
Transaction Management Part II:
Recovery

Shan Hung Wu & DataLab
CS, NTHU

Today’s Topic: Recovery Mgr

2

Failure in a DBMS

• Types:
– Disk crash, power outage, software error, disaster

(e.g., a fire), etc.
• In this lecture, we consider only:
– Transaction hangs
• Logical hangs: e.g., data not found, overflow, bad input
• System hangs: e.g., deadlock

– System hangs/crashes
• Hardware error, or a bug in software that hangs the

DBMS

3

Assumptions about Failure

• Contents in nonvolatile storage are not
corrupted
– E.g., via file-system journaling

• No Byzantine failure (zombies)
• Other types of failure will be dealt with in

other ways
– E.g., via replication, quorums, etc.

4

Review: Naïve A and D

• D given buffers?
• Flush all dirty buffers of a tx before

committing the tx and returning to the DBMS
client

5

Review: Naïve A and D

• What if system crashes
and then restarts?

• To ensure A, DBMS needs
to rollback uncommitted
txs (2 and 3) at sart-up
– Why 3?

• Problems:
– How to determine which txs to rollback?
– How to rollback all actions made by a tx?

6

Tx
1

Tx
2

Tx
3

Crash

Committing

Committed

Committing

flushes due to swapping

Review: Naïve A and D

• Idea: Write-Ahead-Logging (WAL)
– Record a log of each modification made by a tx

• E.g., <SETVAL, <TX>, <BLK>, <OFFSET>, <VAL_TYPE>,
<OLD_VAL> >

• In memory to save I/Os

– To commit a tx,
1. Write all associated logs to a log file before flushing a

buffer
2. After flushing, write a <COMMIT, <TX>> log to the log file

– To swap a dirty buffer (in BufferMgr)
• All logs must be flushed before flushing a buffer

7

Review: Naïve A and D

• Which txs to rollback?
– Observation: txs with COMMIT logs must have flushed all

their dirty blocks
– Ans: those without COMMIT logs in the log file

• How to rollback a tx?
– Observation: each action on the disk:
1. With log and block
2. With log, but without block
3. Without log and block
– Ans: simply undo actions that are logged to disk, flush all

affected blocks, and then writes a <ROLLBACK, <TX>> log

8

Review: Naïve A and D

• Assumption of WAL: each block-write either
succeeds or fails entirely on a disk, despite
power failure
– I.e., no corrupted log block after crash
– Modern disks usually store enough power to

finish the ongoing sector-write upon power-off
– Valid if block size == sector size or a journaling file

system (e.g., EXT3/4, NTFS) is used
• Block/physical vs. metadata/logical journals

9

http://en.wikipedia.org/wiki/Journaling_file_system

Review: Caching Logs

• Like user blocks, the blocks of the log file are
cached
– Each tx operation is logged into memory
– To avoid excessive I/Os

• Log blocks are flushed only on either
– Tx commit, or
– Flushing of data buffer

10

System Components related to
Recovery

• The log manager manages the caching for logs
– Does not understand the semantic of logs

• The buffer manager ensures WAL for each
flushed data buffer

• The recovery manager ensures A and D by
deciding:
– What to log (semantically)
– When to flush buffers (and log tails)
– How to rollback a tx
– How to recover a DB from crash

11

Actions of Recovery Manager

• Actions during normal tx processing:
– Adds log records to cache
– Flushes log tail and buffers at COMMIT
– Or, rolls back txs

• By undoing changes made by each tx
– On behalf of normal txs

• Actions after system re-start (from a failure):
– Recovers the database to a consistent state
– By undoing changes made by all incomplete tx
– In a dedicated recovery tx (before all normal txs start)

12

Txn B:
Write y = 10;
Read x;
If (x>=4)

Write x=x+1;
else

Rollback;
Commit;

Outline

• Physical logging:
– Logs and rollback
– UNDO-only recovery
– UNDO-REDO recovery
– Failures during recovery
– Checkpointing

• Logical logging:
– Early lock release and logical UNDOs
– Repeating history

• Physiological logging
• RecoveryMgr in VanillaCore

13

Outline

• Physical logging:
– Logs and rollback
– UNDO-only recovery
– UNDO-REDO recovery
– Failures during recovery
– Checkpointing

• Logical logging:
– Early lock release and logical UNDOs
– Repeating history

• Physiological logging
• RecoveryMgr in VanillaCore

14

Log Records

• In order to be able to roll back a transaction, the
recovery manager saves information in the log

• Recovery manager add a log record to the log
cache each time a loggable activity occurs
– Start
– Commit
– Rollback
– Update record
– Checkpoint

15

Log Records

• The log records of txn 27:
<START, 27>
<SETVAL, 27, student.tbl, 1, 58, ‘kay’, ‘abc’>
<COMMIT, 27>

• In general, multiple txns will be writing to the log
concurrently, and so the log records for a given
txn will be dispersed throughout the log
<START, 27>

<ROLLBACK, 23>
<START, 28>
<SETVAL, 28, dept.tbl, 23, 0, 1, 5>
<SETVAL, 27, student.tbl, 1, 58, ‘kay’, ‘abc’>
<COMMIT, 27>

...

