
Cloud DBMS: An Overview

Shan-Hung Wu and DataLab
CS, NTHU

Outline

• Definition and requirements
• S through partitioning
• A through replication
• Problems of traditional DDBMS
• Usage analysis: operational vs. analytic

workloads
• The end of one-size-fits all era

2

Outline

• Definition and requirements
• S through partitioning
• A through replication
• Problems of traditional DDBMS
• Usage analysis: operational vs. analytic

workloads
• The end of one-size-fits all era

3

Definition

• A cloud DBMS is a DBMS designed to run in the cloud
– Machines could be either physical or virtual

• In particular, some manages data of tremendous
applications (called tenants)
– A.k.a. multi-tenant DBMS

• Is MySQL a cloud database?
– I can run MySQL in a Amazon EC2 VM instance
– No

4

What’s the Difference
• Ideally, in addition to all features provided by a

traditional database, a cloud database should ensure
SAE:

• high Scalability
– High max. throughput (measured by Tx/Query per

second/minute)
– Horizontal, using commodity machines

• high Availability
– Stay on all the time, despite of

machines/network/datacenter failure
• Elasticity
– Add/shutdown machines and re-distribute data on-the-fly

based on the current workload
5

What do we have now?

6

7

Why So Complicated?

• Full DB functions + SAE = a goal no one can
achieve (currently)

• Even with Oracle 11g + SPARC SuperCluster
– 30,249,688 TPC-C transactions per minute
– $30+ million USD

• You loss elasticity!

8

Wait, what do you mean
full DB functions + SAE?

9

DB Functions

• Expressive relational data model
– Almost all kinds of data can be structured as a

collection of tables

• Complex but fast queries
– Across multiple tables, grouping, nesting, etc.
– Query plan optimization, indexing, etc.

• Transactions with ACID
– Your data are always correct and durable

10

List of Desired Features

Feature Why?
Relational model Models (almost) all data, flexible

queries
Short latency 100ms more response time =

significant loss of users (Google)
Tx and ACID Keeps data correct and durable
Scalability You are (or will be) big
Availability No availability, no service!
Elasticity Save $

11

Outline

• Definition and requirements
• S through partitioning
• A through replication
• Problems of traditional DDBMS
• Usage analysis: operational vs. analytic

workloads
• The end of one-size-fits all era

12

Scalability (OLTP Workloads)
• Max tx throughput ∝

(contention footprint
* tx conflict rate)-1
– A tx holding locks for

a long time blocks all
conflicting txs and
reduces throughput

• Contention footprint
increases when
accessing hot tables
(due to I/O bottleneck)

• How to improve the
throughput?

13

Scalability and Partitioning
• Partition your hot tables
– Either horizontally or vertically
– Distribute read/write load to different servers

14

Too hot!
f1 f2

Partition1
f1 f2

Patition2
f1 f2

Complications in Distributed DBs

• Records spread among partitions on different
servers

15

T1: write(user 1)
T2: write(user 596)

T2: write(user 596)T1: write(user 1)

T3: write(user 596, user 4) T3: write(user 596, user 4)

ACID?

Node 1
(User 1~1000)

Node 1
(User 1~500)

Node 2
(User 501~1000)

How?

Complications in Distributed DBs

• Records spread among partitions on different
servers

• Distributed metadata manager
• Distributed query processor
– Best global-plan and its local-plans?

• Distributed transactions
– ACID of a global-transaction T and its local-

transactions {Ti}?

16

Isolation Revisited

• Requires a distributed CC manager
• For 2PL
– Dedicated lock server, or
– Primary server for each lock object (Distributed S2PL)

• For timestamp and optimistic CC
– The problem is how to generate the global unique

timestamps
– E.g., “local_counter@server_ID”
– To prevent one server counts faster, each server

increments its own counter upon receiving a
timestamp from others

17

Distributed S2PL

• Primary server of an object: machine owning
the corresponding partition

• Distributed deadlock?

