Deep Learning Lab 9:
Neural Networks from Scratch
& TensorFlow 101

Outline

® Neural Networks from Scratch
® Why TensorFlow?
® Environment Setup

® TensorFlow 2 Quickstart

® Dataset Preparation
® Building Model via Sequential API, Functional API, and Model Subclassing
® Better performance with tf.function

® Customize gradient flow by tf.custom_gradient

Outline

® Neural Networks from Scratch
® Why TensorFlow?
® Environment Setup

® TensorFlow 2 Quickstart

® Dataset Preparation
® Building Model via Sequential API, Functional API, and Model Subclassing
® Better performance with tf.function

® Customize gradient flow by tf.custom_gradient

Neural Networks from Scratch

® |n this lab, you will learn the fundamentals of how you can

build neural networks without the help of the deep
learning frameworks, and instead by using NumPy

\\\ A /R‘\\'¢

f 4
‘ A = ;?5 \ /i WS /r
e/ XS] NSH/
X ph AN LA
AN A S\ AN
‘ / N
' g
YA
\\ \‘,'01' "§
}..\, \./‘,

IR

/
AN N N NH D
N I R B
N 2/aVa N\ O 2O\
L \

\
\‘y
N

I;‘ /l
/KON
I 522, Y%
. \\!
J>< >N /"o"\“}{v

O

N

Neural Networks from Scratch

® Creating complex neural networks with different

architectures with deep learning frameworks should be
a standard practice for any Machine Learning Engineer
and Data Scientist

® But a genuine understanding of how a neural network
works is equally as valuable

Model Architecture

® \We are going to build a deep neural network with 3 layers
in total: 1 input layer, 1 hidden layers and 1 output layer

® All layers will be fully-connected

® |n this tutorial, we will use MNIST dataset

® MNIST contains 70,000 images of hand-written digits, 60,000 for training

and 10,000 for testing, each 28x28=784 pixels, in greyscale with
pixel-values from 0 to 255

SOl /g

Model Architecture

® To be able to classify digits, we must end up with the
probabilities of an image belonging to a certain class

¢ Input layer: Flatten images into one array with
28x28=784 elements. This means our input layer will
have 784 nodes

¢ Hidden layer: Reduce the number of nodes from 784 In
the input layer to 64 nodes, so there’s 64 nodes In
hidden layer

e QOutput layer: Reduce 64 nodes to a total of 10 nodes,
and we can evaluate them against the label. The label is
in the form of an array with 10 elements, where one of
the elements is 1, while the rest is O

Model Architecture

Input x, (28x28) Output y, (10)

S Es

% [0,0,0,0,1,0,0,0,0,0]

(usye|d) 48Ae Induj
9Xyg8/ ‘4eAeT usppiH
0 X9 “4eAeT IndinQ

Model Architecture

® When instantiating the DeepNeuralNetwork class, we

pass in an array of sizes that defines the number of
activations for each layer

dnn = DeepNeuralNetwork(sizes=| " / 1)

® This initializes the class by the init function

def init (self, sizes, activation='sigmoid'):
self.sizes = sizes

Choose activation function

if activation == 'relu':
self.activation = self.relu

elif activation == 'sigmoid':
self.activation = self.sigmoid

self.params = self.initialize()
Save all intermediate values, 1.e. activations

self.cache = {}

Initialization

®* We initialize both weights and biases by drawing from
standard normal distribution N (0, o)

® To smarten up our initialization, we shrink the variance of
the weights and biases in each layer

In this case, we want to adjust the variance to 1/n ,which means divide by

1/v/n

The initialization of weights in the neural network is kind of hard to think
about, which is beyond the scope of this class (follows this nice video)

In short, if we didn’t shrink the variance of the weights, the output of will
become larger as the number of neuron grows, where § = a(w'X + b)

Initialization

®* We initialize both weights and biases by drawing from
standard normal distribution N (0, o)

® To smarten up our initialization, we shrink the variance of
the weights and biases in each layer

