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Neural Networks from Scratch

• In this lab, you will learn the fundamentals of how you can 
build neural networks without the help of the deep 
learning frameworks, and instead by using NumPy



Neural Networks from Scratch

• Creating complex neural networks with different 
architectures with deep learning frameworks should be 
a standard practice for any Machine Learning Engineer 
and Data Scientist

• But a genuine understanding of how a neural network 
works is equally as valuable



Model Architecture

• We are going to build a deep neural network with 3 layers 
in total: 1 input layer, 1 hidden layers and 1 output layer

• All layers will be fully-connected

• In this tutorial, we will use MNIST dataset

• MNIST contains 70,000 images of hand-written digits, 60,000 for training 
and 10,000 for testing, each 28x28=784 pixels, in greyscale with 
pixel-values from 0 to 255



Model Architecture

• To be able to classify digits, we must end up with the 
probabilities of an image belonging to a certain class

• Input layer: Flatten images into one array with 
28x28=784 elements. This means our input layer will 
have 784 nodes

• Hidden layer: Reduce the number of nodes from 784 in 
the input layer to 64 nodes, so there’s 64 nodes in 
hidden layer

• Output layer: Reduce 64 nodes to a total of 10 nodes, 
and we can evaluate them against the label. The label is 
in the form of an array with 10 elements, where one of 
the elements is 1, while the rest is 0



Model Architecture

H
idden Layer, 784x64

O
utput Layer, 64x10

Input Layer (Flatten)

   

 



Model Architecture

• When instantiating the DeepNeuralNetwork class, we 
pass in an array of sizes that defines the number of 
activations for each layer

• This initializes the class by the init function



Initialization

•  



Initialization

•  



Feedforward

• The forward pass consists of the dot operation, which 
turns out to be just matrix multiplication

• We have to multiply the weights by the activations of 
the previous layer, and then apply the activation 
function to the outcome

• In the last layer we use the softmax activation function, 
since we wish to have probabilities of each class, so 
that we can measure how well our current forward pass 
performs





Activation Functions

• One magical power in deep neural networks is the 
non-linear activation functions

• They enable us to learn the non-linear relationship 
between input and output



Activation Functions

• We provide derivatives of activation functions, which are 
required when backpropagating through networks

• As you have learned in the earlier lecture, a numerical stable version of the 

softmax function was chosen



Backpropagation

• Backpropagation, short for backward propagation of 
errors, is key to supervised learning of deep neural 
networks

• It has enabled the recent surge in popularity of deep learning algorithms 
since the early 2000s

• The backward pass is hard to get right, because there are so many sizes 
and operations that have to align, for all the operations to be successful





Training

• We have defined a forward and backward pass, but how 
can we start using them? 

• We have to make a training loop and choose an optimizer 
to update the parameters of the neural network



Training

Number of epochs

Running through each batch

Compute predictions

Compute gradients

Update networks



Optimization

•  



Optimization



Results

• The results completely dependent on how the weights are 
initialized and the activation function we use

• Experimentally, due to non-bounded behavior of relu(), the learning 
rate should be set much smaller than the one 
for sigmoid() (bounded)

• Training with SGD optimizer with momentum should have better result 
since it avoids from getting stuck in local minima or saddle points

• The reason behind this phenomenon is complicated and beyond the 
scope of this class. In short, the training results will be more stable and 
consistent as the batch size increases



Sigmoid + Momentum optimizer

ReLU + SGD optimizer
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Deep Learning Framework



TensorFlow v.s. PyTorch

• The two frameworks had a lot of major differences in 
terms of design, paradigm, syntax, etc till some time back

• But they have since evolved a lot, both have picked up 
good features from each other and are no longer that 
different



TensorFlow v.s. PyTorch



TensorFlow

• Originally developed by Google Brain, TensorFlow is an 
end-to-end open source platform for machine learning, 
which has several benefits:

• Easy model building

• Robust ML production anywhere

• Powerful experimentation for research



TensorFlow
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Software requirements

• Before using TensorFlow, the following NVIDIA® software 
must be installed on your system:

• NVIDIA® GPU drivers —CUDA® 11.x requires 450.xx or higher

• CUDA® Toolkit —TensorFlow supports CUDA® 11.0 (TensorFlow >= 2.4.0)

• CUPTI ships with the CUDA® Toolkit

• cuDNN SDK 8.9.5 (see cuDNN versions)