18

Partition1
f1 f2

A1 A2

B1 B2

Partition2
f1 f2

C1 C2

D1 D2

tx1

R(A)

W(C)

W(B)

S Lock

tx2

R(A)

R(B)

W(C)X Lock

X Lock

Blocked

Atomicity Revisited

• Committing T means committing all local-
transactions

• If any local-transaction rolls back, then T
should roll back
– When will this happen?
– ACID violation (e.g., in OCC)
– Deadlock
– Node failure (detected by some other nodes such

as replica)

19

One-Phase Commit

• If T2 rolls back (due to ACID violation or failure),
then T is partially executed, violating atomicity
– The effect of T1 and T3 cannot be erased due to

durability

20

T1 T2 T3

Commit T

Two-Phase Commit

• Drawback: long delay
– T blocks all conflicting txs and reduces throughput

• Partition helps only when the overhead of communication (2PC) <
overhead of slow I/Os

21

T1 T2 T3

Commit T?

Rollback T

Phase 1

Phase 2

Outline

• Definition and requirements
• S through partitioning
• A through replication
• Problems of traditional DDBMS
• Usage analysis: operational vs. analytic

workloads
• The end of one-size-fits all era

22

Availability

• Replicate all tables across servers
– If servers in one region fails, we have spare replicas

• Ideally, across geographically-separated regions
– To deal with disaster

23

Partition1
f1 f2

Patition2
f1 f2

Partition1
f1 f2

Patition2
f1 f2

LA Taiwan

Consistency Revisited

• Consistency
– Txs do not result in violation of rules you set

• In distributed environments, consistency also
means “all replicas remain the same after
executing a tx”
– Tx reads local, writes all (R1WA)
– Side-benefit: a read-only tx can be on any replica

• Changes made by a tx on a replica need to be
propagated to other replicas

• When? Eager vs. Lazy
• By whom? Master/Slave vs. Multi-Master

24

Eager Replication

• Each write operation must completes on all
replicas before a tx commits
– 2PC required
– Failure on any replica causes tx’s rollback

• Slow tx, but strong consistency

25

Partition1
f1 f2

A1 A2
B1 B2

Partition1
f1 f2

A1 A2

B1 B2

LA Taiwan
rw-tx

R(A)

W(A)

W(B)

E.g., 2PL
(synchronous)

2PC

r-tx

R(A)

R(B)

R(C)

Commit

Lazy Replication
• Writes complete locally, but are propagated to

remote replicas in the background (with a lag)
– Usually by shipping a batch of logs
– Fast tx, but eventual consistency

26

Partition1
f1 f2

A1 A2

B1 B2

Partition1
f1 f2

A1 A2

B1 B2

LA Taiwan
Tx1

R(A)

W(A)

W(B)
synchronous

asynchronous (log shipping)

r-tx

R(A)

R(B)

R(C)

Commit

Who Writes?

• Master/Slave replication
– Writes of a record are routed to a specific (called

master) replica
– Reads to others (slave replicas)

• Multi-Master replication
– Writes of a record can be routed to any replica
– I.e., two writes of the same records may be

handled by different replicas

27

The Score Sheet
Eager MM Lazy M/S Lazy MM

Consistency Strong Eventual Weak

Latency High Low Low

Throughput Low High High

Availability upon failure Read/write Read-only Read/write

Data loss upon failure None Some Some

Reconciliation No need No need User or rules

Bottleneck, SPF None Master None

28

• Eager M/S and MM make no much difference with 2PL +
2PC

• Lazy MM needs reconciliation of conflicting writes
– Either by user or rules, e.g., last-write-wins

Outline

• Definition and requirements
• S through partitioning
• A through replication
• Problems of traditional DDBMS
• Usage analysis: operational vs. analytic

workloads
• The end of one-size-fits all era

29

A Real-World Distributed DBMS (DDBMS)
• Strong consistency

for rw-txs
• Week consistency

for r-txs

30

Dispatcher

DB Slave

(with hot standby node
monitoring the heartbeats)

Web Server Web Server Web Server

Dispatcher

DB Slave

Web Server

DB SlaveDB Slave

Dispatcher

DB Master DB Master

Request

Read Create/Update/Delete

Read Create/Update/Delete

Replicate

Datacenter

DB Slave

Dispatcher

DB Slave DB SlaveDB Slave

Dispatcher

DB Master DB Master

Read Create/Update/Delete

Datacenter

Replicate

(for scalability)

(for availability)

(for partition/sharding)

Request

rw-tx (sync)r-tx
(sync, single-datacenter)

replication for read throughput
(async)

partition for write throughput

partition for short delay (locality
for single-datacenter queries)

replication for availability
(async)

• Lazy M/S rules the
conventional DDBMS!