®* In this case, we want to adjust the variance to 1/n ,which means divide by

® 1/Vn

def initialize(self):
number of nodes in each Llayer
input_layer=self.sizes[@]
hidden layer=self.sizes[1]
output layer=self.sizes[2]

params = {
"W1": np.random.randn(hidden_layer, input_layer) * np.sgrt(1l./input_layer),
"b1": np.zeros((hidden_layer, 1)),
"W2": np.random.randn(output_layer, hidden_layer) * np.sqrt(1l./hidden_layer),
"b2": np.zeros((output_layer, 1))

return params

Feedforward

® The forward pass consists of the dot operation, which
turns out to be just matrix multiplication

¢ \We have to multiply the weights by the activations of

the previous layer, and then apply the activation
function to the outcome

® |n the last layer we use the softmax activation function,
since we wish to have probabilities of each class, so

that we can measure how well our current forward pass
performs

Forward pass:
A(O) —— [a(oal) a(OaM)]T'

for k<1 toL do

ZW) Ak k) .
AW act(zW)
end

def feed forward(self, x):
self.cache["X"] = x
self.cache["Z1"] = np.matmul(self.params["W1"], self.cache["X"].T) +\
self.params["bl"]
self.cache["Al"] = self.activation(self.cache["Z1"])
self.cache["Z2"] = np.matmul (self.params["W2"], self.cache["Al1"]) +\
self.params["b2"]

self.cache["A2"] np.exp(self.cache["Z2"]) /\
np.sum(np.exp(self.cache["Z2"]), axis=0)

return self.cache["A2"]

Activation Functions

® One magical power in deep neural networks is the
non-linear activation functions

® They enable us to learn the non-linear relationship
between input and output

Activation Functions

® \We provide derivatives of activation functions, which are
required when backpropagating through networks

® As you have learned in the earlier lecture, a numerical stable version of the
SO.

def relu(self, x, derivative=False):
1if derivative:
X = np.where(x < 0, 0, X)
X = np.where(x >= 0, 1, Xx)
return x
return np.maximum(0, X)

def sigmoid(self, x, derivative=False):
1f derivative:
return (np.exp(-x))/((np.exp(-x)+1)**2)
return 1/(1 + np.exp(-x))

def softmax(self, x):
Numerically stable with large exponentials
exps = np.exp(x - xXx.max())
return exps / np.sum(exps, axis=0)

Backpropagation

® Backpropagation, short for backward propagation of

errors, is key to supervised learning of deep neural
networks

® |t has enabled the recent surge in popularity of deep learning algorithms
since the early 2000s

® The backward pass is hard to get right, because there are so many sizes
and operations that have to align, for all the operations to be successful

Backward pass:
Compute error signals

AD) [SLO) . sLMm) }T

fork<—L—1toldo
| A® act(z®) @ (AR WEDTY |

end

Return 5‘;—% M ak=1n) @ &) for all k

def back propagate(self, y, output):
current batch size = y.shape[0]

dZ2 = output - y.T
dW2 = (1./current batch size) * np.matmul(dZ2, self.cache["Al"].T)
db2 = (1./current batch size) * np.sum(dz2, axis=1, keepdims=True)

dAl = np.matmul (self.params["W2"].T, dZ2)

dZl = dAl * self.activation(self.cache["Z1"], derivative=True)

dWwl = (1./current batch size) * np.matmul(dZl, self.cache["X"])
dbl (1./current batch size) * np.sum(dZl, axis=1, keepdims=True)

self.grads = {"W1": dwWwl, "bl": dbl, "w2": dw2, "b2": db2}
return self.grads

Training

® \We have defined a forward and backward pass, but how
can we start using them?

