
Trade-Offs and NoSQL

Shan-Hung Wu, NetDB

CS, NTHU

Outline

• SAE revisited
• Non-relational partitioned DDBMS

– Trade-off: load balancing vs. short latency
– DDBMS moves: DBA or even graph cuts
– NoSQL moves

• Non-relational replicated DDBMS
– Trade-Off: C vs. short Latency
– Trade-Off: CA@P
– DDBMS moves: L-(A@P)
– NoSQL moves

• Elasticity in non-relational DDBMS
• Remarks

2

Outline

• SAE revisited
• Non-relational partitioned DDBMS

– Trade-off: load balancing vs. short latency
– DDBMS moves: DBA or even graph cuts
– NoSQL moves

• Non-relational replicated DDBMS
– Trade-Off: C vs. short Latency
– Trade-Off: CA@P
– DDBMS moves: L-(A@P)
– NoSQL moves

• Elasticity in non-relational DDBMS
• Remarks

3

Why So Hard to Get SAE?

• Horizontal “S” requires good data partitioning
– I/O overhead < communication overhead

• 99.999% “A” requires cross-WAN replication
– Network quality affects system performance

• “E” means workload-aware data
(re-)partitioning + live migration

4

Outline

• SAE revisited
• Non-relational partitioned DDBMS

– Trade-off: load balancing vs. short latency
– DDBMS moves: DBA or even graph cuts
– NoSQL moves

• Non-relational replicated DDBMS
– Trade-Off: C vs. short Latency
– Trade-Off: CA@P
– DDBMS moves: L-(A@P)
– NoSQL moves

• Elasticity in non-relational DDBMS
• Remarks

5

Load Balancing vs. Short Latency

• Data are partitioned to avoid hot zones
• When a tx access data across multiple

partitions, it becomes slow
– Distributed locking (may be)
– 2PC

• How to avoid such slowdown?
• Partition data such that
– Each machine gets equal load
– #dist. txs are minimized

6

Outline

• SAE revisited
• Non-relational partitioned DDBMS

– Trade-off: load balancing vs. short latency
– DDBMS moves: DBA or even graph cuts
– NoSQL moves

• Non-relational replicated DDBMS
– Trade-Off: C vs. short Latency
– Trade-Off: CA@P
– DDBMS moves: L-(A@P)
– NoSQL moves

• Elasticity in non-relational DDBMS
• Remarks

7

DDBMS Solution: Hire an Experienced
DBA

• Traditionally, data partitioning requires careful
examination of the target workload
– Usually done by experienced DBA

• Cons:
– Experienced DBAs are expensive

– Time-consuming

– Cannot adapt to the fast-changing workloads

8

Automation: Graph Partitioner

• Model the recent
workload as a graph
– Nodes: data objects, with

weight denoting their
access frequency

– Edges: common access by
txs, also weighted

• Find the minimal
balanced partition of this
graph
– Machines are evenly

loaded
– Dist. txs are minimized

9

Outline

• SAE revisited
• Non-relational partitioned DDBMS

– Trade-off: load balancing vs. short latency
– DDBMS moves: DBA or even graph cuts
– NoSQL moves

• Non-relational replicated DDBMS
– Trade-Off: C vs. short Latency
– Trade-Off: CA@P
– DDBMS moves: L-(A@P)
– NoSQL moves

• Elasticity in non-relational DDBMS
• Remarks

10

Industry: It’s Too Complicated!

• Balanced graph partitioning is an NP-hard
problem

• Why not just drop the support relational
model?
– NoSQL data model: key-value, document based,

entity-group based, etc.

• Data are perfectly partitionable 🡪 no dist. Txs
🡪 ultimate scalability

11

Example: Document Model

• Used by Google Firestore, MongoDB, etc.

12

Outline

• SAE revisited
• Non-relational partitioned DDBMS

– Trade-off: load balancing vs. short latency
– DDBMS moves: DBA or even graph cuts
– NoSQL moves

• Non-relational replicated DDBMS
– Trade-Off: C vs. short Latency
– Trade-Off: CA@P
– DDBMS moves: L-(A@P)
– NoSQL moves

• Elasticity in non-relational DDBMS
• Remarks

13

Outline

• SAE revisited
• Non-relational partitioned DDBMS

– Trade-off: load balancing vs. short latency
– DDBMS moves: DBA or even graph cuts
– NoSQL moves

• Non-relational replicated DDBMS
– Trade-Off: C vs. short Latency
– Trade-Off: CA@P
– DDBMS moves: L-(A@P)
– NoSQL moves