What's the problem?

31

“S” only with High-End Machines

• Dist. txs are costly
– Even within a datacenter (High latency due to 2PC)

• Every rw-tx routes to the masters, a potential
performance bottleneck

• Solution: careful data partitions + super-powerful
masters
– Reduces distributed txs (especially those across

regions) as many as possible
– Reduces the number of masters

• Scale up (rather than out) = exponentially
increase in $

32

Without Failure:
Trade-Off between C and Latency

• Lazy M/S replication: trade C for short latency
– A read-only tx is routed to slaves
– Reads an inconsistent snapshot of data if spanning

across partitions

• To support full C, clients are allowed to require
a read-only tx to go through the masters
– But you need more powerful masters (and more $)

33

With Failure:
Trade-Off between C and Av, Plus No D
• Machine failure:
– Each mater has few hot-stand-by servers
– Placed nearby to reduce overhead

• Datacenter failure:
– Due to power shortage, disasters, etc.
– Trade-off: read-only during failover (no Av) or

allow inconsistency for read-write txs (no C)
– Either way, no D: lazy M/S causes data loss

34

DDBMS venders:
If you are
welling to pay
a lot and
sacrifice C and
D, I can offer S
and limited Av.

35

DDBMS

Data model Relational

Tx boundary Unlimited

Consistency W strong, R eventual

Latency Low (local partition only)

Throughput High (scale-up)

Bottleneck/SPF Masters

Consistency (F) W strong, R eventual

Availability (F) Read-only

Data loss (F) Some

Reconciliation Not needed

Elasticity No

Outline

• Definition and requirements
• S through partitioning
• A through replication
• Problems of traditional DDBMS
• Usage analysis: operational vs. analytic

workloads
• The end of one-size-fits all era

36

Do you really need
full DB functions + SAE?

37

Feature Why?
Relational model Models (almost) all data, flexible

queries
Short latency 100ms more response time =

significant loss of users (Google)
Tx and ACID Keeps data correct and durable
Scalability You are (or will be) big
Availability No availability, no service!
Elasticity Save $

• Operational workloads
– For daily business operations
– A.k.a. OLTP (On-line Transaction Processing)

• Analytic workloads
– For data analysis and decision support
– Online (OLAP) or offline

DB Workloads (1/3)

38

DB Workloads (2/3)

39

Simple
operations

Write-focus Read-focus

Complex
operations

Operational

Analytic

DB Workloads (3/3)

40

Operational Analytic

Data purpose Latest snapshot Historical or consolidated from
multiple op sources

Data volume < few tens of TBs hundreds TBs to hundreds PBs,
or more

R/W ratio 60/40 to 98/2 Mostly reads

Query complexity Short reads, or short reads +
writes

Complex reads, batch writes

Delay tolerance < few seconds Minutes, hours, days, or more

Tx + ACID Required Not really matters

Outline

• Definition and requirements
• S through partitioning
• A through replication
• Problems of traditional DDBMS
• Usage analysis: operational vs. analytic

workloads
• The end of one-size-fits all era

41

The Era of One-Size-Fits-All

• OLTP players
– Oracle (incl. MySQL), IBM DB2, PostgreSQL, MS

SQL Server, etc.

• OLAP players
– IBM Infosphere, Teredata, Vertica, Oracle, etc.
– Based on star-schema

42

Today’s Challenges
• SAE is a must!
– E also means automation

• Unhappy OLTP users:
– I don’t want to pay a lot to scale up
– Data may not be well-partitioned, even with few masters
– Consistency is desirable in many cases

• Unhappy analytic users:
– My data is at web scale
– Data are ill-formatted and heterogeneous
– Schema changes over time

• We focus on the OLTP systems in this course

43

44