® \We have to make a training loop and choose an optimizer
to update the parameters of the neural network

Training

def train(self, x train, y train, x test, y test):
for 1 in range(self.epochs):
Shuffle
permutation = np.random.permutation(x train.shape[0])
X train shuffled = x train[permutation]
y train shuffled y train[permutation]

Number of epochs

for j in range(num_batches): Running through each batch
Batch

begin =] * self.batch size

end = min(begin + self.batch size, x train.shape[0]-1)
X = X train shuffled[begin:end]

y = y train shuffled[begin:end]

Forward
output = self.feed forward(x)

Backprop |
= self.back propagate(y, output) Compute gradients

Optimlize
self.optimize(l rate=1 rate, beta=beta)

Compute predictions

Optimization

® Stochastic Gradient Descent (SGD) algorithm is relatively
straightforward, updating the networks by calculated
gradient directly

o ®t+1 «— @t _ ngt; gt — V@C(@t)
®* Might get stuck in local minima or saddle points
® Momentum makes the same movement in the last
iteration, corrected by negative gradient
® vt+1<—/1vt—(1—/1)gt 4

Py ®t+1 «— ®t _ nvt+1

C(O)

® 1! isamoving average of —g*

Optimization

def optimize(self, 1 rate=0.1, beta=.9):

Stochatic Gradient Descent (SGD):

0% (t+l) <- 0t - nVL(y, ¥)
Momentum:
v (t+l) <= Pv*t + (1-P)VL(y, ¥)"t
0% Fl) <= @k = feTitEl)

if self.optimizer == "sgd":

for key in self.params:
self.params[key] = self.params[key] -\

l rate*self.grads[key]
elif self.optimizer == "momentum":

for key in self.params:
self.momemtum opt[key] = (beta*self.momemtum opt[key] +\

(1.-beta)*self.grads[key])
self.params[key] = self.params[key] -\

1l rate * self.momemtum opt[key]

Results

® The results completely dependent on how the weights are
initialized and the activation function we use

® Experimentally, due to non-bounded behavior of relu (), the learning
rate should be set much smaller than the one

for sigmoid () (bounded)

® Training with SGD optimizer with momentum should have better result
since it avoids from getting stuck in local minima or saddle points

® The reason behind this phenomenon is complicated and beyond the

scope of this class. In short, the training results will be more stable and
consistent as the batch size increases

Sigmoid + Momentum SlngId + Momentum Optimizer

dnn = DeepNeuralNetwork(sizes=[784, 64, 10], activation='sigmoid')
dnn.train(x train, y train, x test, y test, batch size=128, optimizer='momentum', 1 rate=4, beta=.9

Epoch 1: 0.90s, train acc=0.95, train loss=0.16, test acc=0.95, test loss=0.17
Epoch 2: 1.75s, train acc=0.97, train loss=0.10, test acc=0.96, test loss=0.12
Epoch 3: 2.58s, train acc=0.98, train loss=0.08, test acc=0.97, test loss=0.10
Epoch 4: 3.42s, train acc=0.98, train loss=0.07, test acc=0.97, test loss=0.09
Epoch 5: 4.27s, train acc=0.98, train loss=0.05, test acc=0.97, test loss=0.08
Epoch 6: 5.13s, train acc=0.99, train loss=0.04, test acc=0.98, test loss=0.08
Epoch 7: 5.97s, train acc=0.99, train loss=0.04, test acc=0.97, test loss=0.08
Epoch 8: 6.82s, train acc=0.99, train loss=0.03, test acc=0.97, test loss=0.08
Epoch 9: 7.69s, train acc=0.99, train loss=0.03, test acc=0.98, test loss=0.08
Epoch 10: 8.55s, train acc=0.99, train loss=0.02, test acc=0.98, test loss=0.08
ReLU + SGD RelLU + SGD optimizer

dnn = DeepNeuralNetwork(sizes=[784, 64, 10], activation='relu')
dnn.train(x train, y train, x test, y test, batch size=128, optimizer='sgd', 1 rate=0.05)

Epoch 0.70s, train acc=0.89, train loss=0.41, test acc=0.89, test loss=0.39
Epoch .27s, train acc=0.90, train loss=0.34, test acc=0.91, test loss=0.32
Epoch .82s, train acc=0.91, train loss=0.31, test acc=0.91, test loss=0.30
Epoch .34s, train acc=0.92, train loss=0.29, test acc=0.92, test loss=0.28
Epoch .88s, train acc=0.92, train loss=0.28, test acc=0.92, test loss=0.27

