management

• Main interface: RecordFile
– An iterator of records in a file
– One instance per TableScan

• Via VanillaDb.catalogMgr().
getTableInfo(tblName, tx).open()

– Thread local

5

Responsibilities of RecordFile
• To decide how records are stored in a file
• To decide which block to pin

– To save the cost of buffer access
• To work with the recovery and concurrency

managers
– To ensure tx ACID
– Discussed later

6

Logical Schema vs. Physical Schema
• Record manager converts (logical) schema to

physical schema

blog-id ur
l

created author-id

33981 … 2009/10/31 729

33982 … 2012/11/15 730

41770 … 2012/10/20 736

45896 … 2012/10/31 729

50633 … 2013/01/15 25

55868 … 2013/8/21 199

blog-posts

record

7

Design Considerations for Physical
Schema

• Should all records of a table be stored in the
same file?

• Should a record be placed entirely within one
block?

• Should all fields of a record to be stored next
to each other?

• Should a field be represented as a fixed
number of bytes?

• How to manage free space?

8

Outline

• Overview
• Design Considerations for Record Manager
• Implementation Considerations for Record

Manager
• The VanillaCore Record Manager

9

Should all records of a table be stored
in the same file?

10

Homogeneous vs. Heterogeneous Files

• A file is homogeneous if all of its records come
from the same table
– Makes single-table queries easy to answer

• Allow heterogeneous files or not?

11

Tradeoff: Efficiency vs. Flexibility

• Query: SELECT s-name FROM students,
departments WHERE d-id = major-id

• Homogeneous file
– The disk drive has to seek back and forth between

the blocks of two files

12

Tradeoff: Efficiency vs. Flexibility

• Query: SELECT s-name FROM students,
departments WHERE d-id = major-id

• Nonhomogeneous file
– Stores the students and departments records in

the same file
• Records are clustered on department id

– Requires fewer block accesses to answer this join
query

13

Homogeneous vs. Nonhomogeneous
Files

• Nonhomogeneous file
– Pros

• Clustering improves the efficiency of queries that join
the clustered tables

– Cons
• Single-table queries become less efficient
• Join queries on non-clustered field will also be less

efficient
• Suits only for schemas with hierarchy

14

Should each record be placed entirely
within one block?

15

Spanned vs. Unspanned Records

• A spanned record is a record whose values
span two or more blocks

spanned

unspanned

16

Spanned vs. Unspanned Records

• Spanned record
– Pros

• No disk space is wasted
• Record size is not limited by block size

– Cons
• Reading one record may require multiple blocks access

and reconstruction

17

Is each field in a record represented as
a fixed number of bytes?

18

Fixed-Length vs. Variable-Length Fields

• Field types supported by SQL
– int, varchar(n), text, etc.

• Most of types are naturally fixed-length
– All numeric and data/time types

• A fixed-length field representation uses the same
number of bytes to hold each value of the field
– Integer can be stored as 4-bytes binary value

• How about those fields with variable-length
types?
– varchar(n),clob(n), etc.

19

Fixed-Length vs. Variable-Length Fields

• Consider a field “d-name” defined as type
varchar(20) using the variable-length
representation

• Modifying this field may require rearrange
other records

20

Storing Variable-Length Fields

• Three different ways to store a varchar(n)
– Variable-length representation

– Indexed representation, which stores the string
value in a separate location

– Fixed-length representation, which allocates same
amount of space for this field in each records

21

Pros & Cons
• Variable-length representation

– Space-efficient
– Costly record rearrangement is possible

• Indexed representation
– Space-efficient (although with overhead of index)
– Extra index access for each record read/write
– Suits for text, clob(n)

• Fixed-length representation
– Easy implementation of random access
– Wastes space

22

Should all fields of a record to be
stored next to each other?

23

Column-Store vs. Row-Store

• Row-oriented store
– Row-by-row sequentially on disk
– (s-id,s-name,major-id,grad-year)

• How about storing the values of a single column
contiguously on disk?
• Sorted by s-id

24

Pros & Cons
• Row-oriented store

– Accessing a single row is more efficiently
– Write-optimized
– For OLTP workloads

• Column-oriented store
– Efficient column read
– Efficient column calculation (e.g., group by and

aggregation)
– Better comparison
– For OLAP workloads

25

Design Considerations for Record
Manager

• How to choose a proper record file structure?
• Several factors that should be taken into

account
– Workload
– Supported SQL types
– Schema

26

Outline

• Overview
• Design Considerations for Record Manager
• Implementation Considerations for Record

Manager
• The VanillaCore Record Manager

27

Implementing a File of Records

• A simple implementation for OLTP workloads:
– Homogeneous files
– Unspanned records
– Fixed-length records
– Row-oriented store

• Treats each file as a sequence of blocks and
treats each block as an array of records
– We call such a block a record page

