
Indexing

Shan-Hung Wu
CS, NTHU

Outline

• Overview
– API in VanillaCore

• Hash-Based Indexes
• B-Tree Indexes
• Query Processing
• Transaction Management

2

Outline

• Overview
– API in VanillaCore

• Hash-Based Indexes
• B-Tree Indexes
• Query Processing
• Transaction Management

3

Where are we?

4

Why Index?

• Query:
– SELECT * FROM students WHERE dept = 10

• Record file for students:

• Selectivity is usually low
• Full table scan results in poor performance

5

What is an Index?

• Query:
– SELECT * FROM students WHERE dept = 10

• Index: a data structure (file) defined on fields
that speeds up data accessing
– Input: field values or ranges
– Output: record IDs (RIDs)

Index is another file

6

Terminology (1/2)

• Every index has an associated search key
– I.e., one or more fields

• Primary index vs. secondary index
– If search key contains primary key or not

• Index entry/record:
– <data value, data rid>

Search key: dept

dataVa
l

dataRid
7

Terminology (2/2)

• An index is designed to speed up equality or
range selections on the search key
– ... WHERE dept = 10
– ... WHERE dept > 30 AND dept < 100

8

Outline

• Overview
– API in VanillaCore

• Hash-Based Indexes
• B-Tree Indexes
• Query Processing
• Transaction Management

9

SQL Statements for Index Creation

• The SQL:1999 standard does not include any
statement for creating or dropping indeice

• Creating index:
– CREATE INDEX <name> ON
<table>(<fields>) USING <method>

– E.g., CREATE INDEX idxdept ON
students(dept) USING btree

• In VanillaCore, an index only supports one
indexed field

10

The Index Class in VanillaCore

• An abstract class in storage.index
– beforeFirst() resets iterator and search value
– next() moves to the next rid matching search value

11

IndexInfo

• Factory class for Index via open()
• Stores information about an index
• Similar to TableInfo

12

Using an Index
• SELECT sname FROM students WHERE dept=10

13

Transaction tx = VanillaDb.txMgr().newTransaction(
Connection.TRANSACTION_SERIALIZABLE, false);

// Open a scan on the data table
Plan studentPlan = new TablePlan("students", tx);
TableScan studentScan = (TableScan) studentPlan.open();

// Open index on the field dept of students table
Map<String, IndexInfo> idxmap =

VanillaDb.catalogMgr().getIndexInfo("students", tx);
Index deptIndex = idxmap.get("dept").open(tx);

// Retrieve all index records having dataval of 10
deptIndex.beforeFirst(ConstantRange

.newInstance(new IntegerConstant(10)));
while (deptIndex.next()) {

// Use the rid to move to a student record
RecordId rid = deptIndex.getDataRecordId();
studentScan.moveToRecordId(rid);
System.out.println(studentScan.getVal("sname"));

}

deptIndex.close();
studentScan.close();
tx.commit();

Updating Indexes
• INSERT INTO students (sid,sname,dept,gradyear)

VALUES (7,’sam’,10,2014)

14

Transaction tx = VanillaDb.txMgr().newTransaction(
Connection.TRANSACTION_SERIALIZABLE, false);

TableScan studentScan = (TableScan) new TablePlan("students", tx).open();

// Create a map containing all indexes of students table
Map<String, IndexInfo> idxMap = VanillaDb.catalogMgr().getIndexInfo(

"students", tx);
Map<String, Index> indexes = new HashMap<String, Index>();
for (String fld : idxmap.keySet())

indexes.put(fld, idxMap.get(fld).open(tx));

// Insert a new record into students table
studentScan.insert();
studentScan.setVal("sid", new IntegerConstant(7));
studentScan.setVal("sname", new VarcharConstant("sam"));
studentScan.setVal("dept", new IntegerConstant(10));
studentScan.setVal("grad", new IntegerConstant(2014));

// Insert a record into each of the indexes
RecordId rid = studentScan.getRecordId();
for (String fld : indexes.keySet()) {

Constant val = studentScan.getVal(fld);
Index idx = indexes.get(fld);
idx.insert(val, rid);

}

for (Index idx : indexes.values())
idx.close();

studentScan.close();
tx.commit();