Epoch .42s, train acc=0.92, train loss=0.27, test acc=0.92, test loss=0.27

Epoch .94s, train acc=0.92, train loss=0.27, test acc=0.92, test loss=0.26

Epoch .48s, train acc=0.93, train loss=0.26, test acc=0.92, test loss=0.26

O & W W NN NN P

.00s, train acc=0.93, train loss=0.25, test acc=0.93, test loss=0.25
0: 5.56s, train acc=0.93, train loss=0.25, test acc=0.93, test loss=0.25

Epoch

= W 00 ~J o U1 & W N =

Epoch

Outline

® Neural Networks from Scratch
® Why TensorFlow?
® Environment Setup

® TensorFlow 2 Quickstart

® Dataset Preparation
® Building Model via Sequential API, Functional API, and Model Subclassing
® Better performance with tf.function

® Customize gradient flow by tf.custom_gradient

Deep Learning Framework

Google TensorFlow v.s. PyTorch

® The two frameworks had a lot of major differences in
terms of design, paradigm, syntax, etc till some time back

® But they have since evolved a lot, both have picked up
good features from each other and are no longer that

different <°) ¢
class MyModel (nn.Module): :
ool lass MyModel (Model):
def 1nit_(self): F) ()Iﬁc:r] < -
—inlt (st e, yl dat | nit (seic): TensorFlow
— o super (MyModel, self). 1nit_ ()

def

self.convl = Conv2d(in_channels=1,
out channels=32,
kernel size=3)

self.flatten = Flatten()

self.dl = Linear(21632, 128)

self.d2 = Linear(128, 10)

forward(self, x): def
&

X = F.relu(self.convl(x))
X = self.flatten(x)

X = F.relu(self.dl(x))

x = self.d2(x)

output = F.log softmax(x, dim=1)
return output

self.convl = Conv2D(filters=32,
kernel size=3,
activation='relu')
self.flatten = Flatten()
self.dl = Dense(128, activation='relu')
self.d2 = Dense(1l0)

call (self, x):

X self.convl (x)

X self.flatten(x)
X self.dl(x)
output = self.d2(x)
return output

TensorFlow v.s. PyTlorch

for epoch in range(2):
model.train()
train loss = 0
train n = 0
. for image, labels in train ds:
<:) predictions = model (image).squeeze()
loss = loss object(predictions, labels)
Py-I-O rCh train loss += loss.item()
train n += labels.shape[0]
loss.backward()
optimizer.step()

optimizer.zero grad()
train loss /= train n

for epoch in range(2):
train loss = 0
train n = 0
for images, labels in train ds:
‘ with GradientTape() as tape:
1} predictions = model(images, training=True)
* loss = loss object(labels, predictions)
TensorFlow train loss += loss.numpy()
train n += labels.shape[0
gradients = tape.gradient(loss, model.trainable variables)

optimizer.apply gradients(zip(gradients, model.trainable variables))
train_loss /= train n

TensorFlow P '
)

® Originally developed by Google Brain, TensorFlow is an

end-to-end open source platform for machine learning,
which has several benefits:

® Easy model building
® Robust ML production anywhere

® Powerful experimentation for research

TensorFlow

TensorFlow

Training

Data Design Model Design
tf.data Keras

TF Datasets Estimators

Model Repository
TensorFlow Hub

Training
Distribution Strategy Serialization
SavedModel

GPU

CPU

Analysis

Tensorboard

Deployment

Cloud, On-prem
TensorFlow Serving

Android, iOS, Raspberry Pi
TensorFlow Lite

Browser and Node
TensorFlow.JS

Other Language Bindings
C, Java, Go, C#, Rust, R, ...