Txn 27:
start;
getVal(blk0, 46);
setVal(blk1, 58, “abc”);
commit;

block Id

offset

old value

16

Why COMMIT/ROLLBACK Logs?

• Used to identify incomplete txs during
recovery

• Incomplete txs?
– E.g., those without COMMIT/ROLLBACK logs on

disk
– To be discussed later

17

Flushing COMMIT

• When committing a tx, the COMMIT log must be
flushed before returning to the user
– Why?

• What if the system returns to the client but
crashes before writing a commit log?
– The recovery manager will treat it as an incomplete tx

and undo all its changes
– Dangers durability

18

public void onTxCommit(Transaction tx) {
VanillaDb.bufferMgr().flushAll(txNum);
long lsn = new CommitRecord(txNum).writeToLog();
VanillaDb.logMgr().flush(lsn);

}

Rollback

• The recovery manger can use the log to roll
back a tx by undoing all tx’s modifications

• How to undo txn 27?
...
<START, 27>
<ROLLBACK, 23>
<START, 28>
<SETVAL, 28, dept.tbl, 23, 0, 1, 5>

<SETVAL, 27, student.tbl, 1, 58, ‘kay’, ‘abc’>
<SETVAL, 27, dept.tbl, 2, 40, 9, 25>
...

?

19

Rollback

• Undo txn 27
...
<SETVAL, 23, dept.tbl, 10, 0, 15, 35>
<START, 27>
<SETVAL, 27, dept.tbl, 2, 40, 15, 9>
<ROLLBACK, 23>
<START, 28>
<SETVAL, 28, dept.tbl, 23, 0, 1, 5>
<SETVAL, 27, student.tbl, 1, 58, ‘kay’, ‘abc’>
<SETVAL, 27, dept.tbl, 2, 40, 9, 25>
<START, 29>
<ROLLBACK, 27>undo starts from log tail

The log records of T are more likely to be at the end of log file

restores old values

ensures the correctness of multiple modifications

20

Rollback

• The algorithm for rolling back txn T
1. Set the current record to be the most recent log

record
2. Do until the current record is the start record for T:

a) If the current record is an update record for T, then write
back the old value

b) Move to the previous record in the log

3. Flush all dirty buffers made by T
4. Append a rollback record to the log file
5. Return

21

Codes for Rollback

22

public void onTxRollback(Transaction tx) {
doRollback();
VanillaDb.bufferMgr().flushAll(txNum);
long lsn = new RollbackRecord(txNum).writeToLog();
VanillaDb.logMgr().flush(lsn);

}

private void doRollback() {
Iterator<LogRecord> iter = new LogRecordIterator();
while (iter.hasNext()) {

LogRecord rec = iter.next();
if (rec.txNumber() == txNum) {

if (rec.op() == OP_START)
return;

rec.undo(txNum);
}

}
}

Working with Locks

• When a tx T that is rolling back, recovery
manager requires the DBMS to prevent any
access (by other txs) to the data modified by T
– Otherwise, undoing an operation of T may

override later modifications
• Can easily be enforced by, for example, S2PL

23

Working with Memory Managers

• No tx should be able to modify the buffer
when that buffer, and its logs, are being
flushed; and vise versa

• How?
• For each block, pinning and flushing contend

for a short-term X lock, called latch

24

Latching on Blocks
• To modify a block:

1. Acquire the latch of that block
2. Log the update (in memory, done by LogMgr)
3. Perform the change
4. Release the latch

• To flush a buffer containing a block:
1. Acquire the latch of that block (after pin())
2. Flush corresponding log records
3. Flush buffer
4. Release the latch

• Latches have nothing to do with
– Locks in S2PL
– Pinning/unpinning in BufferMgr

25

Outline

• Physical logging:
– Logs and rollback
– UNDO-only recovery
– UNDO-REDO recovery
– Failures during recovery
– Checkpointing

• Logical logging:
– Early lock release and logical UNDOs
– Repeating history

• Physiological logging
• RecoveryMgr in VanillaCore

26

Recovery

• When the DMBS restart (from crash), the
recovery manager is responsible for restoring
the database
– All incomplete txs should be rolled back

• How to identify incomplete txs?