28

Record Page

• Divides a block into slots, where each slot is
large enough to hold a record plus one
additional integer
– This integer is a flag that denotes the slot usage
– 0 means “empty” and 1 means “in use”

29

Table Information

• The table information stores
– The record length
– The name, type, length, and offset of each field of

a record
• The table information allows the record

manager to determine where values are
located within the block

30

Table Information

• Table information of students table
– Record length: 76 bytes
– Fields information:

students(s-id:int,
 s-name:varchar(20),

 major-id:int,
 grad-year:long)

Field Name Type Max Size (in
byte)

Offset

s-id int 4 0
s-name varchar(20

)
60 4

major-id int 4 64
grad-year long 8 68

 31

Accessing The Record Page

• To insert a new record
– The record manager finds a slot with empty flag
– Updates the flag as in use
– Returns the slot number
– If all flag values are “1”, then the block is full

32

Accessing The Record Page

• To delete the value of the record in slot k
– The record manager simply sets the flat at that

slot to 0 as empty
• To modify a field value of the record in slot k

– The record manager determines the location of
that field, and writes the value to that location

• Each record in a page has an ID. When the
records are fixed-length, the ID can be its slot
number

33

Implementing Variable-Length Fields

• What changes to make when we want to
support variable-length fields?
– The field offsets in a record are no longer fixed
– The records of same table can have different

lengths
• The record position cannot be calculated by multiplying

its slot number by slot size
• Modifying a field value can cause a record’s length to

change

34

Implementing Variable-Length Fields

• If the record’s length changes
– We need to shift the records after modified record
– The shifted records may spill out of the block

• Move to overflow block
• The original block and overflow block form a single

large record page

Modify the s-name of second record in original block

35

Implementing Variable-Length Fields

• How to delete a record?
– Only set the flag to empty

• Record size is variable, this empty space may not be re-
use

– Reclaim the empty space
• Dissociate the record’s ID from slot

36

Implementing Variable-Length Fields

• The record manager cannot random access a
record in a page, because it has no position
information
– We need a different page layout

37

Implementing Variable-Length Fields

• There is a header at the beginning of each record
page containing following information
– Number of records
– The end of free space in that page
– IDs and pointers to each record and size of each record

• The records are placed at the other end of page

From Database System Concepts 6/e, Silberschatz, Korth. Sudarshan.
38

Implementing Variable-Length Fields

• When a modification on a record requires
more spaces, the record manager will find a
continuous free space within that page

• Rearranging the record page when record’s
length changes can eliminate the
fragmentation
– VACUUM command

39

Managing the Free Space Within a
Record File

• Each record page in a file has different amount
of free spaces
– The fixed-length field implementation

– The variable-length field implementation with id
table

40

M1: Chaining
• When the client wants to insert a new record, the

record manager needs to find continuous unused
bytes for it

• How to manage the free space within a file?
• Chaining the free spaces

• For variable-length records, it may access many
blocks to find out a large enough free space

41

M2: Meta-Pages

• Using special pages to track the usage of
record pages
– Allocates one free space page for N record pages
– Free space page uses one byte to track the size of

unused space size for each following page

– Microsoft SQL Server approachN

42

M3: Meta-File

• Using additional file to track the location and
size all free spaces
– PostgreSQL approach

43

Outline

• Overview
• Design Considerations for Record Manager
• Implementation Considerations for Record

Manager
• The VanillaCore Record Manager

– How records are stored?
– Which blocks to pin
– Working with the recovery and concurrency

manager to ensure tx ACID

44

Responsibilities of RecordFile
• To decide how records are stored in a file
• To decide which block to pin (to save the cost

of buffer access)
• To work with the recovery and concurrency

manager to ensure tx ACID

45

Outline

• Overview
• Design Considerations for Record Manager
• The VanillaCore Record Manager

– How records are stored?
– Which blocks to pin?
– Working with the recovery and concurrency

manager to ensure tx ACID

46

How Records are Stored?
• Choices:

– Un-spanned record
– Homogeneous file
– Row-oriented store
– Fixed-length field
– Chained free space: O(1) search time

• RecordPage: lays out records in a page
• FileHeaderPage: header of free-space chain

47

Using the Table Information
• The VanillaCore record manager needs to know the

table information
• The classes storage.metadata.TableInfo and
sql.Schema manage the table information

• The record manager can get this information from
metadata manager

48

Using the Table Information

• Sample code of constructing table information

49

Schema sch = new Schema();

sch.addField("s-id", Type.INTEGER);
sch.addField("s-name", Type.VARCHAR(20));
sch.addField("major-id", Type.INTEGER);
sch.addField("grad-year", Type.BIGINT);

TableInfo ti = new TableInfo("students", sch);

Managing the Records in a Page

• Implements the record page as following layout
– Minimal slot size: 4+4+8 bytes (flag, pointer to next

deleted slot)

