Vector Database Systems

Shan-Hung Wu and DataLab CS, NTHU

Outline

- Why Vector DBMS?
- AKNN Search Algorithms
- Challenges at System-level
- Case study: PASE (System R-like)
 - Data model & Query Format
 - Index Building & Update
 - Planning & Cost Estimation
- Case study: Milvus (purpose-built)
 - Storage & Consistency Model
 - Computing & Threads
 - Query Algorithms

Outline

- Why Vector DBMS?
- AKNN Search Algorithms
- Challenges at System-level
- Case study: PASE (System R-like)
 - Data model & Query Format
 - Index Building & Update
 - Planning & Cost Estimation
- Case study: Milvus (purpose-built)
 - Storage & Consistency Model
 - Computing & Threads
 - Query Algorithms

The Emerge of AI & Embeddings

 Used by search engines, recommender systems, personalized ads, etc.

How to store & search billions of embeddings?

Outline

- Why Vector DBMS?
- AKNN Search Algorithms
- Challenges at System-level
- Case study: PASE (System R-like)
 - Data model & Query Format
 - Index Building & Update
 - Planning & Cost Estimation
- Case study: Milvus (purpose-built)
 - Storage & Consistency Model
 - Computing & Threads
 - Query Algorithms

Approximate K Nearest Neighbor (AKNN) Search

- Given a query vector q, find k vectors V={v₁, v₂, ..., v_k} in storage that are approximately nearest to q
- Distance measure?
 - Euclidian distance, cosine similarity, etc.
- The higher *recall* the better
 - Let ground truth: V*
 - $-\operatorname{Recall} = | V \cap V^* | / | V^* |$

AKNN Algorithms

- Tree-based: KD-tree, R-tree
- Quantization-based: IVF_FLAT/SQ8/PQ
- Graph-based: HNSW, NSG, SSG
- Locality sensitive hashing (LSH)

AKNN Algorithms

- Tree-based: KD-tree, R-tree
 - Runs slowly on high-dimensional data
- Quantization-based: IVF_FLAT/SQ8/PQ
 - High recall, codebooks are update-insensitive
- Graph-based: HNSW, NSG, SSG
 - High recall, graph take time/space to maintain
- Locality sensitive hashing (LSH)
 - Low recall

IVF_FLAT/SQ8/PQ

 Search in each cluster: brut force (FLAT) vs. compressed (SQ8) vs. quantization of subvectors (PQ)

Outline

- Why Vector DBMS?
- AKNN Search Algorithms
- Challenges at System-level
- Case study: PASE (System R-like)
 - Data model & Query Format
 - Index Building & Update
 - Planning & Cost Estimation
- Case study: Milvus (purpose-built)
 - Storage & Consistency Model
 - Computing & Threads
 - Query Algorithms

AKNN Libraries from AI Community

 Facebook Faiss, Microsoft SPTAG, Spotify Annoy, etc.

Implement various AKNN algorithms

- Pros: computation optimized
 - Support SIMD instructions (SSE, AVX, AVX2)
 - Faiss even supports GPU acceleration

AKNN Libraries from AI Community

- Facebook Faiss, Microsoft SPTAG, Spotify Annoy, etc.
 - Implement various AKNN algorithms

• Cons:

- Assume memory storage only
- No support for dynamic data (updates/deletes)
- No attribute filtering (e.g., "100 < price < 200")</p>

Outline

- Why Vector DBMS?
- AKNN Search Algorithms
- Challenges at System-level
- Case study: PASE (System R-like)
 - Data model & Query Format
 - Index Building & Update
 - Planning & Cost Estimation
- Case study: Milvus (purpose-built)
 - Storage & Consistency Model
 - Computing & Threads
 - Query Algorithms

PASE

- "PostgreSQL Ultra-High-Dimensional Approximate Nearest Neighbor Search Extension," in SIGMOD'20
 - A PostgreSQL extension
 - Can be implemented in any System R-like DBMS
- Pros:
 - Supports disk storage
 - Supports dynamic data
 - Supports attribute filtering