27

Incomplete Txs (1)

• Recall that when committing/rolling back a tx,
the CIMMIT/ROLLBACK log must be flushed
before returning to the user

28

public void onTxCommit(Transaction tx) {
VanillaDb.bufferMgr().flushAll(txNum);
long lsn = new CommitRecord(txNum).writeToLog();
VanillaDb.logMgr().flush(lsn);

}

public void onTxRollback(Transaction tx) {
doRollback();
VanillaDb.bufferMgr().flushAll(txNum);
long lsn = new RollbackRecord(txNum).writeToLog();
VanillaDb.logMgr().flush(lsn);

}

Incomplete Txs (2)

• Definition: txs without COMMIT or ROLLBACK
records in the log file on disk

• Could be in any of following states when crash
happens:
1. Active
2. Committing (but not completed yet)
3. Rolling back

29

Undo-only Recovery Algorithm

30

Undo-only Recovery

• Undo and redo
Beginning of log
<START, 23>
<SETVAL, 23, dept.tbl, 10, 0, 15, 35>
<START, 27>
<COMMIT, 23>
<SETVAL, 27, dept.tbl, 2, 40, 15, 9>
<START, 28>
<SETVAL, 28, dept.tbl, 23, 0, 1, 5>
<SETVAL, 27, student.tbl, 1, 58, 4, 5>
<SETVAL, 27, dept.tbl, 2, 40, 9, 25>
<START, 29>
<SETVAL, 29, emp.tbl, 1, 0, 1, 9>
<ROLLBACK, 27>

older

newer

Completed Txn:
27

undo

31

Undo-only Recovery

• Undo and redo
Beginning of log
<START, 23>
<SETVAL, 23, dept.tbl, 10, 0, 15, 35>
<START, 27>
<COMMIT, 23>
<SETVAL, 27, dept.tbl, 2, 40, 15, 9>
<START, 28>
<SETVAL, 28, dept.tbl, 23, 0, 1, 5>
<SETVAL, 27, student.tbl, 1, 58, 4, 5>
<SETVAL, 27, dept.tbl, 2, 40, 9, 25>
<START, 29>
<SETVAL, 29, emp.tbl, 1, 0, 1, 9>
<ROLLBACK, 27>

older

newer

Completed Txn:
27

undo

32

Undo-only Recovery Algorithm

33

• Flushing and checkpointing will be explained later

public void recover() { // called on start-up
doRecover();
VanillaDb.bufferMgr().flushAll(txNum);
long lsn = new CheckpointRecord().writeToLog();
VanillaDb.logMgr().flush(lsn);

}

private void doRecover() {
Collection<Long> finishedTxs = new ArrayList<Long>();
Iterator<LogRecord> iter = new LogRecordIterator();
while (iter.hasNext()) {

LogRecord rec = iter.next();
if (rec.op() == OP_CHECKPOINT)

return;
if (rec.op() == OP_COMMIT || rec.op() == OP_ROLLBACK)

finishedTxs.add(rec.txNumber());
else if (!finishedTxs.contains(rec.txNumber()))

rec.undo(txNum);
}

}

Working with Other System
Components

• No special requirement since the recovery tx
is the only tx in system at startup
– Normal txs start only after the recovery tx finishes

34

The above RecoveryMgr will make
system unacceptably slow!

35

Outline

• Physical logging:
– Logs and rollback
– UNDO-only recovery
– UNDO-REDO recovery
– Failures during recovery
– Checkpointing

• Logical logging:
– Early lock release and logical UNDOs
– Repeating history

• Physiological logging
• RecoveryMgr in VanillaCore

36

Why Slow?

• Slow commit
– Flushes: undo logs, dirty blocks, and then

COMMIT log
• Slow rollback
– Flushes: dirty blocks and ROLLBACK log

• Slow recovery
– Recovery manager need to scan the entire log file

(backward from tail) every time

37

Force vs. No-Force

• Force approach
– When committing tx, all modifications need to be

written to disk before returning to user
• When client committing a txn

1. Flush the logs till the LSN of the last modification
2. Flush dirty pages
3. Write a COMMIT record to log file on disk
4. Return

38

Force vs. No-Force

• Do we really need to flush all dirty blocks
when committing a tx?