TensorFlow Core
TensorFlow.js
TensorFlow Lite
TensorFlow Lite Micro
TensorBoard
TensorBoard.dev
TensorFlow Hub
TensorFlow Extended

Swift for TensorFlow

T

TensorFlow
Ecosystem
tf.keras TensorFlow Probability
tf.data Tensor2Tensor
TF Runtime TensorFlow Agents
Colab Dopamine
TensorFlow Research Cloud TRFL

MLIR
TensorFlow Lattice
Model Optimization Toolkit

TensorFlow Graphics

Mesh TensorFlow
Ragged Tensors
TensorFlow Ranking

Magenta

Nucleus

TensorFlow Federated
TensorFlow Privacy
Fairness Indicators

Sonnet

Neural Structured Learning
JAX

TensorFlow Quantum

I/O and Addons

Outline

® Neural Networks from Scratch
® Why TensorFlow?
® Environment Setup

® TensorFlow 2 Quickstart

® Dataset Preparation
® Building Model via Sequential API, Functional API, and Model Subclassing
® Better performance with tf.function

® Customize gradient flow by tf.custom_gradient

Software requirements

® Before using TensorFlow, the following NVIDIA® software
must be installed on your system:

® NVIDIA® GPU drivers —CUDA® 11.x requires 450.xx or higher
® CUDA® Toolkit —TensorFlow supports CUDA® 11.0 (TensorFlow >= 2.4.0)
® CUPTI ships with the CUDA® Toolkit

® cuDNN SDK 8.9.5 (see cuDNN versions)

® (Optional) TensorRT 8.0 to improve latency and throughput for inference

on some models GEFORCE RTX

GRAPHICS REINVENTED

Software requirements

Table 1. GPU, CUDA Toolkit, and CUDA Driver Requirements

NVIDIA Driver Version

cuDNN CUDA Supports CUDA Supported
S Toolkit static Compute NVIDIA
ac age— Vers|on Iinking?g Linux Windows Capability Hardware
cuDNN 89.5 12.2 Yes >=525.60.13 >=527.41 9_03
for CUDA g 94
12.x 86
12:] No ' NVIDIA
gcs) HopperTME
190 20 NVIDIA Ada
Lovelace
O architecture®
6.0 -
cuDNN 8.9.5 11.8 Yes >= >=452.39 50 NVIDIA
for CUDA 450.80.02 ' Ampere
11ix architecture
11.7 No NVIDIA
11.6 Turing™
11.5 NVIDIA
11.4 Volta™
11.3 NVIDIA
] 1.ZZ Pascal™
11.18 NVIDIA
] 1.02 Maxwell”

LINK

https://docs.nvidia.com/deeplearning/cudnn/support-matrix/index.html

Install CUDA

® DPlease refer to TensorFlow website, section,
for more details and latest information

® Please check the version of the abovementioned

softwares carefully. There is a strict requirement
between TensorFlow's version and NVIDIA® softwares’

¢ (Optional) If you are using Anaconda environment, you
can install corresponding CUDA Toolkit and cuDNN
SDK via

conda install cudnn=7.6.5=cudall0.1 0

® Notice that you still have to install NVIDIA® GPU drivers
manually

https://www.tensorflow.org/install/gpu

Environment Setup

® After installing CUDA Toolkit, you can check CUDA

version with nvce --version

Ilnveec -=--=version

nvcc: NVIDIA (R) Cuda compiler driver

Copyright (c) 2005-2020 NVIDIA Corporation
Built on Wed Jul 22 19:09:09 PDT 2020

Cuda compilation tools, release 11.0, V11.0.221
Build cuda 11.0 bu.TC445 37.28845127 0

Environment Setup

® You can also check GPU utilization after installing GPU
driver with nvidia-smi

'nvidia-smi

Tue Oct 20 18:20:03 2020

+——————————rrrrrrrrr e ————————————— 3
| NVIDIA-SMI 418.87.01 Driver Version: 418.87.01 CUDA Version: 11.0 |
| e o e e o +
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| ===============================tossss=s=sssssssssss=so==sss=sss=s=s========c |
| 0 Tesla V100-SXM2... On | 00000000:1C:00.0 Off | 0 |
| N/A 32C PO 42W / 300W | OMiB / 32480MiB | 0% Default |
oo e e s e i ot et -
| 1 Tesla V100-SXM2... On | 00000000:3D:00.0 Off | 0 |
| N/A 33C PO 44W / 300W | OMiB / 32480MiB | 0% Default |
tm———————————— Fem—— - e - g
| 2 Tesla V100-SXM2... On | 00000000:3E:00.0 Off | 0 |
| N/A 35C PO 43W / 300W | OMiB / 32480MiB | 0% Default |
oo e e e st S RS R ot et -
| 3 Tesla V100-SXM2... On | 00000000:B1:00.0 Off | 0 |
| N/A 32C PO 43W / 300W | OMiB / 32480MiB | 0% Default |
e e e +

