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The Emerge of Al & Embeddings
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* Used by search engines, recommender systems,
personalized ads, etc.
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Approximate K Nearest Neighbor
(AKNN) Search

* Given a query vector g, find k vectors V={v_, v,
..., V. } in storage that are approximately
nearest to g

e Distance measure?
— Euclidian distance, cosine similarity, etc.

* The higher recall the better
— Let ground truth: V*
— Recall=|vnv*| /| Vv*|



AKNN Algorithms

 Tree-based: KD-tree, R-tree
* Quantization-based: IVF_FLAT/SQ8/PQ
* Graph-based: HNSW, NSG, SSG

* Locality sensitive hashing (LSH)



AKNN Algorithms

 Tree-based: KD-tree, R-tree
— Runs slowly on high-dimensional data

° Quantization-based: IVF_FLAT/SQ8/PQ
— High recall, codebooks are update-insensitive

* Graph-based: HNSW, NSG, SSG

— High recall, graph take time/space to maintain

* Locality sensitive hashing (LSH)
— Low recall



IVF FLAT/SQS8/PQ
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e Search in each cluster: brut force (FLAT) vs.
compressed (SQ8) vs. quantization of subvectors (PQ)
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AKNN Libraries from Al Community

* Facebook Faiss, Microsoft SPTAG, Spotify
Annoy, etc.

— Implement various AKNN algorithms

* Pros: computation optimized
— Support SIMD instructions (SSE, AVX, AVX2)
— Faiss even supports GPU acceleration



AKNN Libraries from Al Community

* Facebook Faiss, Microsoft SPTAG, Spotify
Annoy, etc.

— Implement various AKNN algorithms

* Cons:
— Assume memory storage only
— No support for dynamic data (updates/deletes)
— No attribute filtering (e.g., “100 < price < 200”)
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PASE

* “PostgreSQL Ultra-High-Dimensional
Approximate Nearest Neighbor Search
Extension,” in SIGMOD’20
— A PostgreSQL extension
— Can be implemented in any System R-like DBMS

* Pros:
— Supports disk storage

— Supports dynamic data
— Supports attribute filtering



Data Model

* Treats vectors as a field in a table
— Type: float vector (d)

* Index creation:

CREATE INDEX 1dx text ON posts (text vector)
USING 1ivf flat;
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Query Format

* AKNN query:

SELECT p.1d,

p.text vector <-> ‘...
FROM posts AS p
ORDER BY dist ASC LIMIT 10;

4

AS dist
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Index Building (IVF_FLAT)
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e Each page is the unit of buffering and searching
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Index Update (IVF_FLAT)

* Do nothing if the data distribution does not
change

* Otherwise, continue clustering for few
iterations



Planning

SELECT p.id,
p.text vector <-> ‘...

FROM posts AS p
ORDER BY dist ASC LIMIT 10;

* New SortPlan in algebra tree
— Needs to estimate its own cost

4

AS dist
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Cost Estimation (IVF FLAT)

* To select top clusters: B(centroid file)
e Scan for each cluster: B(data file of a centroid)



Attribute Filtering

SELECT p.id,
p.text vector <-> ‘...’ AS dist
FROM posts AS p
WHERE p.date < ‘...
ORDER BY dist ASC LIMIT 10;

Strategy A Strategy B Strategy C

. _ t h
attribute search attribute search ‘ (;/_ ZC f\r,,if?ﬁm

l l l

vector search
(e.g., IVF_FLAT)

vector full-scan attribute full-scan

e Best strategy determined by estimated costs
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Milvus

e “Milvus: A Purpose-Built Vector Data
Management System,” in SIGMOD’21

— A dedicated system

* Pros:

— Supports disk storage, dynamic data, attribute
filtering

— Much higher performance than PASE



Storage

e Column storage based on Log Structured Merge (LSM)
tree

C /\ @ immutable @ memtable (T SSTable
k memtable

e QOut-of-place updates

e SSTables (segments) are the unit of
buffering/searching
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Consistency Model: Snapshot Isolation

* Every update creates a new data version

* Readers read a consistent snapshot of data
— Not always the latest one
— Not blocked by writers

* Milvus maintains snapshots of LSM tree:
— Snapshot 1: {segment 1}
— Snapshot 2: {segment 1, segment 2}
— Snapshot 3: {segment 2, segment 3, segment 4}




Thread Model

In PASE, one thread is
assigned for each
request

— Hight L3 cache miss rate

Milvus:

— Process m requests at
once

— One thread per cached
segment in L3

Core 0 Core 1

threads (CPUs): 0,2 threads (CPUs): 1,3

L1d cache L1i cache L1d cache L1i cache
32KB 32KB 32KB 32KB

L2 cache L2 cache
256KB 256KB

L3 cache
3072KB
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Thread
Model
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Each of t threads outputs temp AKNN results in heap H__(in L3)

...} are merged to get final AKNN results

e 1.5~2.7 speedup'
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Computing

 Computing the distance between two vectors involves
many, parallelable floating point operations
* Milvus supports hardware acceleration:
— SIMD instructions on CPU: SSE, AVX, AVX2, AVX512
— GPU, multi-GPU
— Also balances GPU speedup vs. bus transfer delay:

Algorithm 1: SQ8H

let ng be the batch size;
if ng = threshold then

Jury

\V]

3 run all the queries entirely in GPU (load multiple buckets
 to GPU memory on the fly);

s else

5 execute the step 1 of SQ8 in GPU: finding n,,,p buckets;

6 execute the step 2 of SQ8 in CPU: scanning every relevant
 bucket;




Query Planning

StrategyA Strategy B Strategy C

vector search
(e.g., IVF_FLAT)

l [ l

vector search
(e.g., IVF_FLAT)

attribute search attribute search

vector full-scan attribute full-scan

partition-based

cost-based ‘

PASE W® @ @ -~ ® Milvus

Strategy D Strategy E (Milvus)

* Partition based on frequently queried attributes
e 13x speedup



Final Project

* Grading
— Pioneer-run presentation
— Benchmark 50%

— Report 20%

30%
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Benchmark Grading

 Sum(recall per query) within a fixed
benchmark period
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Dataset

e Based on Sift1M dataset
— 1M vectors

— 128 floats per vector
— Non-uniform distribution

* Running machine can load only 1/8 dataset
— Buffer pool size is only 64M
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https://www.tensorflow.org/datasets/catalog/sift1m

Benchmark Period

1. Data population period
— Where you can build your index

2. Query period
— 3% inserts
— 3% updates
— With spatial/temporal locality
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Hints

Focus on I/O optimizations first

— E.g., dimension reduction, special/temporal
locality, etc.

Make CPU busier

— E.g., by increasing block size
— So, SIMD can be more useful

Insert/updates matters
— K-means++, schedular, etc.

Parameter tuning