• (Optional) TensorRT 8.0 to improve latency and throughput for inference 
on some models



Software requirements

LINK

https://docs.nvidia.com/deeplearning/cudnn/support-matrix/index.html


Install CUDA

• Please refer to TensorFlow website, GPU Support section, 
for more details and latest information

• Please check the version of the abovementioned 
softwares carefully. There is a strict requirement 
between TensorFlow's version and NVIDIA® softwares’

• (Optional) If you are using Anaconda environment, you 
can install corresponding CUDA Toolkit and cuDNN 
SDK via

• Notice that you still have to install NVIDIA® GPU drivers 
manually

https://www.tensorflow.org/install/gpu


Environment Setup

• After installing CUDA Toolkit, you can check CUDA 
version with nvcc --version



Environment Setup

• You can also check GPU utilization after installing GPU 
driver with nvidia-smi



Install TensorFlow 2

• TensorFlow is tested and supported on the following 
64-bit systems:

• Python 3.5–3.8

• Ubuntu 16.04 or later

• macOS 10.12.6 (Sierra) or later (no GPU support)

• Windows 7 or later

• Raspbian 9.0 or later



Install TensorFlow 2

• We can simply install TensorFlow with 
Python's pip package manager

• It is recommanded to install TensorFlow in a virtual environment, for more 

details, please refer to Install TensorFlow with pip

https://www.tensorflow.org/install/pip


Install TensorFlow 2

• We can test whether TensorFlow is installed successfully 
and confirm that TensorFlow is using the GPU by 
executing following code



Google Colab

• Google Colab provides a Jupyter notebook environment that 
requires no setup with free GPU

• The types of GPUs available in Colab vary over time, including Nvidia K80, T4, 
P4, P100

• There is no way to choose what type of GPU you can connect to in Colab at 
any given time

• However, there are few constraints when using Google Colab:

• 12 hours lifetimes limit

• Various available GPU memory

• Google announced a new service called Colab 
Pro ($9.99/month), which provides faster GPUs, longer 
runtimes, and more memory compared with Colab

https://colab.research.google.com/signup
https://colab.research.google.com/signup
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TensorFlow 2 Quickstart

• Later on you will learn how to build a simple deep neural 
network to classify hand-written digit numbers

• This time with TensorFlow!

Input Layer (Flatten)

H
idden Layer, 784x64

O
utput Layer, 64x10

 



Limit GPU Memory Growth

• By default, TensorFlow maps nearly all of the GPU 
memory of all GPUs visible to the process 

• This is done to more efficiently use the relatively precious GPU memory 
resources on the devices by reducing memory fragmentation

• To limit a specific set of GPUs and to allocate a subset of 
the available memory, you can execute

Restrict GPU to use

Allocate subset 
of memory
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Dataset Preparation

• Currently, tf.keras.dataset supports 7 datasets. 
Including:

• mnist module: MNIST handwritten digits dataset.

• cifar10 module: CIFAR10 small images classification dataset.

• cifar100 module: CIFAR100 small images classification dataset.

• fashion_mnist module: Fashion-MNIST dataset.

• imdb module: IMDB sentiment classification dataset.

• boston_housing module: Boston housing price regression 
dataset.

• reuters module: Reuters topic classification dataset.

https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/datasets
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Build model via Sequential API

• A Sequential API is the simplest way to build a model, 
which is appropriate for a plain stack of layers where 
each layer has exactly one input tensor and one output 
tensor



Build model via Sequential API

• To classify MNIST, let’s build a simple neural network with 
fully-connected layers

• Build the tf.keras.Sequential model by stacking 
layers. Choose an optimizer and loss function for training:

Model architecture

Loss function

Optimizer

https://www.tensorflow.org/api_docs/python/tf/keras/Sequential


Build model via Sequential API

• The Model.summary method prints a string summary of 
the network, which is quite useful to examining model 
architecture before training

= 784*128 + 128

= 128*10 + 10

https://www.tensorflow.org/api_docs/python/tf/keras/Model#summary


Build model via Sequential API

• The Model.fit method adjusts the model parameters to 
minimize the loss:

• The Model.evaluate method checks the models 
performance, usually on a "Validation-set" or "Test-set"

https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit
https://www.tensorflow.org/api_docs/python/tf/keras/Model#evaluate


Build model via Functional API

• The Keras Functional API is a way to create models that 
are more flexible than Sequential API

