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The Emerge of AI & Embeddings

• Used by search engines, recommender systems, 
personalized ads, etc. 
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Embeddings



How to store & 
search billions of 
embeddings?
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Approximate K Nearest Neighbor 
(AKNN) Search

• Given a query vector q, find k vectors V={v
1
, v

2
, 

…, v
k
} in storage that are approximately  

nearest to q  

• Distance measure?
– Euclidian distance, cosine similarity, etc. 

• The higher recall the better
– Let ground truth: V*

– Recall = | V ∩ V* | / | V* |
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AKNN Algorithms

• Tree-based: KD-tree, R-tree

• Quantization-based: IVF_FLAT/SQ8/PQ

• Graph-based: HNSW, NSG, SSG

• Locality sensitive hashing (LSH)
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AKNN Algorithms

• Tree-based: KD-tree, R-tree
– Runs slowly on high-dimensional data

• Quantization-based: IVF_FLAT/SQ8/PQ
– High recall, codebooks are update-insensitive

• Graph-based: HNSW, NSG, SSG
– High recall, graph take time/space to maintain 

• Locality sensitive hashing (LSH)
– Low recall
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IVF_FLAT/SQ8/PQ

• Search in each cluster:  brut force (FLAT) vs. 
compressed (SQ8) vs. quantization of subvectors (PQ)
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AKNN Libraries from AI Community

• Facebook Faiss, Microsoft SPTAG, Spotify 
Annoy, etc.
– Implement various AKNN algorithms

• Pros: computation optimized
– Support SIMD instructions (SSE, AVX, AVX2)

– Faiss even supports GPU acceleration
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AKNN Libraries from AI Community

• Facebook Faiss, Microsoft SPTAG, Spotify 
Annoy, etc.
– Implement various AKNN algorithms

• Cons: 
– Assume memory storage only

– No support for dynamic data (updates/deletes)

– No attribute filtering (e.g., “100 < price < 200”)
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PASE

• “PostgreSQL Ultra-High-Dimensional 
Approximate Nearest Neighbor Search 
Extension,” in SIGMOD’20
– A PostgreSQL extension
– Can be implemented in any System R-like DBMS

• Pros:
– Supports disk storage
– Supports dynamic data
– Supports attribute filtering
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Data Model

• Treats vectors as a field in a table
– Type: float_vector(d)

• Index creation:
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CREATE INDEX idx_text ON posts(text_vector)
USING ivf_flat;



Query Format

• AKNN query:

17

SELECT p.id,
       p.text_vector <-> ‘...’ AS dist  
FROM posts AS p
ORDER BY dist ASC LIMIT 10;



Index Building (IVF_FLAT)

• Each page is the unit of buffering and searching 
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Index Update (IVF_FLAT)

• Do nothing if the data distribution does not 
change

• Otherwise, continue clustering for few 
iterations
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Planning

• New SortPlan in algebra tree 
– Needs to estimate its own cost 
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SELECT p.id,
       p.text_vector <-> ‘...’ AS dist  
FROM posts AS p
ORDER BY dist ASC LIMIT 10;



Cost Estimation (IVF_FLAT)

• To select top clusters: B(centroid file)

• Scan for each cluster: B(data file of a centroid) 
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Attribute Filtering
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SELECT p.id,
       p.text_vector <-> ‘...’ AS dist  
FROM posts AS p
WHERE p.date < ‘...'
ORDER BY dist ASC LIMIT 10;

• Best strategy determined by estimated costs
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Milvus

• “Milvus: A Purpose-Built Vector Data 
Management System,” in SIGMOD’21
– A dedicated system

• Pros:
– Supports disk storage, dynamic data, attribute 

filtering

– Much higher performance than PASE 
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Storage

• Column storage based on Log Structured Merge (LSM) 
tree

• Out-of-place updates
• SSTables (segments) are the unit of 

buffering/searching
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Consistency Model: Snapshot Isolation

• Every update creates a new data version
• Readers read a consistent snapshot of data
– Not always the latest one
– Not blocked by writers

• Milvus maintains snapshots of LSM tree:
– Snapshot 1: {segment 1}
– Snapshot 2: {segment 1, segment 2}
– Snapshot 3: {segment 2, segment 3, segment 4}
– …
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Thread Model

• In PASE, one thread is 
assigned for each 
request
– Hight L3 cache miss rate

•  Milvus: 
– Process m requests at 

once
– One thread per cached 

segment in L3 
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Thread 
Model

• For each query s:
1. Each of t threads outputs temp AKNN results in heap H

t,s
 (in L3)

2. Then,  {H
0,s

, H
1,s

, …} are merged to get final AKNN results
• 1.5 ~ 2.7 speedup
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Computing

• Computing the distance between two vectors involves 
many, parallelable floating point operations

• Milvus supports hardware acceleration:
– SIMD instructions on CPU: SSE, AVX, AVX2, AVX512
– GPU, multi-GPU
– Also balances GPU speedup vs. bus transfer delay:
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Query Planning

30

PASE Milvus

• Partition based on frequently queried attributes
• 13x speedup



Final Project

• Grading
– Pioneer-run presentation 30%

– Benchmark 50%

– Report 20%
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Benchmark Grading

• Sum(recall per query) within a fixed 
benchmark period
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Dataset

• Based on Sift1M dataset
– 1M vectors

– 128 floats per vector

– Non-uniform distribution

• Running machine can load only 1/8 dataset
– Buffer pool size is only 64M 
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https://www.tensorflow.org/datasets/catalog/sift1m


Benchmark Period

1. Data population period
– Where you can build your index

2. Query period
– 3% inserts

– 3% updates

– With spatial/temporal locality
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Hints

• Focus on I/O optimizations first
– E.g., dimension reduction, special/temporal 

locality, etc.

• Make CPU busier
– E.g., by increasing block size
– So, SIMD can be more useful

• Insert/updates matters
– K-means++, schedular, etc.

• Parameter tuning 
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