• Faster reads at the
cost of slower writes

Outline

• Overview
– API in VanillaCore

• Hash-Based Indexes
• B-Tree Indexes
• Query Processing
• Transaction Management

15

Hash-Based Indexes
• Designed for equality selections
• Uses a hashing function

– Search values � bucket numbers
• Bucket

– Primary page plus zero or more overflow pages
• Based on static or dynamic hashing techniques

bucket 1

bucket 0

bucket 2

16

Static Hashing
• The number of bucket N is fixed
• Overflow pages if needed
• h(k) mod N = bucket to which data entry with key k

belongs
• Records having the same hash value are stored in the

same bucket

N=3

17

Search Cost of Static Hashing

• How to compute the #block-access?
• Assume index has B blocks and has N buckets
• Then each bucket is about B/N blocks long

18

Hash Index in VanillaCore

• Related Package
– storage.index.hash.HashIndex

19

HashIndex

20

• Stores each bucket in a record file
– Name: {index-name}{bucket-num}

• beforeFirst()
1. Hashes the search value, and
2. Opens the corresponding record file

• The index record [key, blknum, id]

RecordId

Limitations of Static Hashing (1/2)

• Search cost: B/N
• Increase efficiency à increase N (#buckets)
– Best when 1 block per bucket

• However, a large #buckets leads to wasted
space
– Empty pages waiting the index to grow into it

21

Limitations of Static Hashing (2/2)

• Hard to decide N
• Why not double #buckets when a bucket is

full?
– Redistributing records is costly

Can we do better?
22

Extendable Hash Indexes

• Use directory: pointers to buckets
• Double #buckets by doubling the directory
• Splitting just the bucket that overflowed

23

Extendable Hash Indexes

• Directory is array of size 4
• To find bucket for r, take last ‘global depth’

#bits of h(r)

Global depth of directory:
Max #bits needed to tell
which bucket an entry belongs to

Local depth of a bucket:
#bits used to determine if an
entry belongs to this bucket

24

Example (1/4)

• After inserting entry r with h(r)=13
– Binary number: 1101

25

Example (2/4)

• While inserting entry r with h(r)=20
– Binary number: 10100

split bucket A
000

100
26

Example (3/4)

• After inserting entry r with h(r)=20
• Update the global depth

– Some buckets will have local depth less than global depth

27

Example (4/4)

• After inserting entry r with h(r)=9

28

Remarks

• At most 1 page split for each insert
• Cheap doubling
– When local depth of bucket = global depth
– Only 3 page access (1 directory page, 2 data

pages)

• No overflow page?
– Still has, but only when there are a lot of records

with same key value
29

Outline

• Overview
– API in VanillaCore

• Hash-Based Indexes
• B-Tree Indexes
• Query Processing
• Transaction Management

30

Is Hash-Based Index Good Enough?

• Hash-based indexes are good for equality
selections

• However, cannot support range searches
– E.g., ... WHERE dept>100

• We now consider an index structured as a
search tree
– Speeds up search by sorting values
– Supports both range and equality searches

31

Power of Sorting
• Create an “index” file

– where dataVal’s are sorted
• Query: “Find all students with dept > 100”

– Do binary search to find first such student, then scan the
index till end to find others

• However, slow update: O(#data-records)

32

Index with sorted dataVal’s

B-Tree Index
• The most widely used index
• Index records are sorted on dataVal in each page
• M-way balanced search tree:
– O(logM(#data-records)) for equality search & update
– O(#data-records) for range search

Directory record:[val, blkNum]

Index record:[val, rid]

33

Leaf pages

Directory pages

Searching

• “Finding all index records having a specified
dataVal v”

1. Search begins at root
2. Fetches child block pointed by parent until leaf
• Search cost: O(tree height), usually < 5

Leaf pages

Directory pages

Search v=ben

34

Range Searching

• > v: traverse leaf nodes from v to end
• < v: traverse leaf nodes from start to v

35

Leaf pages

Directory pages

Search v=ben

Insertion

1. Search the index with the inserted dataVal
2. Insert the new index record into the target leaf

block
• What if the block has no more room?
– Remember extendable hashing? Spilt it!