• The RecordPage manages the records within a
page

• The RecordId denotes the identifier of each
record

50

RecordId
• Identifier of a record

– id is equal to slot number because of fixed-length
implementation

51

RecordPage
• Extends the interface Record
• Manages a buffer for the currently opened data

block
• Calls the concurrency control manager to ensure

the isolation property

52

RecordPage

53

Accessing Records in a Record Page

• Sample code of using a record page

54

Transaction tx = VanillaDb.txMgr().transaction(
Connection.TRANSACTION_SERIALIZABLE, false);

TableInfo ti = VanillaDb.catalogMgr().getTableInfo(tableName, tx);
String fileName = ti.fileName();
RecordId lastDeletedRid = ...;
BlockId blk = new BlockId(fileName, 235);
RecordPage rp = new RecordPage(blk, ti, tx, true); // pin the buffer

// Part1: read and delete
while (rp.next()) {

Constant sid = rp.getVal("s-id");
if (sid.equals(new IntegerConstant(50))) {

rp.delete(lastDeletedRid);
lastDeletedRid = new RecordId(rp.currentBlk(), rp.currentId());

}
}

// Part 2: insert into empty slot if exist
rp.moveToId(-1); // point before the first record
boolean hasFreeSlot = rp.insertIntoNextEmptySlot();
if (hasFreeSlot) {

rp.setVal("s-id", new IntegerConstant(65));
...

}
rp.close(); // unpin the buffer
tx.commit();

Formatting Record Page

• A record page has a specific structure
– Partitioned into slot, with the value of the first

integer in each slot as usage flag
• Formatting the record page before it can be

used
• The class RecordFormatter performs this

service, via its method format

55

File Header

• The class FileHeaderPage manages the
header
– The pointer to the deleted slot chain
– The tail slot

56

Managing the Records in a File

• A record file consists of several record pages
– Data access API is similar to record pages

• Record file manages the file properties
– File header, file size
– Appends new block at the end of file
– Maintains the current position in a file and uses

the data manipulation methods of the record page

57

RecordFile
• Manages a file of records and calls the

concurrency manager to ensure isolation property
• Provides methods for iterating through the

records and accessing their contents

58

RecordFile

59

Accessing Records in a Record File
• Sample code of using a record file

Caution:
When inserting a new record, all the fields should have inserted values.
Otherwise, the user might read some unpredictable value 60

Transaction tx = VanillaDb.txMgr().transaction(
Connection.TRANSACTION_SERIALIZABLE, false);

TableInfo ti = ...;
RecordFile rf = ti.open(tx, true);
rf.beforeFirst();

// Part 1: reads records and delete records
while (rf.next())

if (rf.getVal("s-id").equals(new IntegerConstant(50)))
rf.delete();

rf.close();

// Part 2: insert new record
rf = ti.open(tx, true);
for (int id = 0; id < 100; id++) {

rf.insert();
rf.setVal("s-id", new IntegerConstant(id));
rf.setVal("s-name", new VarcharConstant("student" + id));
rf.setVal("major-id", new IntegerConstant((id % 3 + 1) * 10));
rf.setVal("grad-year", new BigIntConstant(2016));

}
rf.close();

Outline

• Overview
• Design Considerations for Record Manager
• The VanillaCore Record Manager

– How records are stored?
– Which blocks to pin?
– Working with the recovery and concurrency

manager to ensure tx ACID

61

Recap of Data Access Layers

62

Which Block to Pin?

• Each RecordFile instance pins only two
pages:
– RecordPage corresponding to the current

position
– FileHeaderPage

• Unpin upon close()
– This is why a JDBC user should close a
ResultSet as soon as possible

63

Outline

• Overview
• Design Considerations for Record Manager
• The VanillaCore Record Manager

– How records are stored?
– Which blocks to pin?
– Working with the recovery and concurrency

manager to ensure tx ACID

64

Tx Support

• C and I by working with ConcurrencyManager
– All read/write from/to files and blocks must obtain

appropriate locks first via
concurrencyMgr.read/modifyXxx()

• A and D by working with RecoveryManager
– All set values are logged via
recoveryMgr.logXxx()

– By virtue of WAL implementation in memory-
management layer

65

References
• Database page layout of PostgreSQL.

http://www.postgresql.org/docs/8.0/static/storag
e-page-layout.html

• Microsoft SQL Server page structure.
http://msdn.microsoft.com/en-
us/library/ms190969(v=sql.105).aspx

• Database Design and Implementation, chapter 15.
Edward Sciore.

• Database system concepts 6/e, chapter 10.
Silberschatz.

66

http://www.postgresql.org/docs/8.0/static/storage-page-layout.html
http://www.postgresql.org/docs/8.0/static/storage-page-layout.html
http://msdn.microsoft.com/en-us/library/ms190969(v=sql.105).aspx
http://msdn.microsoft.com/en-us/library/ms190969(v=sql.105).aspx

