Cloud DBMS: An Overview

Shan-Hung Wu and Datalab
CS, NTHU

Outline

Definition and requirements

S through partitioning

A through replication

Problems of traditional DDBMS

Usage analysis: operational vs. analytic
workloads

The end of one-size-fits all era

Outline

Definition and requirements

S through partitioning

A through replication

Problems of traditional DDBMS

Usage analysis: operational vs. analytic
workloads

The end of one-size-fits all era

Definition

P

 Acloud DBMS is a DBMS designed to run in the cloud
— Machines could be either physical or virtual

* In particular, some manages data of tremendous
applications (called tenants)

— A.k.a. multi-tenant DBMS

* |s MySQL a cloud database?

— | can run MySQL in a Amazon EC2 VM instance
— No

What’s the Difference

* |deally, in addition to all features provided by a
traditional database, a cloud database should ensure

SAE:
* high Scalability
— High max. throughput (measured by Tx/Query per

second/minute)
— Horizontal, using commodity machines

* high Availability
— Stay on all the time, despite of
machines/network/datacenter failure

* Elasticity
— Add/shutdown machines and re-distribute data on-the-fly

based on the current workload

What do we have now?

The evolving database landscape

\ ﬁlational

Research :
Analytic g Teradata Aster Netezza ParAccel SAP Sybase I1Q
Hadoop ccolo Hadapt Infobright EMC Greenplum IBM InfoSphere
Non-relational HPCC RainStor Teradata Calpont Actian VectorWise HP Vertica

NoSQL SAP HANA

: r DataStax Enterprise ey \ Oracle Percona 1BM DB2 MariaDB \
MarkLogic = Castle Acunu SkySQL MySQL PpostgreSQL SQL Server

Citrusleaf II Hypertable

vErEant BerkeleyDB Cassandra HBase | 'MfiniteGrapk
Oracle NoSQL Qig tables OrientDB

-as-a-Service FathomDB k.

Amazon RDS Database.com
Postgres Plus Cloud ClearDB EnterpriseDB

Actian Ingres

RethinkDB App Engine bl Rackspace MySQL Cloud
HandlerSocket* Datastore NuvolaBase Google Cloud SQL SQL Azure SAP Sybase ASE
McObiject Riak Redis-to-go -as-a-Service
SimpleDB / NewS N

LevelDB
DynamoDB NuoDB VoltDB New databases

Progress Redi E
g Mgnﬁ‘,min \“"5 Mongo MO"gOCIoudant r-as-a-Service MemsQL JustOneDB SQLFire
Voldemort Couchlab HQ StormDB Drizzle Akiban Translattice

Couchbase RavenDB

\Kemlug / MongoDB CouchD8

?Xeround GenieDB wemSchoonerSQL»=Clustrix

ScaleArc ParElastic
Tokutek ScaleDB Zimory Scale Continuent

Storage MySQL Cluster Galera codeFutures

Lotus Notes Document /{ien ines) scaleBase Cl_usxe[i_ng[shaj;djny

Starcounter InterSystems

Objectivity

S —

Operational

7

@ 2012 by The 451 Group. All rights reserved

Why So Complicated?

* Full DB functions + SAE = a goal no one can
achieve (currently)

* Even with Oracle 11g + SPARC SuperCluster
— 30,249,688 TPC-C transactions per minute
— S30+ million USD

* You loss elasticity!

Wait, what do you mean
full DB functions + SAE?

DB Functions

* Expressive relational data model

— Almost all kinds of data can be structured as a
collection of tables

 Complex but fast queries
— Across multiple tables, grouping, nesting, etc.

— Query plan optimization, indexing, etc.

 Transactions with ACID

— Your data are always correct and durable

List of Desired Features

Feature ______why?

Relational model Models (almost) all data, flexible
gueries

Short latency 100ms more response time =
significant loss of users (Google)

Tx and ACID Keeps data correct and durable

Scalability You are (or will be) big

Availability No availability, no service!

