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Definition

• A cloud DBMS is a DBMS designed to run in the cloud
– Machines could be either physical or virtual

• In particular, some manages data of tremendous 
applications (called tenants) 
– A.k.a. multi-tenant DBMS

• Is MySQL a cloud database?
– I can run MySQL in a Amazon EC2 VM instance
– No

4



What’s the Difference
• Ideally, in addition to all features provided by a 

traditional database, a cloud database should ensure 
SAE:

• high Scalability
– High max. throughput (measured by Tx/Query per 

second/minute)
– Horizontal, using commodity machines

• high Availability
– Stay on all the time, despite of 

machines/network/datacenter failure
• Elasticity
– Add/shutdown machines and re-distribute data on-the-fly 

based on the current workload 
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What do we have now?
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Why So Complicated?

• Full DB functions + SAE = a goal no one can 
achieve (currently)

• Even with Oracle 11g + SPARC SuperCluster
– 30,249,688 TPC-C transactions per minute
– $30+ million USD

• You loss elasticity!

8



Wait, what do you mean
full DB functions + SAE? 
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DB Functions

• Expressive relational data model
– Almost all kinds of data can be structured as a 

collection of tables

• Complex but fast queries
– Across multiple tables, grouping, nesting, etc.
– Query plan optimization, indexing, etc.

• Transactions with ACID
– Your data are always correct and durable
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List of Desired Features

Feature Why?
Relational model Models (almost) all data, flexible 

queries
Short latency 100ms more response time = 

significant loss of users (Google)
Tx and ACID Keeps data correct and durable
Scalability You are (or will be) big
Availability No availability, no service!
Elasticity Save $
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Scalability (OLTP Workloads)
• Max tx throughput ∝

(contention footprint 
* tx conflict rate)-1
– A tx holding locks for 

a long time blocks all 
conflicting txs and 
reduces throughput 

• Contention footprint 
increases when 
accessing hot tables 
(due to I/O bottleneck)

• How to improve the 
throughput?
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Scalability and Partitioning
• Partition your hot tables
– Either horizontally  or vertically
– Distribute read/write load to different servers
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Complications in Distributed DBs

• Records spread among partitions on different 
servers
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T1: write(user 1)
T2: write(user 596)

T2: write(user 596)T1: write(user 1)

T3: write(user 596, user 4) T3: write(user 596, user 4)

ACID?

Node 1
(User 1~1000)

Node 1
(User 1~500)

Node 2
(User 501~1000)

How?



Complications in Distributed DBs

• Records spread among partitions on different 
servers

• Distributed metadata manager
• Distributed query processor
– Best global-plan and its local-plans? 

• Distributed transactions
– ACID of a global-transaction T and its local-

transactions {Ti}?
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Isolation Revisited

• Requires a distributed CC manager
• For 2PL
– Dedicated lock server, or
– Primary server for each lock object (Distributed S2PL)

• For timestamp and optimistic CC
– The problem is how to generate the global unique 

timestamps
– E.g., “local_counter@server_ID”
– To prevent one server counts faster, each server 

increments its own counter upon receiving a 
timestamp from others  
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Distributed S2PL

• Primary server of an object: machine owning 
the corresponding partition

• Distributed deadlock?
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Partition1
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Atomicity Revisited

• Committing T means committing all local-
transactions

• If any local-transaction rolls back, then T 
should roll back
– When will this happen?
– ACID violation (e.g., in OCC)
– Deadlock
– Node failure (detected by some other nodes such 

as replica) 
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One-Phase Commit

• If T2 rolls back (due to ACID violation or failure), 
then T is partially executed, violating atomicity
– The effect of T1 and T3 cannot be erased due to 

durability 

20

T1 T2 T3

Commit T



Two-Phase Commit

• Drawback: long delay
– T blocks all conflicting txs and reduces throughput

• Partition helps only when the overhead of communication (2PC) < 
overhead of slow I/Os
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T1 T2 T3

Commit T?

Rollback T

Phase 1

Phase 2
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Availability

• Replicate all tables across servers
– If servers in one region fails, we have spare replicas

• Ideally, across geographically-separated regions
– To deal with disaster
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Consistency Revisited

• Consistency
– Txs do not result in violation of rules you set

• In distributed environments, consistency also 
means “all replicas remain the same after 
executing a tx”
– Tx reads local, writes all (R1WA)
– Side-benefit: a read-only tx can be on any replica

• Changes made by a tx on a replica need to be 
propagated to other replicas

• When? Eager vs. Lazy
• By whom? Master/Slave vs. Multi-Master
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Eager Replication

• Each write operation must completes on all 
replicas before a tx commits
– 2PC required
– Failure on any replica causes tx’s rollback

• Slow tx, but strong consistency
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Lazy Replication
• Writes complete locally, but are propagated to 

remote replicas in the background (with a lag)
– Usually by shipping a batch of logs
– Fast tx, but eventual consistency
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Who Writes?