• Why not just write logs?
– No flushing data blocks à faster commit

• Problem: committed txs may not be reflected
to disk
– Lost once system crashes

• Solution: a new redo phase in recovery?
– To reconstruct buffer state in memory

39

Undo-Redo Recovery

• Undo and redo
Beginning of log
<START, 23>
<SETVAL, 23, dept.tbl, 10, 0, 15, 35>
<START, 27>
<COMMIT, 23>
<SETVAL, 27, dept.tbl, 2, 40, 15, 9>
<START, 28>
<SETVAL, 28, dept.tbl, 23, 0, 1, 5>
<SETVAL, 27, student.tbl, 1, 58, 4, 5>
<SETVAL, 27, dept.tbl, 2, 40, 9, 25>
<START, 29>
<SETVAL, 29, emp.tbl, 1, 0, 1, 9>
<ROLLBACK, 27>

older

newer

new value

40

Undo-Redo Recovery

• Undo and redo
Beginning of log
<START, 23>
<SETVAL, 23, dept.tbl, 10, 0, 15, 35>
<START, 27>
<COMMIT, 23>
<SETVAL, 27, dept.tbl, 2, 40, 15, 9>
<START, 28>
<SETVAL, 28, dept.tbl, 23, 0, 1, 5>
<SETVAL, 27, student.tbl, 1, 58, 4, 5>
<SETVAL, 27, dept.tbl, 2, 40, 9, 25>
<START, 29>
<SETVAL, 29, emp.tbl, 1, 0, 1, 9>
<ROLLBACK, 27>

older

newer

Undo

Completed Txn:
27

undo txn 29

41

Undo-Redo Recovery

• Undo and redo
Beginning of log
<START, 23>
<SETVAL, 23, dept.tbl, 10, 0, 15, 35>
<START, 27>
<COMMIT, 23>
<SETVAL, 27, dept.tbl, 2, 40, 15, 9>
<START, 28>
<SETVAL, 28, dept.tbl, 23, 0, 1, 5>
<SETVAL, 27, student.tbl, 1, 58, 4, 5>
<SETVAL, 27, dept.tbl, 2, 40, 9, 25>
<START, 29>
<SETVAL, 29, emp.tbl, 1, 0, 1, 9>
<ROLLBACK, 27>

older

newer

Undo

Completed Txn:
27

undo txn 28

42

Undo-Redo Recovery

• Undo and redo
Beginning of log
<START, 23>
<SETVAL, 23, dept.tbl, 10, 0, 15, 35>
<START, 27>
<COMMIT, 23>
<SETVAL, 27, dept.tbl, 2, 40, 15, 9>
<START, 28>
<SETVAL, 28, dept.tbl, 23, 0, 1, 5>
<SETVAL, 27, student.tbl, 1, 58, 4, 5>
<SETVAL, 27, dept.tbl, 2, 40, 9, 25>
<START, 29>
<SETVAL, 29, emp.tbl, 1, 0, 1, 9>
<ROLLBACK, 27>

older

newer

Undo

Completed Txn:
27, 23

43

Undo-Redo Recovery

• Undo and redo
Beginning of log
<START, 23>
<SETVAL, 23, dept.tbl, 10, 0, 15, 35>
<START, 27>
<COMMIT, 23>
<SETVAL, 27, dept.tbl, 2, 40, 15, 9>
<START, 28>
<SETVAL, 28, dept.tbl, 23, 0, 1, 5>
<SETVAL, 27, student.tbl, 1, 58, 4, 5>
<SETVAL, 27, dept.tbl, 2, 40, 9, 25>
<START, 29>
<SETVAL, 29, emp.tbl, 1, 0, 1, 9>
<ROLLBACK, 27>

older

newer

Undo

Completed Txn:
27, 23

Redo

44

Undo-Redo Recovery

• Undo and redo
Beginning of log
<START, 23>
<SETVAL, 23, dept.tbl, 10, 0, 15, 35>
<START, 27>
<COMMIT, 23>
<SETVAL, 27, dept.tbl, 2, 40, 15, 9>
<START, 28>
<SETVAL, 28, dept.tbl, 23, 0, 1, 5>
<SETVAL, 27, student.tbl, 1, 58, 4, 5>
<SETVAL, 27, dept.tbl, 2, 40, 9, 25>
<START, 29>
<SETVAL, 29, emp.tbl, 1, 0, 1, 9>
<ROLLBACK, 27>

older

newer

Undo

Completed Txn:
27, 23

Redo

redo

45

Undo-Redo Recovery

• Undo and redo
Beginning of log
<START, 23>
<SETVAL, 23, dept.tbl, 10, 0, 15, 35>
<START, 27>
<COMMIT, 23>
<SETVAL, 27, dept.tbl, 2, 40, 15, 9>
<START, 28>
<SETVAL, 28, dept.tbl, 23, 0, 1, 5>
<SETVAL, 27, student.tbl, 1, 58, 4, 5>
<SETVAL, 27, dept.tbl, 2, 40, 9, 25>
<START, 29>
<SETVAL, 29, emp.tbl, 1, 0, 1, 9>
<ROLLBACK, 27>

older

newer

Undo

Completed Txn:
27, 23

Redo

redo

46

The Undo-Redo Recovery Algorithm
V1

From Database Design and Implementation by Edward Sciore, chapter
14.