• Elasticity in non-relational DDBMS
• Remarks

14

C vs. Short Latency

Eager MM Lazy M/S Lazy MM

Consistency Strong Eventual Weak

Latency High Low Low

Throughput Low High High

Availability upon failure Read/write Read-only Read/write

Data loss upon failure None Some Some

Reconciliation No need No need User or rules

Bottleneck, SPF None Master None

15

• Short latency wins in traditional DDBMS

Outline

• SAE revisited
• Non-relational partitioned DDBMS

– Trade-off: load balancing vs. short latency
– DDBMS moves: DBA or even graph cuts
– NoSQL moves

• Non-relational replicated DDBMS
– Trade-Off: C vs. short Latency
– Trade-Off: CA@P
– DDBMS moves: L-(A@P)
– NoSQL moves

• Elasticity in non-relational DDBMS
• Remarks

16

CAP Theorem

• All-node availability
– Every node (if not failed) always serve requests

• Consistency
– Data in every node are consistent

• CAP theorem: in presence of partition (P),
choose one

17

Partition Explained

• Machine failure
• Network partition

– May be temporal, but frequent (due to, e.g., packet
delay/loss)

– Including single-node partition
– Cross-WAN

• What’s the difference?
– Nodes are alive!
– Some may commit users something that others don’t agree

• “P” covers machine failure

18

All-node Av ≠ Service Av

• Nodes in “quorum” (e.g., majority) partition:
– Keeps the service availability

• Paxos protocol allows C and service Av @P
• Nodes not in quorum partition:

– Need not make any progress (i.e., act as if they were dead)
– When partition resolved, need to enter the “recovery” mode first

19

https://en.wikipedia.org/wiki/Paxos_(computer_science)

Outline

• SAE revisited
• Non-relational partitioned DDBMS

– Trade-off: load balancing vs. short latency
– DDBMS moves: DBA or even graph cuts
– NoSQL moves

• Non-relational replicated DDBMS
– Trade-Off: C vs. short Latency
– Trade-Off: CA@P
– DDBMS moves: L-(A@P)
– NoSQL moves

• Elasticity in non-relational DDBMS
• Remarks

20

DDBMS with Network Partition

• Lazy M/S replication
• One master for each data object (globally)

• If a client can reach the masters:
– No consistency (short latency wins)

• If a client is partitioned from the masters:
– No availability
– Data in a master is always correct and durable

• We say DDBMS choose C in present of P
• Overall: L over C, with sacrifised A@P

21

Outline

• SAE revisited
• Non-relational partitioned DDBMS

– Trade-off: load balancing vs. short latency
– DDBMS moves: DBA or even graph cuts
– NoSQL moves

• Non-relational replicated DDBMS
– Trade-Off: C vs. short Latency
– Trade-Off: CA@P
– DDBMS moves: L-(A@P)
– NoSQL moves

• Elasticity in non-relational DDBMS
• Remarks

22

Dynamo/Cassandra/Riak: L-(C@P)

• In normal case: lazy M/S replication
– L over C

• In the presence of failure: lazy M/M
replication
– Degraded consistency level

– But R/W availability

23

Google BigTable/MegaStore: C-(A@P)

• In normal case: eager replication
– C

– Long latency but scalable, as each partition (entity
group) runs an instance of eager replication protocol

• @P: adopt eager replication protocol that is
robust to P
– Paxos

– If a client can reach any machine in the quorum, the
system acts normally

24

Outline

• SAE revisited
• Non-relational partitioned DDBMS

– Trade-off: load balancing vs. short latency
– DDBMS moves: DBA or even graph cuts
– NoSQL moves

• Non-relational replicated DDBMS
– Trade-Off: C vs. short Latency
– Trade-Off: CA@P
– DDBMS moves: L-(A@P)
– NoSQL moves

• Elasticity in non-relational DDBMS
• Remarks

25

Elasticity

• Targets: workload-aware (re-)partitioning + live
migration

• Challenges: distributed txs, 2PC/log shipping, etc.
– NoSQL: limited support for distributed txs

26

When to Migrate?

