Deep Learning
Lab 5: Regularization

Regularization

techniques that improve the
generalizability of a trained model

Outline

e Scikit-learn

* Learning Theory

* Error Curves and Model Complexity

* Learning Curves and Sample Complexity
* Weight Decay

* Ridge Regression

e LASSO
* Validation

* Assignment

Outline

e Scikit-learn

* Learning Theory

* Error Curves and Model Complexity

* Learning Curves and Sample Complexity
* Weight Decay

* Ridge Regression

* LASSO
* Validation

* Assighment

Scikit-learn

e Scikit-learn is a free software machine learning library for the Python
programming language

* It features various classification, regression and clustering algorithms

* including SVM (support vector machines), Random Forests, gradient boosting,
k-means and DBSCAN, and is designed to interoperate with the Python
numerical and scientific libraries NumPy and SciPy

* pip install scikit-learn / conda install scikit-learn

‘ﬁewm

Outline

* Learning Theory
* Error Curves and Model Complexity
* Learning Curves and Sample Complexity

Learning Theory

* Learning theory provides a means to understand the generalizability
of the model

* Model complexity plays a crucial role
* Too simple: high bias and underfitting
* Too complex: high variance and overfitting

Degree: 1 Degree: 3 Degree: 10
20 9 20 9 20 9

15

10 4

0.5 1

-2.0 T T T T T T T -2.0 T
-3 -2 -1 0 1 2 3

Error Curves and Model Complexity

* It is relatively hard to observe the figures showed in the last slide,
since normally we will never know the data distribution of ground

truth (red line in the last slide)

* Instead, we can get those information by observing the training and

testing error curve

0.30 1

0.25 A

0.20 1

MSE

0.15 1

0.10 1

0.05 A1

= Training error
= Testing error

Model complexity (polynomial degree)

Risk

: over-fitting

. Test risk

under-fitting

™

~ ‘Training risk
sweet spot s

T Ml
Capacity of H

Double Descent Curves in Modern Machine Learning™*

under-fitting over-fitting

under-parameterized over-parameterized

. Test risk Test risk

'EMD 'C&D “classical” “modern”
. po| . p{ Y . . 2 .
o o regime interpolating regime

N

~ o Training risk ~ Training risk:
sweet spot\: - _ ~ - ./interpolation threshold
Capacity of H Capacity of H

Reconciling modern machine learning practice and the bias-variance trade-off (PNAS’19)
Double-descent curves in neural networks: a new perspective using Gaussian processes (arXiv’'21)

* Although the error curve visualizes the impact of model complexity,

Error Curves and Model Complexity

the bias-variance tradeoff holds only when you have sufficient
training examples

MSE

0.30 1

0.25 4

0.20 1

0.15 1

0.10 1

0.05 A1

= Training error
= Testing error

Model complexity (polynomial degree)

Risk

under-fitting over-fitting

. Test risk

~N

~ ‘Training risk

sweet spot_ + —

S Sp \ ~ L
Capacity of H

MSE

30

25 1

2.0 1

10 4

0.5 1

0.0 T

Learning Curves and Sample Complexity

* The bounding methods of learning theory tell us that a model is likely

to overfit regardless of its complexity when the size of training set is
small. The learning curves are a useful tool for understanding how
much training examples are sufficient

Degree: 1
—e— Training erro
Testing
Er=== T, L
e e m———r———— u
0 10 20 30 40 50 60 70 80
Number of training sampl

MSE

30

25 1

2.0 1

10 4

0.5 1

0.0 T

Degree: 3

~—
-
-
-
N~
-~

—e— Training error
-m~ Testing error

MSE

30

25 1

2.0 1

10 4

0.5 1

0.0 T

Degree: 10
T

—e— Training error
-m~ Testing error

Outline

* Weight Decay
* Ridge Regression
* LASSO

Weight Decay

A common regularization approach. The idea is to add a term in the
cost function against complexity

* Ridge Regression (L)
arg min,, ;, [ly — (Xw — b1)||* + allw||*

* LASSO (L)

argmin,, , |ly — (Xw — b1)||> + allw||

Ridge Regression

* A small value a drastically reduces the testing error. Nevertheless, it's
not a good idea to increase a forever, since it will over-shrink the
coefficients of w and result in underfitting

: 2 2
| | argmin,, , |[y — (Xw — b1)||” + a||w||
from sklearn.linear model import Ridge w,
from sklearn.metrics import mean squared_ error

poly = PolynomialFeatures(degree=3) [Alpha = 0]
X poly = poly.fit transform(X std) MSE train: 0.00, test: 19958.68
X train, X test, y train, y test = train test split(

X poly, y, test size=0.3, random state=0) [Alpha = 1]

MSE train: 0.73, test: 23.05

for a in [0, 1, 10, 100, 1000]:

lr rg = Ridge(alpha=a) [Alpha = 10]

lr rg.fit(X_train, y_train) MSE train: 1.66, test: 16.83

y_train pred = lr rg.predict(X train) [Alpha = 100]

y _test pred = lr rg.predict(X test) MSE train: 3.60, test: 15.16

print('\n[Alpha = %d]' % a) [Alpha = 1000]

print('MSE train: %.2f, test: %.2f' % (MSE train: 8.81, test: 19.22

mean_squared error(y train, y train pred),
mean_squared error(y test, y test pred)))