Install TensorFlow 2

® TensorFlow is tested and supported on the following
64-bit systems:

® Python 3.5-3.8

® Ubuntu 16.04 or later

® macOS 10.12.6 (Sierra) or later (no GPU support)
® Windows 7 or later

® Raspbian 9.0 or later

Install TensorFlow 2

® We can simply install TensorFlow with
Python's pip package manager

™ 7T

pip install --upgrade pip

pip install tensorflow

® |t is recommanded to install TensorFlow in a virtual environment, for more

details, please refer to

https://www.tensorflow.org/install/pip

Install TensorFlow 2

® \We can test whether TensorFlow is installed successfully

and confirm that TensorFlow is using the GPU by
executing following code

import tensorflow as tf
print ("TensorFlow Version:", tf. version)

print ("Num GPUs Available: ", len(tf.config.experimental.list physical devices('GPU')))

TensorFlow Version: 2.2.0
Num GPUs Available: 4

Google Colab

® Google Colab provides a Jupyter notebook environment that
requires no setup with free GPU

® The types of GPUs available in Colab vary over time, including Nvidia K80, T4,
P4, P100

® There is no way to choose what type of GPU you can connect to in Colab at
any given time

® However, there are few constraints when using Google Colab:

® 12 hours lifetimes limit

® Various available GPU memory

® Google announced a new service called

($9.99/month), which provides faster GPUs, longer
runtimes. and more memorv combpared with Colab

https://colab.research.google.com/signup
https://colab.research.google.com/signup

Outline

® Neural Networks from Scratch
® Why TensorFlow?
® Environment Setup

® TensorFlow 2 Quickstart

® Dataset Preparation
® Building Model via Sequential API, Functional API, and Model Subclassing
® Better performance with tf.function

® Customize gradient flow by tf.custom_gradient

TensorFlow 2 Quickstart

® | ater on you will learn how to build a simple deep neural
network to classify hand-written digit numbers

® This time with TensorFlow!

SE

% [0,0,0,0,1,0,0,0,0,0]

(uane|4) JoAe Induj
9Xy8/ ‘4eAeT usppiH
0 X9 “4oAeT IndinQ

Limit GPU Memory Growth

® By default, TensorFlow maps nearly all of the GPU
memory of all GPUs visible to the process

® This is done to more efficiently use the relatively precious GPU memory
resources on the devices by reducing memory fragmentation

® To limit a specific set of GPUs and to allocate a subset of

gpus = tf.config.experimental.list physical devices('GPU')
if gpus:
try;

Restrict GPU to use

Currently, memory growth needs to be the same across GPUs

Allocate subset

for gpu in gpus:

tf.config.experimental.set memory growth(gpu, True) of memory
logical gpus = tf.config.experimental.list logical devices('GPU')
print(len(gpus), "Physical GPUs,", len(logical gpus), "Logical GPUs")

except RuntimeError as e:
Memory growth must be set before GPUs have been initialized
print (e)

Outline

® Neural Networks from Scratch
® Why TensorFlow?
® Environment Setup

® TensorFlow 2 Quickstart

® Dataset Preparation
® Building Model via Sequential API, Functional API, and Model Subclassing
® Better performance with tf.function

® Customize gradient flow by tf.custom_gradient

Dataset Preparation

® Currently, tf.keras.dataset supports 7 datasets.
Including:

® mnist module: MNIST handwritten digits dataset.

® ci1farl0 module: CIFAR10 small images classification dataset.
® c1farl00 module: CIFAR100 small images classification dataset.
¢ fashion mnist module: Fashion-MNIST dataset.
® 1mdb module: IMDB sentiment classification dataset.

® boston_hous 11ng module: Boston housing price regression
dataset.