47

Physical Logging

• Undo/redo operations are idempotent
– Executing same undo op multiple times = one

time execution
• Some actions may be unnecessary or

redundant
– Depending on swapping state in buffer manager
– No harm to C

48

Can We Make Rollback Faster Too?

• Recall that when rolling back a tx, we flush
dirty pages and write a rollback log

49

public void onTxRollback(Transaction tx) {
doRollback();
VanillaDb.bufferMgr().flushAll(txNum);
long lsn = new RollbackRecord(txNum).writeToLog();
VanillaDb.logMgr().flush(lsn);

}

private void doRollback() {
Iterator<LogRecord> iter = new LogRecordIterator();
while (iter.hasNext()) {

LogRecord rec = iter.next();
if (rec.txNumber() == txNum) {

if (rec.op() == OP_START)
return;

rec.undo(txNum);
}

}
}

Slow Rollback

• Why flushing dirty buffers?
– So the recovery tx can skip txs that have been

rolled back
• Can we skip it?

50

public void onTxRollback(Transaction tx) {
doRollback();
VanillaDb.bufferMgr().flushAll(txNum);
long lsn = new RollbackRecord(txNum).writeToLog();
VanillaDb.logMgr().flush(lsn);

}

private void doRollback() {
Iterator<LogRecord> iter = new LogRecordIterator();
while (iter.hasNext()) {

LogRecord rec = iter.next();
if (rec.txNumber() == txNum) {

if (rec.op() == OP_START)
return;

rec.undo(txNum);
}

}
}

Fast Rollback

• No-force:
– Do not flush dirty pages during rollback
– In addition, there’s no need to keep the

ROLLBACK record in cache at all!
• Aborted txs will be rolled back again during

startup recovery
– No harm to C since undo operations are

idempotent

51

The Undo-Redo Recovery Algorithm
V2

From Database Design and Implementation by Edward Sciore, chapter
14.

52

No (b). All txs not in the committed list are un-done (maybe again)

Undo or Redo Phase First?

• Does not matter for the recovery algorithm V1
• But matters for V2!
– Undo phase must precede the redo phase
– Otherwise, C may be damaged due to aborted txs
– E. g.,

– Rolling back T23 erases the modification made by T27

53

<START, 23>
<SETVAL, 23, dept.tbl, 10, 0, 15, 35>
// T23 rolls back (not logged) and releases locks
<START, 27>
<SETVAL, 27, dept.tbl, 10, 0, 15, 40>
<COMMIT, 27>

Undo-Only vs. Undo-Redo Recovery

• Pros of undo-only:
– Faster recovery
– No redo logs

• Cons of undo-only:
– Slower commit/rollback

• Which one?
– Commercial DBMSs usually choose no-force

approach + undo-redo recovery

54

Steal vs. No Steal

• Currently, dirty buffers can be flushed to disk
before tx commit
– Due to swapping
– Steal approach

• If no steal, then we don’t need undo phase!
– Redo-only recovery

• How?
– Pin all the modified buffers until tx ends?

55

No redo, no undo with force + no
steal?

56

Redo-Only Recovery and Beyond

• No-steal is not practical
• Dirty pages still need to be flushed before

commits
– To ensure durability

• How about crash during flushing?

57

Outline

• Physical logging:
– Logs and rollback
– UNDO-only recovery
– UNDO-REDO recovery
– Failures during recovery
– Checkpointing

• Logical logging:
– Early lock release and logical UNDOs
– Repeating history

• Physiological logging
• RecoveryMgr in VanillaCore

58

What if system crashes again during
recovery?

59

Can we simply re-run recovery (from
scratch) after restart?

60

Idempotent Recovery

• Yes! Since each undo/redo is idempotent
• No need to log undos/redos
– For each data modification due to undo/redo,

recovery manager passes -1 as the LSN number to
the buffer manager

– See SetValueRecord.undo()

61

Outline

• Physical logging:
– Logs and rollback
– UNDO-only recovery
– UNDO-REDO recovery
– Failures during recovery
– Checkpointing

• Logical logging:
– Early lock release and logical UNDOs
– Repeating history

• Physiological logging
• RecoveryMgr in VanillaCore

62

Checkpointing

• As the system keeps processing requests, the log file
may become very large
– Running recovery process is time consuming
– Can we just read a portion of the log?