LASSO

* An alternative weight decay approach that can lead to sparse w is the
LASSO. Depending on the value of a, certain weights can become zero
much faster than others

g 2
argmin,, , |ly — (Xw — b1)||” + a||w]|, (Alpha = 0.0000]
? MSE train: 0.55, test: 61.02
from sklearn.linear model import Lasso [Alpha = 0.0010]
from sklearn.metrics import mean squared error MSE train: 0.64, test: 29.11

for a in [0.001, 0.01, 0.1, 1, 10]:
lr rg = Lasso(alpha=a) [Alpha = 0.0100]
lr rg.fit(X_train, y_train) MSE train: 1.52, test: 19.51

y_train pred = lr rg.predict(X train)
y_test pred = lr rg.predict(X test) (Alpha = 0.1000]
MSE train: 4.34, test: 15.52
print('\n[Alpha = %.2f]' % a)
print('MSE train: %.2f, test: %.2f' % (
mean squared error(y train, y train pred), [Alpha = 1.0000]
mean_squared error(y test, y test pred))) MSE train: 14.33, test: 22.42

[Alpha = 10.0000]
MSE train: 55.79, test: 53.42

Ridge vs LASSO

* Why is LASSO sparse?) \
_ § O R o
Ridge: [0.5, 0.5, 0.5, 0.5] 5] W

Initial weights: [1, 0.5, 1, 0.5]

a

LASSO: [0.5, 0, 0.5, O]

Coefficients
o \/ o
|
|
|

Ridge vs LASSO

* Why is LASSO sparse?

1 5
argmin — |y — (Xw — b1)|>+]

o The surface of the cost function is the sum of SSE (blue contours)
and 1-norm (red contours)
o Optimal point locates on some axes

w2 a

D —

Ridge vs LASSO

e LASSO can also be treated as a supervised feature selection
technigue when choosing a suitable regularization strength a to make

only part of coefficients become exactly zeros

3-
o ® LASSO
® Rid
, . idge
1 o
o o
v
S 0p-—-@-—-8-—-0--0------ e e A *
-
8 -19
° o
-2 ® °

0 2 4 6 8 10 12
Coefficients index

Outline

e Scikit-learn

* Learning Theory

* Error Curves and Model Complexity

* Learning Curves and Sample Complexity
* Weight Decay

* Ridge Regression

e LASSO
* Validation

* Assighment

Validation

* Another useful regularization technique that helps us decide the
proper value of hyperparameters

* The idea is to split your data into the training, validation, and testing
sets and then select the best value based on validation performance

* NOTE: It is important that we should never peep testing data during

training
[oo ouem

Validation Hyperparameters
Data Tuning

Training Data

Validation

[Degree = 1]
MSE train: 25.00, valid: 21.43, test: 32.09

[Degree = 2]
MSE train: 9.68, valid: 14.24, test: 20.24

[Degree = 3]
MSE train: 3.38, valid: 17.74, test: 18.63

[Degree = 4]
MSE train: 1.72, valid: 16.67, test: 30.98

[Degree = 5]
MSE train: 0.97, valid: 59.73, test: 57.02

[Degree = 6]
MSE train: 0.60, valid: 1444.08, test: 33189.41

Outline

e Scikit-learn

* Learning Theory

* Error Curves and Model Complexity

* Learning Curves and Sample Complexity
* Weight Decay

* Ridge Regression

* LASSO
* Validation

* Assighment

Assignment

* In this assignment, we would like to predict the success of shots made
by basketball players in the NBA

4213] 4176 8.5 [a3r2}(3910) 54.7 55.3 4311}@
] r [3ORIIFA018) 60.7 62.3 <3ﬂkc3
A G 1
1 I 0.9 0 (479} 48.7,3
ecis|qas

3|80 | 4BB 477413819

O¥8)[a7/8} 0 49:2| [a 781§ 2 S¥Y 2619
178

17

-
e
()

3841

g
-

jy 7o\l o [3818]f0%

ooy (9
O CO, en

Bl

a8
@.

3
5

&140|4 0| 250 | 808
9 168 |41&2] 107 | €00 | &b
W'FJ{?//

B8
&
g

&1

3
8
B

\\
b
5
g
i)
£
f

\\‘3&8 &1 | 182

Assignment

* In this assignment, we would like to predict the success of shots made
by basketball players in the NBA
e y testis hidden this time
* Allow to use any linear model in scikit-learn to achieve the best accuracy
* Select the best 3 features, and show the accuracy with only those

* Hint
* Preprocess the data to help your training

* Since you don't have y_test this time, you may need to split a validation set
for checking your performance

* |tis possible to use a regression model as a classifier, for example
RidgeClassifier

https://scikit-learn.org/stable/modules/linear_model.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html

Assignment

* Submit to eeclass with your:
* ipynb (LabO5_ {student_id}.ipynb)
* Prediction (Lab05 {student id} y pred.csv)

* The notebook should contain
* How you evaluate your model
e All models you have tried and the results
* Plot the error curve of your best model and tell if it is over-fit or not
* The top-3 features you find and how you find it
* A brief report of what you have done in this assighment
* Please refer to the “Requirements” part in the notebook for more details

e Deadline: 2023-10-19 (Thur) 23:59