® reuters module: Reuters topic classification dataset.

https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/datasets

Outline

® Neural Networks from Scratch
® Why TensorFlow?
® Environment Setup

® TensorFlow 2 Quickstart
® Dataset Preparation
® Building Model via Sequential API, Functional API, and Model Subclassing
® Better performance with tf.function

® Customize gradient flow by tf.custom_gradient

Build model via Sequential API

® A Sequential APl is the simplest way to build a model,

which is appropriate for a plain stack of layers where
each layer has exactly one input tensor and one output
tensor

1. Sequential API

CONV | BATCH NORM S RELU

Build model via Sequential API

® To classify MNIST, let’s build a simple neural network with
fully-connected layers

® Build the tf .keras.Sequential model by stacking
layers. Choose an optimizer and loss function for training:

model = tf.keras.models.Sequential (]
tf.keras. .Flatten(input shape=(28, 28)),
tf.keras. .Dense (128, activation='relu'),

tf.keras. .Dropout (0.2), Model architecture

tf.keras.

Loss function

loss=loss fn,
metrics=['accuracy'])

https://www.tensorflow.org/api_docs/python/tf/keras/Sequential

Build model via Sequential API

® The Model . summary method prints a string summary of

the network, which is quite useful to examining model
architecture before training

model .summary ()

Model: "sequential"”

Layer (type) Output Shape Param #

flebiwn (Flatbenj (Hone, 7OAy 0 0

dense (Dense) (None, 128) 100480 = 784128 + 128
dropout (Dropout) (None, 128) 0

dense 1 (Dense) (None, 10) 1290 = 128*10 + 10

Total params: 101,770
Trainable params: 101,770

Non-trainable params: 0

https://www.tensorflow.org/api_docs/python/tf/keras/Model#summary

Build model via Sequential API

® The Model . fit method adjusts the model parameters to
minimize the loss:

model.fit(x train, y train, batch size=32, epochs=5)
Epoch 1/5
1875/1875 [==============================] - 4s 2ms/step - loss: 0.3009 - accuracy: 0.9121
Epoch 2/5
1875/1875 [==============================] - 2s Ilms/step - loss: 0.1441 - accuracy: 0.9569

® The Model .evaluate method checks the models
performance, usually on a "Validation-set" or "Test-set"

model.evaluate(x test, y test, verbose=2)

313/313 - 1s - loss: 0.0744 - accuracy: 0.9789

https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit
https://www.tensorflow.org/api_docs/python/tf/keras/Model#evaluate

Build model via Functional API

® The Keras Functional API is a way to create models that
are more flexible than Sequential API

® The functional API can handle models with non-linear topology, shared
layers, and even multiple inputs or outputs

2. Functional API

CONYV (size=3x3,
stride=2x2)

INPUT g CONCATENATE

POOL (size=3x3,
stride=2x2)

Build model via Functional API

® The main idea is that a deep learning model is usually a

directed acyclic graph (DAG) of layers. So the functional
APl is a way to build graphs of layers

® Consider the following model:

(input: (28,)-dimensional vectors)
I
[Flatten]
I
[Dense (units, relu activation)]
I
[Dropout]
I
[Dense (units, softmax activation)]

I
(output: logits of a probability distribution over classes)

Build model via Functional API

® Building model using the functional APl by creating an
input node first:

inputs = tf.keras.Input(shape=(28,))

® You create a new node in the graph of layers by calling a

layer on this inputs object. The "layer call" action is like
drawing an arrow from "inputs” to this layer you created

2 tf.keras.layers.Flatten() (1inputs)

X

tf.keras.layers.Dense(, activation="relu") (x)
X tf.keras.layers.Dropout () (X)

outputs = tf.keras.layers.Dense(10) (X)

Build model via Functional API

® At this point, you can create a Model by specifying its
inputs and outputs in the graph of layers:

model = tf.keras.Model(inputs=inputs, outputs=outputs, name="mnist model")
model.summary ()

Model: "mnist model"”

Layer (type) Output Shape Param #

O L (ApmIaE; [pus, a3 0 D

flatten (Flatten) (None, 784) 0

dense (Dense) (None, 128) 100480 = 784*128 + 128
dropout (Dropout) (None, 128) 0

dense 1 (Dense) (None, 10) 1290 =128*10 + 10

Build model via Model Subclassing

® Model subclassing is fully-customizable and enables

you to implement your own custom forward-pass of
the model

® However, this flexibility and customization comes at a

cost — model subclassing is way harder to utilize than the
Sequential APl or Functional API