Elasticity Save S

11

Outline

Definition and requirements

S through partitioning

A through replication

Problems of traditional DDBMS

Usage analysis: operational vs. analytic
workloads

The end of one-size-fits all era

12

Scalability (OLTP Workloads)

1.8M -

16M - 16.2% hand-coded
optimizations

1.4M A 11.9% logging
1.2M -

1.0M -~

locking

14.2%

latching

BM -
BM -

AM - buffer manager

Instructions

34.6%

2M -~

Figure 1. Breakdown of instruction count for various DBMS
components for the New Order transaction from TPC-C. The
top of the bar-graph is the original Shore performance with a
main memory resident database and no thread contention.
The bottom dashed line is the useful work, measured by exe-
cuting the transaction on a no-overhead kernel.

Max tx throughput o«
(contention footprint

* tx conflict rate)?
— A tx holding locks for
a long time blocks all

conflicting txs and
reduces throughput

Contention footprint
increases when
accessing hot tables
(due to /0O bottleneck)

How to improve the
throughput?

13

Scalability and Partitioning

* Partition your hot tables
— Either horizontally or vertically

— Distribute read/write load to different servers

Too hot! Partitionl

f1 f2 f1 f2

E N RN NN EEENENEENI

Complications in Distributed DBs

* Records spread among partitions on different
servers

How?
T5: write(Tsemb8e (user 896) T;: write(user 596, user 4)

l Ty $/rite(user 1) Ty wrlte(usLer)/ ante user 596)

Node 1 ‘ Node 1 Node 2
(User 1~1000) (User 1~500) ” (User 501~1000)

15

Complications in Distributed DBs

Records spread among partitions on different
servers

Distributed metadata manager
Distributed query processor
— Best global-plan and its local-plans?

Distributed transactions

— ACID of a global-transaction T and its local-
transactions {Ti}?

Isolation Revisited

* Requires a distributed CC manager

e For 2PL

— Dedicated lock server, or
— Primary server for each lock object (Distributed S2PL)

* For timestamp and optimistic CC

— The problem is how to generate the global unique
timestamps

— E.g., “local_counter@server_|ID”

— To prevent one server counts faster, each server
Increments its own counter upon receiving a
timestamp from others

Distributed S2PL

* Primary server of an object: machine owning
the corresponding partition

e Distributed deadlock?

wW(C)
NM(R) W(C)
Partitionl V(B)
Al | A2 | _r

18

Atomicity Revisited

e Committing T means committing all local-
transactions

* |f any local-transaction rolls back, then T
should roll back

— When will this happen?
— ACID violation (e.g., in OCC)
— Deadlock

— Node failure (detected by some other nodes such
as replica)

One-Phase Commit

CommitT
T1 T2 T3

© &3 O

* If T2 rolls back (due to ACID violation or failure),
then T is partially executed, violating atomicity

— The effect of T1 and T3 cannot be erased due to
durability

20

Two-Phase Commit

\ Commit T?

Dhace 2 f\ \ Rollback T

T3

Phase 1

 Drawback: long delay
— T blocks all conflicting txs and reduces throughput

* Partition helps only when the overhead of communication (2PC) <
overhead of slow 1/Os

Outline

Definition and requirements

S through partitioning

A through replication

Problems of traditional DDBMS

Usage analysis: operational vs. analytic
workloads

The end of one-size-fits all era

22

Availability

* Replicate all tables across servers

— |If servers in one region fails, we have spare replicas

* |deally, across geographically-separated regions
— To deal with disaster

LA Taiwan
Partitionl Partitionl
e

=)

Consistency Revisited

Consistency
— Txs do not result in violation of rules you set

In distributed environments, consistency also

means “all replicas remain the same after
executing a tx”

— Tx reads local, writes all (R1IWA)
— Side-benefit: a read-only tx can be on any replica