• The functional API can handle models with non-linear topology, shared 
layers, and even multiple inputs or outputs



Build model via Functional API

• The main idea is that a deep learning model is usually a 
directed acyclic graph (DAG) of layers. So the functional 
API is a way to build graphs of layers

• Consider the following model:

• This is a basic graph with four layers



Build model via Functional API

• Building model using the functional API by creating an 
input node first:

• You create a new node in the graph of layers by calling a 
layer on this inputs object. The "layer call" action is like 
drawing an arrow from "inputs" to this layer you created



Build model via Functional API

• At this point, you can create a Model by specifying its 
inputs and outputs in the graph of layers:

= 784*128 + 128

= 128*10 + 10



Build model via Model Subclassing

• Model subclassing is fully-customizable and enables 
you to implement your own custom forward-pass of 
the model

• However, this flexibility and customization comes at a 
cost — model subclassing is way harder to utilize than the 
Sequential API or Functional API



Build model via Model Subclassing

• Exotic architectures or custom layer/model 
implementations, especially those utilized by 
researchers, can be extremely challenging

• Researchers wish to have control over every nuance of 
the network and training process — and that’s exactly 
what model subclassing provides them



Build model via Model Subclassing

• Build the model with Keras model subclassing API:

Model architecture

Forward path

https://www.tensorflow.org/guide/keras/custom_layers_and_models


Custom Training

• You can always train the model with model.fit and 
model.evaluate, no matter which method you used to 
build the model

• However, if you need more flexible training and evaluating 
process, you can implement your own methods



Training



Custom Training

Number of epochs

Running through each batch



Custom Training

• Similarly, you have to choose the loss function and 
optimizer as previous

• Later on, to train the model, we can 
use tf.GradientTape to record operations for 
automatic differentiation

Boost performance

Compute predictions
Compute 
gradients

Update networks

https://www.tensorflow.org/api_docs/python/tf/GradientTape


Gradients and Automatic Differentiation

• One of the most important and powerful features of deep 
learning framework is automatic differentiation and 
gradients



Gradients and Automatic Differentiation

• As we can see in Neural Networks from Scratch, building 
neural networks manually requires strong knowledge of 
backpropagation algorithm

• It is interesting as we don't have too many operations or the model 
architecture is relatively simple

• But what if we have this model?

https://nthu-datalab.github.io/ml/labs/10_TensorFlow101/10_NN-from-Scratchs.html


Gradients and Automatic Differentiation

• TensorFlow provides the tf.GradientTape API 
for automatic differentiation; that is, computing the 
gradient of a computation with respect to some inputs

• In short, you can regard tape.gradient(loss, 
model.trainable_variable) as

 



Sequential API, Functional API, and Model Subclassing

Define Model Architecture

Define Loss and then Train 



Sequential API, Functional API, and Model Subclassing

• All models can interact with each other, whether they’re 
sequential models, functional models, or subclassed 
models

Sequential Functional Subclassing

Simple

Flexibility

1 2 3

123
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Better Performance with tf.function

• In TensorFlow 2, eager execution is turned on by default. 
The user interface is intuitive and flexible

• But this can come at the expense of performance and 
deployability

• You can use tf.function to make graphs out of your 
programs. It is a transformation tool that creates 
Python-independent dataflow graphs out of your Python 
code

https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/function


Better Performance with tf.function

• Let's create two function with same operation, one runs 
in eager and another runs in graph mode



Debugging

• In general, debugging code is easier in eager mode than 
inside tf.function. You should ensure that your code 
executes error-free in eager mode first

• Debug in eager mode, then decorate 
with @tf.function

• Don't rely on Python side effects like object mutation or 
list appends

• tf.function works best with TensorFlow ops; 
NumPy and Python calls are converted to constants



Python Side Effects

• Python side effects like printing, appending to lists, and 
mutating globals only happen the first time you call a 
function with a set of inputs

• Afterwards, the traced tf.Graph is reexecuted, without 
executing the Python code



Python Side Effects



Python Side Effects
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Customize Gradient Flow

• tf.custom_gradient is a decorator to define a 
function with a custom gradient

• This may be useful for multiple reasons, including providing a more 
efficient or numerically stable gradient for a sequence of operations

https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/custom_gradient


Customize Gradient Flow

•  



Customize Gradient Flow

• The gradient expression can be analytically simplified to 
provide numerical stability:
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