• Master/Slave replication
– Writes of a record are routed to a specific (called 

master) replica
– Reads to others (slave replicas)

• Multi-Master replication
– Writes of a record can be routed to any replica
– I.e., two writes of the same records may be 

handled by different replicas
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The Score Sheet
Eager MM Lazy M/S Lazy MM 

Consistency Strong Eventual Weak

Latency High Low Low

Throughput Low High High

Availability upon failure Read/write Read-only Read/write

Data loss upon failure None Some Some

Reconciliation No need No need User or rules

Bottleneck, SPF None Master None
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• Eager M/S and MM make no much difference with 2PL + 
2PC

• Lazy MM needs reconciliation of conflicting writes
– Either by user or rules, e.g., last-write-wins
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A Real-World Distributed DBMS (DDBMS)
• Strong consistency 

for rw-txs
• Week consistency 

for r-txs
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Dispatcher

DB Slave

(with hot standby node 
monitoring the heartbeats)

Web Server Web Server Web Server

Dispatcher

DB Slave

Web Server

DB SlaveDB Slave

Dispatcher

DB Master DB Master

Request

Read Create/Update/Delete

Read Create/Update/Delete

Replicate

Datacenter

DB Slave

Dispatcher

DB Slave DB SlaveDB Slave

Dispatcher

DB Master DB Master

Read Create/Update/Delete

Datacenter

Replicate

(for scalability)

(for availability)

(for partition/sharding)

Request

rw-tx (sync)r-tx
(sync, single-datacenter)

replication for read throughput
(async)

partition for write throughput 

partition for short delay (locality 
for single-datacenter queries) 

replication for availability
(async)

• Lazy M/S rules the 
conventional DDBMS!



What's the problem?
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“S” only with High-End Machines

• Dist. txs are costly
– Even within a datacenter (High latency due to 2PC)

• Every rw-tx routes to the masters, a potential 
performance bottleneck

• Solution: careful data partitions + super-powerful 
masters
– Reduces distributed txs (especially those across 

regions) as many as possible
– Reduces the number of masters 

• Scale up (rather than out) = exponentially 
increase in $
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Without Failure: 
Trade-Off between C and Latency

• Lazy M/S replication: trade C for short latency
– A read-only tx is routed to slaves
– Reads an inconsistent snapshot of data if spanning 

across partitions

• To support full C, clients are allowed to require 
a read-only tx to go through the masters
– But you need more powerful masters (and more $)
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With Failure:
Trade-Off between C and Av, Plus No D
• Machine failure:
– Each mater has few hot-stand-by servers
– Placed nearby to reduce overhead

• Datacenter failure: 
– Due to power shortage, disasters, etc.
– Trade-off: read-only during failover (no Av) or 

allow inconsistency for read-write txs (no C)
– Either way, no D: lazy M/S causes data loss

34



DDBMS venders: 
If you are 
welling to pay 
a lot and 
sacrifice C and 
D, I can offer S 
and limited Av.
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DDBMS

Data model Relational

Tx boundary Unlimited

Consistency W strong, R eventual

Latency Low (local partition only)

Throughput High (scale-up)

Bottleneck/SPF Masters

Consistency (F) W strong, R eventual

Availability (F) Read-only

Data loss (F) Some

Reconciliation Not needed

Elasticity No
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Do you really need 
full DB functions + SAE? 
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Feature Why?
Relational model Models (almost) all data, flexible 

queries
Short latency 100ms more response time = 

significant loss of users (Google)
Tx and ACID Keeps data correct and durable
Scalability You are (or will be) big
Availability No availability, no service!
Elasticity Save $



• Operational workloads
– For daily business operations
– A.k.a. OLTP (On-line Transaction Processing)

• Analytic workloads
– For data analysis and decision support
– Online (OLAP) or offline

DB Workloads (1/3)
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DB Workloads (2/3)
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Simple 
operations

Write-focus Read-focus

Complex
operations

Operational

Analytic



DB Workloads (3/3)
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Operational Analytic

Data purpose Latest snapshot Historical or consolidated from 
multiple op sources

Data volume < few tens of TBs hundreds TBs to hundreds PBs,
or more

R/W ratio 60/40 to 98/2 Mostly reads

Query complexity Short reads, or short reads + 
writes

Complex reads, batch writes

Delay tolerance < few seconds Minutes, hours, days, or more

Tx + ACID Required Not really matters
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The Era of One-Size-Fits-All

• OLTP players
– Oracle (incl. MySQL), IBM DB2, PostgreSQL, MS 

SQL Server, etc.

• OLAP players
– IBM Infosphere, Teredata, Vertica, Oracle, etc.
– Based on star-schema
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Today’s Challenges
• SAE is a must!
– E also means automation

• Unhappy OLTP users: 
– I don’t want to pay a lot to scale up
– Data may not be well-partitioned, even with few masters  
– Consistency is desirable in many cases

• Unhappy analytic users:
– My data is at web scale
– Data are ill-formatted and heterogeneous
– Schema changes over time 

• We focus on the OLTP systems in this course
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