• A checkpoint is like a consistent snapshot of the DBMS
state
– All earlier log records were written by “completed” txns
– Those txns’ modifications have been flushed to disk

• During recovery, the recovery manager can ignore all
the log records before a checkpoint

63

Quiescent Checkpointing

1. Stop accepting new transactions
2. Wait for existing transactions to finish
3. Flush all modified buffers
4. Append a quiescent checkpoint record to the

log and flush it to disk
5. Start accepting new transactions

64

Quiescent Checkpointing

Undo Redo

65

Quiescent Checkpointing is Slow

• Quiescent checkpointing is simple but may
make the system unavailable for too long
during checkpointing process

66

Root Cause of Unavailability

1. Stop accepting new transactions
2. Wait for existing transactions to finish
3. Flush all modified buffers
4. Append a quiescent checkpoint record to the

log and flush it to disk
5. Start accepting new transactions

67

May be very long!

Can we shorten the quiescent period?

68

Nonquiescent Checkpointing

•

69

Recovery with Nonquiescent
Checkpointing

• Txs not in checkpoint log are flushed thus can be neglected

Undo

Redo

70

Tx0 has been committed

Only tx2 needs to be undone

Working with Memory Managers

• No tx should be able to
1. append the log, and
2. modify the buffer

between steps 3 and 4
• How?
• The checkpoint tx obtains

1. latch of log file, and
2. latches of all blocks in BufferMgr

before step 3
• Then release them after step 4

71

When to Checkpoint?

• By taking checkpoints periodically, the recovery
process can become more efficient

• When is a good time to checkpoint?
– During system startup (after the recovery has

completed and before any txn has started)

– Execution time with low workload (e.g., midnight)

72

public void recover() { // called on start-up
doRecover();
VanillaDb.bufferMgr().flushAll(txNum);
long lsn = new CheckpointRecord().writeToLog();
VanillaDb.logMgr().flush(lsn);

}

Outline

• Physical logging:
– Logs and rollback
– UNDO-only recovery
– UNDO-REDO recovery
– Failures during recovery
– Checkpointing

• Logical logging:
– Early lock release and logical UNDOs
– Repeating history

• Physiological logging
• RecoveryMgr in VanillaCore

73

Early Lock Release

• There are meta-structures in a DBMS
– E.g., FileHeaderPage in a RecordFile
– Indices

• Poor performance if they are locked in strict
manner
– E.g., S2PL on FileHeaderPage serializes all

insertions and deletions
• Locks on meta-structures are usually released

early

74

Logical Operations

• Logical insertions to a RecordFile:
– Acquire locks of FileHeaderPage and target

object (RecordPage or a record) in order
– Perform insertion
– Release the lock of FileHeaderPage (but not

the object)
• Better concurrency for I
• No harm to C
• Needs special care to ensure A and D

75

Problems of Logical Operations

• Suppose
1. T1 inserts a record A to a table/file
• FileHeaderPage and a RecordPage modified

2. T2 inserts another record B to the same table
• Same FileHeaderPage and another RecordPage

modified
3. T1 aborts

• If the physical undo record is used to rollback
T1, B will be lost!

76

Header Pages

Problems of Logical Operations

• Suppose
1. T1 inserts a record A to a table/file
• FileHeaderPage and a RecordPage modified

2. T2 inserts another record B to the same table
• Same FileHeaderPage and another RecordPage

modified
3. T1 aborts

• If the physical undo record is used to rollback
T1, B will be lost!

77

Header Pages

A

Problems of Logical Operations

• Suppose
1. T1 inserts a record A to a table/file
• FileHeaderPage and a RecordPage modified

2. T2 inserts another record B to the same table
• Same FileHeaderPage and another RecordPage

modified
3. T1 aborts

• If the physical undo record is used to rollback
T1, B will be lost!

78

Header Pages

A B

Problems of Logical Operations

• Suppose
1. T1 inserts a record A to a table/file
• FileHeaderPage and a RecordPage modified

2. T2 inserts another record B to the same table
• Same FileHeaderPage and another RecordPage

modified
3. T1 aborts

• If the physical undo record is used to rollback
T1, B will be lost!

79

Header Pages

B

Undoing Logical Operations

• How to rollback T1?
– By executing a logical deletion of record A

• Logical operations need to be undone logically
80

B

Header Pages

A B

Undoing Partial Logical Ops

• What if T1 aborts in the middle of a logical
operation?