Changes made by a tx on a replica need to be
propagated to other replicas

When? Eager vs. Lazy
By whom? Master/Slave vs. Multi-Master

Eager Replication

* Each write operation must completes on all
replicas before a tx commits

— 2PC required
— Failure on any replica causes tx’s rollback

* Slow tx, but strong consistency

ﬁ(A) . R(A)
LA % Taiwan |gq

Partitionl aB Partitionl
Al A2 Al | A2
Bl |B2
" BL |B2
< D

2PC

Lazy Replication

* Writes complete locally, but are propagated to
remote replicas in the background (with a lag)

— Usually by shipping a batch of logs
— Fast tx, but eventual consistency

F.l rtx |
R(A) R(A)

LA Swial Talwan 8)
' "Y(B) R(C)
Partitionl Partitionl
1 f2 4 N2
Al |A2 DAL | A2

B1 |B2 I > B1 B2

‘asynchronous (log shipping)

26

Who Writes?

* Master/Slave replication

— Writes of a record are routed to a specific (called
master) replica

— Reads to others (slave replicas)

* Multi-Master replication

— Writes of a record can be routed to any replica

— |.e., two writes of the same records may be
handled by different replicas

The Score Sheet

Eager MM Lazy M/S Lazy MM
Availability upon failure Read/write Read-only Read/write
Datalossuponfailre None Some Some
Reconciliation No need No need User or rules

e Eager M/S and MM make no much difference with 2PL +
2PC

 Lazy MM needs reconciliation of conflicting writes
— Either by user or rules, e.g., last-write-wins

28

Outline

Definition and requirements

S through partitioning

A through replication

Problems of traditional DDBMS

Usage analysis: operational vs. analytic
workloads

The end of one-size-fits all era

29

A Real-World Distributed DBMS (DDBMS)

e Strong consistency
for rw-txs

=l (with hot standby node
monitoring the heartbeats)

 Week consistency
paicher - forr-txs

d Lazy M/S rUIGS the Req‘uest
conventional DDBMS!

r-tx
(sync, single-datacenter)

erver erver Web Server Web Server
Datacenter ” ate/U pdate/ » / Datacenter
_——-— - = r

reate/Update/Delete

= =]
= =|
= =
= =

DB Slave DB ave DB Slave DB Slave B Master B Mas
partition for short del ay ﬁqcallty

‘ ~ " forsingle-datacenter queries)

DB Jlave DB ave DB M aste
Eoepllcgjge
_________ Ll ‘

replication for read throughput 5”ﬁon for availability
(async) (async)

I
|
I
|
I
|
I
|
I
|
I
|
I
L—

30

What's the problem?

“S” only with High-End Machines

Dist. txs are costly
— Even within a datacenter (High latency due to 2PC)

Every rw-tx routes to the masters, a potential
performance bottleneck

Solution: careful data partitions + super-powerful
masters

— Reduces distributed txs (especially those across
regions) as many as possible

— Reduces the number of masters

Scale up (rather than out) = exponentially
increase in S

Without Failure:
Trade-Off between C and Latency

* Lazy M/S replication: trade C for short latency
— A read-only tx is routed to slaves

— Reads an inconsistent snapshot of data if spanning
across partitions

* To support full C, clients are allowed to require
a read-only tx to go through the masters

— But you need more powerful masters (and more S)

With Failure:
Trade-Off between C and Av, Plus No D

* Machine failure:
— Each mater has few hot-stand-by servers

— Placed nearby to reduce overhead

e Datacenter failure:
— Due to power shortage, disasters, etc.

— Trade-off: read-only during failover (no Av) or
allow inconsistency for read-write txs (no C)

— Either way, no D: lazy M/S causes data loss

DDBMS

Data model

Relational

Tx boundary

Unlimited

Consistency

W strong, R eventual

Latency Low (local partition only)
Throughput High (scale-up)
Bottleneck/SPF Masters

Consistency (F) W strong, R eventual
Availability (F) Read-only

Data loss (F) Some

Reconciliation Not needed

Elasticity No

DDBMS venders:

If you are
welling to pay
a lot and
sacrifice C and
D, | can offer S
and limited Av.