Insert [kay,
r48]

36

Splitting

1. Leaf node: Redistribute entries evenly; copy up
middle dataVal

2. Directory node (recursive): Redistribute entries
evenly; push up middle dataVal

• Update cost: O(tree height)

37

Insert [kay,
r48]

[kay,r48]...

kay

New directory record has dataVal = fist value in the new block

Duplicate DataVals (1/2)

• When splitting a leaf block, we must place all
records with same dataVal in same block

38

Cannot be found

Duplicate DataVals (2/2)

• E.g., insert [ron, r27]

• What if there are too many records with same
dataVal?

39

Overflow Blocks (1/2)

• Keep records of the same dataVal
• Chained by primary blocks

40

Overflow Blocks (2/2)

• First dataVal in primary leaf block = dataVal in
overflow block

• After deleting [peg, r59], should the two leaf
nodes merge?
– No

41

Deletion
1. Search the index with the target dataVal
2. Delete the index record in a leaf block
3. Move the next records one-slot ahead
4. Merge blocks if #records is less than a threshold
5. Recursive delete on parents

42

B-tree Index in VanillaCore
• Related package

– storage.index.btree
• B-tree page

– Directory pages

– Leaf pages

• Supports node-splitting for insert ops
• But not merging for delete ops

– Only records in leaf nodes are deleted, leaving directory unchanged

43

Outline

• Overview
– API in VanillaCore

• Hash-Based Indexes
• B-Tree Indexes
• Query Processing
• Transaction Management

44

Related Relational Algebra

• Related package: query.algebra.index
• IndexSelectPlan
• IndexJoinPlan

45

Update Planner

• Related package: query.planner.index
• IndexUpdatePlanner

46

Outline

• Overview
– API in VanillaCore

• Hash-Based Indexes
• B-Tree Indexes
• Query Processing
• Transaction Management

47

Index Locking

• Why?
– To ensure I
– Avoid phantom problems

• S2PL?
– Index/block/record level

• Poor performance!

48

Block-Level S2PL

• Tx A: search A
• Tx B: insert B

• Root node becomes the bottleneck
• Better locking protocol?

49

S

S

S

X

X

X

Observations

• Every tx traverse the tree from root to leaf
– A tx can release “ancestor” locks early while still

being able to prevent conflicting access

• For inserts, a split can only propagate up along
“full” nodes

50

XS

Lock Crabbing Protocol (1/2)

• Search:
– Start at root and go down
– S-lock child then unlock parent

• Insert/delete:
– Start at root and go down
– X-lock child
– Unlock all ancestors if child is safe

• Safe: “not full” / “not half empty”

51

S

S
S

Lock Crabbing Protocol (2/2)

• Range searches:
> A: expanding locks from A to end
< A: expanding locks from start to A

• Locks not released early are held until tx ends

52

S
A

S

Phantoms

•

53

Phantom due to
insert

Phantom due to update

Isolation Levels (1/2)
Read rec Modify/delete rec Insert rec

SERIALIZABLE S lock on index

IS lock on file
IS lock on block

S lock on record

IX lock on file and
block

X lock on record

X lock on index

X lock on file and
block

X lock on record

X lock on index
REPEATABLE
READ

S lock on index;
release upon end
statement

IS lock on file and
block; release
immediately

S lock on record

IX lock on file and
block

X lock on record

X lock on index

X lock on file and
block

X lock on record

X lock in index

54

Read committed
and avoid

cascading abort

Prevent phantoms due to inserts & updates

IX

Isolation Levels (2/2)

55

Read rec Modify/delete rec Insert rec
READ
COMMITTED

S lock on index;
release upon end
statement

IS lock on file and
block; release
immediately

S lock on record;
release upon end
statement

IX lock on file and
block

X lock on record

X lock on index

X lock on file and
block

X lock on record

X lock on index

Allow non-repeatable reads

IX

• Naïve: value-level, physical logging
• Causes huge overhead!

• Block-level, physiological logging
– E.g., to log “insert at slot X”

Recovery

56

Insert A

Index Locking/Logging in VanillaDB

• Hash index: no special design
– Rely on locking/logging mechanism implemented

in RecordFile for each bucket
– Locks on FileHeaderPage are released early;

parallel inserts/deletes
• B-tree index:
– Lock crabbing
– Phantom prevention if index available
– Physiological logs for block ops

57