• Log each physical operation performed during a
logical operation

• So partial logical operation can be undone, by
undoing the physical operations

81

Beginning of log
<START, T1>
<SETVAL, T1, RC, 15, 35>
<OPBEGIN, T1, OP1> // insert a record
<SETVAL, T1, H, 100, 105>
<SETVAL, T1, RA, 0, 700>
<OPEND, T1, OP1, delete RA>
... // other tx can access H (early lock release)

older

newer

Identifier can be LSN

Rolling Back a Transaction

• Undo OP1 using physical logs if it is not completed yet
– Locks of physical objects are not released so nothing can

go wrong
• OP1 must be undone logically once it is complete

– Some locks may be released early (e.g., lock of H)
– Must acquire the locks again during logical undo

82

Beginning of log
<START, T1>
<SETVAL, T1, RC, 15, 35>
<OPBEGIN, T1, OP1> // insert a record
<SETVAL, T1, H, 100, 105>
<SETVAL, T1, RA, 0, 700>
<OPEND, T1, OP1, delete RA>
... // other tx can access H

older

newer

Logical undo information

T1 aborts

Let's consider crashes now...

• UNDO: to roll back all uncommitted txs (and
logical OPs)

• REDO: reconstruct memory state

• Unfortunately, it’s not that simple...

83

Undo an Undo
• What if system crashes when T1 is undoing a logical

op?
• The “undo” is not idempotent
– The undo needs to be undone

• How?
• The undo is itself an logical operation
• Why not log all the physical operations of such an

undo?
– The logical undo can be undone now
– Then, at recovery time, logically undo the target logical

operation again

84

Undo an Undo

• Can we apply UNDO/REDO recovery now?

85

Beginning of log
<START, T1>
<SETVAL, T1, RC, 15, 35>
<OPBEGIN, T1, OP1> // insert a record
<SETVAL, T1, H, 100, 105>
<SETVAL, T1, RA, 0, 700>
<OPEND, T1, OP1, delete RA>
...

older

newer

T1 aborts
Released locks are acquired again

Some locks are released

<SETVAL, T1, H, 123, 100>
<SETVAL, T1, RA, 700, 0>
<OPABORT, T1, OP1>

Crash

Rollback

UNDO

Crashes

• Two goals of restart recovery:
– Rolling back incomplete txs
– Reconstruct memory state

• Handled by UNDO and REDO phase respectively
• Undo-redo recovery algorithm does not work

anymore!
• Why?
• Since locks may be released early, physical logs may

depend on each other
• Undoing/redoing physical logs must be carried out in

the order they happened to ensure C

86

Example

• To carry out the last two physical ops (i.e., “undo of undo”)
– T2 needs to be redone physically first

• Redoing T2 requires T1 to be redone partially, even if T1
will be rolled back eventually

87

Beginning of log
<START, T1>
<SETVAL, T1, RC, 15, 35>
<OPBEGIN, T1, OP1> // insert a record
<SETVAL, T1, H, 100, 105>
<SETVAL, T1, RA, 0, 700>
<OPEND, T1, OP1, delete RA>
...
// T2 inserts another record (changing H),
// makes some physical changes, and then commits
...
<SETVAL, T1, H, 123, 100>
<SETVAL, T1, RA, 700, 0>
<OPABORT, T1, OP1>Crash

T1 aborts

Rollback

Released locks are acquired again

Some locks are released

Outline

• Physical logging:
– Logs and rollback
– UNDO-only recovery
– UNDO-REDO recovery
– Failures during recovery
– Checkpointing

• Logical logging:
– Early lock release and logical UNDOs
– Repeating history

• Physiological logging
• RecoveryMgr in VanillaCore

88

Recovery by Repeating History

• Idea:
1. Repeat history: replay all dependent physical

operations (from the last checkpoint) following the
exact order they happened
• Including ongoing rollbacks/undos
• So the memory state can be reconstructed correctly

2. Resume rolling back all incomplete txs
• Logically for each completed logical operation

• This leads to the state-of-the-art recovery
algorithm, ARIES

• Steps 1/2 are called REDO/UNDO phase in ARIES
– Very different from REDO/UNDO phase in previous

sections
89

Compensation Logs
• Replaying history includes replaying previous undos

– There may be previous undos for some physical ops (due
to, e.g., tx rollbacks or crashes)

– Need to be replayed too! But not logged currently
• How to replay history in a single phase (log scan)?
• When undoing a physical op, append an redo log,

called compensation log, for such undo in LogMgr
• Then, during recovery, RecoveryMgr can simply replay

history by redoing both physical and compensation
logs
– In the order they appear in the log file (from checkpoint to

tail)

90

REDO-UNDO Recovery Algorithm V1

• Assuming no logical ops
• Incomplete txs are identified during the REDO phase

and kept into a undo list
91

T0 Rollback

CLR

REDO-UNDO Recovery Algorithm V1

• Can handle repeated crashes during recovery
– Although some redos and undos may be unnecessary