Data Model

- Treats vectors as a *field* in a table
 - Type: float_vector(d)
- Index creation:

CREATE INDEX idx_text ON posts(text_vector)
USING ivf_flat;

Query Format

• AKNN query:

Index Building (IVF_FLAT)

• Each page is the unit of buffering and searching

Index Update (IVF_FLAT)

- Do nothing if the data distribution does not change
- Otherwise, continue clustering for few iterations

Planning

New SortPlan in algebra tree
 – Needs to estimate its own cost

Cost Estimation (IVF_FLAT)

- To select top clusters: B(centroid file)
- Scan for each cluster: B(data file of a centroid)

Attribute Filtering

Best strategy determined by estimated costs

Outline

- Why Vector DBMS?
- AKNN Search Algorithms
- Challenges at System-level
- Case study: PASE (System R-like)
 - Data model & Query Format
 - Index Building & Update
 - Planning & Cost Estimation
- Case study: Milvus (purpose-built)
 - Storage & Consistency Model
 - Computing & Threads
 - Query Algorithms

Milvus

 "Milvus: A Purpose-Built Vector Data Management System," in SIGMOD'21
 – A dedicated system

- Pros:
 - Supports disk storage, dynamic data, attribute filtering
 - Much higher performance than PASE

Storage

 Column storage based on Log Structured Merge (LSM) tree

- Out-of-place updates
- SSTables (segments) are the unit of buffering/searching

Consistency Model: Snapshot Isolation

- Every update creates a new data version
- Readers read a consistent snapshot of data
 - Not always the latest one
 - Not blocked by writers
- Milvus maintains snapshots of LSM tree:
 - Snapshot 1: {segment 1}
 - Snapshot 2: {segment 1, segment 2}
 - Snapshot 3: {segment 2, segment 3, segment 4}

Thread Model

- In PASE, one thread is assigned for each request
 - Hight L3 cache miss rate
- Milvus:
 - Process *m* requests at once
 - One thread per cached segment in L3

- For each query *s*:
 - 1. Each of *t* threads outputs temp AKNN results in heap $H_{t,s}$ (in L3)
 - 2. Then, $\{H_{0,s}, H_{1,s}, ...\}$ are merged to get final AKNN results
- 1.5 ~ 2.7 speedup

Computing

- Computing the distance between two vectors involves many, *parallelable* floating point operations
- Milvus supports hardware acceleration:
 - SIMD instructions on CPU: SSE, AVX, AVX2, AVX512
 - GPU, multi-GPU
 - Also balances GPU speedup vs. bus transfer delay:

Algorithm 1: SQ8H

- 1 let n_q be the batch size;
- ² if $n_q \ge threshold$ then
- ³ run all the queries entirely in GPU (load multiple buckets to GPU memory on the fly);

4 else

- 5 execute the step 1 of SQ8 in GPU: finding n_{probe} buckets;
- execute the step 2 of SQ8 in CPU: scanning every relevant bucket;

Query Planning

- Partition based on frequently queried attributes
- 13x speedup

Final Project

- Grading
 - Pioneer-run presentation **30%**
 - Benchmark
 - Report

50% 20%

Benchmark Grading

 Sum(recall per query) within a fixed benchmark period

Dataset

- Based on <u>Sift1M dataset</u>
 - 1M vectors
 - 128 floats per vector
 - Non-uniform distribution
- Running machine can load only 1/8 dataset
 - Buffer pool size is only 64M

Benchmark Period

1. Data population period

- Where you can build your index
- 2. Query period
 - 3% inserts
 - 3% updates
 - With spatial/temporal locality

Hints

- Focus on *I/O optimizations* first
 - E.g., dimension reduction, special/temporal locality, etc.
- Make CPU busier
 - E.g., by increasing block size
 - So, SIMD can be more useful
- Insert/updates matters
 - K-means++, schedular, etc.
- Parameter tuning