35

Outline

* Usage analysis: operational vs. analytic
workloads

Do you really need
full DB functions + SAE?

Feature ______why?

Relational model Models (almost) all data, flexible
gueries

Short latency 100ms more response time =
significant loss of users (Google)

Tx and ACID Keeps data correct and durable

Scalability You are (or will be) big

Availability No availability, no service!

Elasticity Save S

37

DB Workloads (1/3)

e Operational workloads
— For daily business operations
— A.k.a. OLTP (On-line Transaction Processing)

* Analytic workloads

— For data analysis and decision support
— Online (OLAP) or offline

DB Workloads (2/3)

Complex
operations

Simple
operations

Operational

Analytic

Write-focus

Read-focus

39

DB Workloads (3/3)
T operatonal meatic

Data purpose

Data volume

R/W ratio

Query complexity

Delay tolerance
Tx + ACID

Latest snapshot

< few tens of TBs

60/40 to 98/2

Short reads, or short reads +
writes

< few seconds

Required

Historical or consolidated from
multiple op sources

hundreds TBs to hundreds PBs,
or more

Mostly reads

Complex reads, batch writes

Minutes, hours, days, or more

Not really matters

40

Outline

Definition and requirements

S through partitioning

A through replication

Problems of traditional DDBMS

Usage analysis: operational vs. analytic
workloads

The end of one-size-fits all era

41

The Era of One-Size-Fits-All

 OLTP players

— Oracle (incl. MySQL), IBM DB2, PostgreSQL, MS
SQL Server, etc.

* OLAP players
— IBM Infosphere, Teredata, Vertica, Oracle, etc.

— Based on star-schema

Today’s Challenges

SAE is a must!
— E aIso means automation

Unhappy OLTP users:

— | don’t want to pay a lot to scale up

— Data may not be well-partitioned, even with few masters
— Consistency is desirable in many cases

Unhappy analytic users:

— My data is at web scale

— Data are ill-formatted and heterogeneous

— Schema changes over time

We focus on the OLTP systems in this course

The evolving database landscape

\ ﬁlational

Research :
Analytic g Teradata Aster Netezza ParAccel SAP Sybase I1Q
Hadoop ccolo Hadapt Infobright EMC Greenplum IBM InfoSphere
Non-relational HPCC RainStor Teradata Calpont Actian VectorWise HP Vertica

NoSQL SAP HANA

: r DataStax Enterprise ey \ Oracle Percona 1BM DB2 MariaDB \
MarkLogic = Castle Acunu SkySQL MySQL PpostgreSQL SQL Server

Citrusleaf II Hypertable

vErEant BerkeleyDB Cassandra HBase | 'MfiniteGrapk
Oracle NoSQL Qig tables OrientDB

-as-a-Service FathomDB k.

Amazon RDS Database.com
Postgres Plus Cloud ClearDB EnterpriseDB

Actian Ingres

RethinkDB App Engine bl Rackspace MySQL Cloud
HandlerSocket* Datastore NuvolaBase Google Cloud SQL SQL Azure SAP Sybase ASE
McObiject Riak Redis-to-go -as-a-Service
SimpleDB / NewS N

LevelDB
DynamoDB NuoDB VoltDB New databases

Progress Redi E
g Mgnﬁ‘,min \“"5 Mongo MO"gOCIoudant r-as-a-Service MemsQL JustOneDB SQLFire
Voldemort Couchlab HQ StormDB Drizzle Akiban Translattice

Couchbase RavenDB

\Kemlug / MongoDB CouchD8

?Xeround GenieDB wemSchoonerSQL»=Clustrix

ScaleArc ParElastic
Tokutek ScaleDB Zimory Scale Continuent

Storage MySQL Cluster Galera codeFutures

Lotus Notes Document /{ien ines) scaleBase Cl_usxe[i_ng[shaj;djny

Starcounter InterSystems

Objectivity

S —

Operational

17

@ 2012 by The 451 Group. All rights reserved