• NoSQL makes it easy: achieved using a “master” in
each datacenter
– Monitors the loads of “working” servers
– Split/merge loads if they are too hot/cold

• Example?
– GFS, MapReduce, BigTable

• Elasticity is usually per-datacenter basis
– Enough to cope with “hot datacenters” (due to

concentrated active users)
– No data partitioning across datacenters (i.e., fully

replicated)

27

Problems

• Master is a single point of failure
– Solution: hot-stand-by’s

• Master may be the performance bottleneck
– Solution: preventing master from dealing with

data traffic (but control messages)

• Hard to develop apps:
– Non-relational data model
– No/reduced dist. tx support

• Data migration vs. A and C

28

Data Migration vs. Tx execution

• If data being migrated are locked, conflict txs stall
– No A

• Otherwise, no C
• Current approach: “live migration” (A -> B)

– A continues executing txs, and additionally pushes the
results sets to B

– B takes over tx execution only it catches up A (after
receiving data and applying result sets)

• Keeps A and C
• But B cannot help system performance timely

– Many txs are still executed by A after the migration
decision

• Still a research problem!
29

Outline

• SAE revisited
• Non-relational partitioned DDBMS

– Trade-off: load balancing vs. short latency
– DDBMS moves: DBA or even graph cuts
– NoSQL moves

• Non-relational replicated DDBMS
– Trade-Off: C vs. short Latency
– Trade-Off: CA@P
– DDBMS moves: L-(A@P)
– NoSQL modes

• Elasticity in non-relational DDBMS
• Remarks

30

Why So Hard to Get SAE?

• Horizontal S requires good partitioning (and
replication)
– Experienced DBA is needed
– Dist. Txs are too costly (due to 2PC)

• Extreme A requires cross-WAN replication
– Trade-off in normal operations: consistency vs. latency
– Trade-off when failure occurs: consistency vs. availability

(CAP theorem)
• E means workload-aware (re-)partitioning + live

migration
– Trade-off in deciding partitions: equal volume vs. few dist.

txs
– Join optimization needed for multi-tenant DBMS
– Migration blocks ongoing txs

31

The NoSQL Move

• Drop relational model
– Assume data can be partitioned

– No dist. tx 🡪 S and easier E (although migration
still blocks txs)

• Further compromise C (except Google) in both
normal and failure cases
– For low latency in normal case

– For A in failure case

32

The Score Sheet

DDBMS Dynamo/Cassandra/Riak

Data model Relational Key-value

Tx boundary Unlimited Key-value

Consistency W strong, R eventual W strong, R eventual

Latency Low (local partition only) Low

Throughput High (scale-up) High (scale-out)

Bottleneck/SPF Masters Masters

Consistency (F) W strong, R eventual WR eventual

Availability (F) Read-only Read-write

Data loss (F) Some Some

Reconciliation Not needed Needed

Elasticity No Manual, blocking migration

33

Other Benefits of NoSQL

• Offline support (e.g., Firestore)
– Writes to local cache first, then on server when client goes back online
– Conflict resolution (on same doc): the last write wins

• Change pushing
– Server pushes changes

34

NoSQLCache

ViewsClient

Denormalization

• How to model data in NoSQL?

• Based on ER and relation model first

• Outline your queries

• Then denormalize fields for every query

35

36

References

• Handling Large Datasets at Google: Current
Systems and Future Directions, Jeff Dean.

• MapReduce: Simplified Data Processing on Large C
lusters, Jeffrey Dean and S Ghemawat, 2004.

• The Google File System, S Ghemawat et al. 2003.
• A Thomson et al. The Case for Determinism in

Database Systems. 2010.
• A Thomson et al. Calvin: Fast Distributed

Transactions for Partitioned Database Systems.
2012.

37

References

• Fay Chang et al. Bigtable: A Distributed Storage System for
Structured Data. 2006.

• Shute et al, F1 — the Fault-Tolerant Distributed RDBMS Supporting
Google's Ad Business. 2012

• Corbett et al, Spanner: Google’s Globally-Distributed Database.
2012.

• Matthew Aslett. What we talk about when we talk about NewSQL.
http://blogs.the451group.com/information_management/2011/0
4/06/what-we-talk-about-when-we-talk-about-newsql/

• Matthew Aslett. NoSQL, NewSQL and Beyond.
http://blogs.the451group.com/information_management/2011/0
4/15/nosql-newsql-and-beyond/

38

http://blogs.the451group.com/information_management/2011/04/06/what-we-talk-about-when-we-talk-about-newsql/
http://blogs.the451group.com/information_management/2011/04/06/what-we-talk-about-when-we-talk-about-newsql/
http://blogs.the451group.com/information_management/2011/04/15/nosql-newsql-and-beyond/
http://blogs.the451group.com/information_management/2011/04/15/nosql-newsql-and-beyond/