92

Supporting Logical OPs

• Repeating history (REDO) carries out physical ops
following the exact order they happened

• Good for dependent physical ops
93

Rollback

REDO-UNDO Recovery
Algorithm V2• REDO: repeat history

– Replay both physical
and compensation
logs

• UNDO:
– Physically for physical

and incomplete
logical ops

– Logically for
completed logical ops

– Skip all aborted
logical ops

94

• Keep logging in UNDO phase:
– Compensation logs for physical undos
– Physical logs for a logical undos

REDO-UNDO Recovery
Algorithm V2• REDO: repeat history

– Replay both physical
and compensation
logs

• UNDO:
– Physically for physical

and incomplete
logical ops

– Logically for
completed logical ops

– Skip all aborted
logical ops

95

Non-Idempotent Logical OPs
• Note that logical operations, and their logical undos,

are not idempotent
• Completed logical ops and logical undos are repeated

using physical logs
– In REDO phase
– “history” grows

• So, UNDO phase must skip completed logical undos
– When rolling back a tx, we, upon finding a record

<OPABORT, Ti, Oj>, need to skip all preceding records
(including OPEND record for Oj) until <OPBEGIN, Ti, Oj>

– An operation-abort log record would be found only if a tx
that is being rolled back had been partially rolled back
earlier

96

Faster Checkpointing

• Active tx list
– Most recent LSN

for each tx
• List of dirty pages
– RecLSN: latest log

reflected to disk
– PageLSN

• No flushing pages

97

min

Resume Rollbacks

• How to resume rolling back all incomplete txs in
UNDO phase?

• For each incomplete tx:
• Completed logical undos must be skipped (discussed

earilier)

• In addition, completed physical undos can be
skipped
• Optional; just for better performance

98

PrevLSN and UndoNextLSN Pointers

• Logging:
– Each physical log keeps

the PrevLSN
– Each compensation log

keeps the UndoNextLSN
• RecoveryMgr

– Remembers the last
UndoNextLSN of each tx
in the undo list

– The next LSN to process
during UNDO phase is the
max of the UndoNextLSNs

• Tx rollback can be
resumed

99

7572: <T145, 4894.1, 40> (CLR)

Outline

• Physical logging:
– Logs and rollback
– UNDO-only recovery
– UNDO-REDO recovery
– Failures during recovery
– Checkpointing

• Logical logging:
– Early lock release and logical UNDOs
– Repeating history

• Physiological logging
• RecoveryMgr in VanillaCore

100

Problems of Physical Logging

• Physical logs will be huge!
• For example, if the system wants to insert a

record into a sorted file
– Common when maintaining the indices

• How to save the number of physical logs?

101

Pages
A

Physiological logging

• Observe that, during a sorting op, all physical ops to
the same block will be written to disk in just one flush

• Why not log all these physical ops as one logical op?
– As long as this logical op can be undone logically

• Called physiological logs, in that
– Physical across blocks
– Logical within each block

• Significantly save the cost of physical logging
• But complicates recovery algorithm further

– As REDOs are not idempotent anymore
– Need to avoid repeated replay

102

REDO-UNDO Recovery Algorithm V3

• During REDO, skip all physiological ops and
their compensations that have been replayed
previously
– How?

• During UNDO, threat each physiological op as
physical
– Write compensation log that is also a physiological

op

103

Avoiding Repeated Replay
• Keep a PageLSN for

each block
– Most recent log for

that block
• REDO phase:

– Replay a
physiological log iff
its LSN is larger than
the PageLSN of the
target block

• Further optimized
in ARIES

104

Outline

• Physical logging:
– Logs and rollback
– UNDO-only recovery
– UNDO-REDO recovery
– Failures during recovery
– Checkpointing

• Logical logging:
– Early lock release and logical UNDOs
– Repeating history

• Physiological logging
• RecoveryMgr in VanillaCore

105

The VanillaDB Recovery Manager
• Log granularity: values
• Implements ARIES recovery algorithm

– Steal and non-force
– Physiological logs
– No optimizations

• Non-quiescent checkpointing (periodically)
• Related package

– storage.tx.recovery
• Public class

– RecoveryMgr
– Each transaction has its own recovery manager

106

References

• Database Design and Implementation, chapter
14. Edward Sciore.

• Database management System 3/e, chapter 16.
Ramakrishnan Gehrke.

• Database system concepts 6/e, chapter 15, 16.
Silberschatz.

• Hellerstein, J. M., Stonebraker, M., and Hamilton,
J. Architecture of a database system. Foundations
and Trends in Databases 1, 2, 2007

107