3. Model Subclassing

tensorflow.keras.Model

class MySimpleNN(Model):

Build model via Model Subclassing

Exotic architectures or custom layer/model

implementations, especially those utilized by
researchers, can be extremely challenging

¢ Researchers wish to have control over every nuance of
the network and training process — and that’s exactly
what model subclassing provides them

Build model via Model Subclassing

® Build the model with Keras

class MyModel (tf.keras.Model):
def 1nit (self):
super (MyModel, self). 1init ()
self.flatten = tf.keras.layers.Flatten()
self.dropout = tf.keras.layers.Dropout(0.2)

Model architecture

self.dl = tf.keras.layers.Dense(128, activation='relu')
self.d2 = tf.keras.layers.Dense(10)

call(self, X):
self.flatten(x)
self.dl(x) Forward path
= self.dropout (x)
return self.d2(x)

https://www.tensorflow.org/guide/keras/custom_layers_and_models

Custom Training

® You can always train the model with model . fit and

model . evaluate, no matter which method you used to
build the model

® However, if you need more flexible training and evaluating
process, you can implement your own methods

@tf.

def

@tf.

def

Training

function
train_step(images, labels):
with tf.GradientTape() as tape:
training=True 1is only needed i1f there are layers with different
behavior during training versus inference (e.g. Dropout).
predictions = model(images, training=True)
loss = loss _object(labels, predictions)
gradients = tape.gradient(loss, model.trainable variables)
optimizer.apply gradients(zip(gradients, model.trainable variables))

train_loss(loss)
train_accuracy(labels, predictions)

function

test step(images, labels):

training=False is only needed if there are lLayers with different
behavior during training versus inference (e.g. Dropout).
predictions = model(images, training=False)

t loss = loss_object(labels, predictions)

test loss(t_loss)
test _accuracy(labels, predictions)

Custom Training

EPOCHS = 5 Number of epochs

for epoch in range(EPOCHS):
Reset the metrics at the start of the next epoch
train loss.reset states()
train accuracy.reset states|()
test loss.reset states()

test accuracy.reset states() Running tthugh each batch

for images, labels in train ds:
train step(images, labels)

for test images, test labels in test ds:
test step(test images, test labels)

template = 'Epoch {:0}, Loss: {:.4f}, Accuracy: {:.4f}, Test Loss: {:.4f}, Test Accuracy: {:.4f
print (template.format(epoch+l,

train loss.result(),

train accuracy.result()*100,

test loss.result(),

test accuracy.result()*100))

Custom Training

® Similarly, you have to choose the loss function and
optimizer as previous

® | ater on, to train the model, we can

use tf.GradientTape to record operations for
automatic differentiation

@tf.function | Boost performance
def train step(images, labels):

with tf.GradientTape() as tape:

training=True 1s only needed 1f there are layers with different

behavior during training versus inference (e.g. Dropout).

predictions = model(images, training=True) Compute predictions

loss = loss object(labels, predictions)
gradients

optimizer.apply gradients(zip(gradients, model.trainable variables))

tape.gradient(loss, model.trainable variables)

train loss(loss) Update networks

train accuracy(labels, predictions)

https://www.tensorflow.org/api_docs/python/tf/GradientTape

Gradients and Automatic Differentiation

® One of the most important and powerful features of deep

learning framework is automatic differentiation and
gradients

x = tf.constant(3.0)
with tf.GradientTape () as g:
g.watch (x)
el R
dy dx = g.gradient(y, X) # y' = 2*x = 2*3 = 6

Gradients and Automatic Differentiation

® As we can see in , building

neural networks manually requires strong knowledge of
backpropagation algorithm

® |t is interesting as we don't have too many operations or the model
architecture is relatively simple

® Riit what if we have thic mndel?

input: | [(?, ?)] input: | [(?, ?)]
title: InputLayer body: InputLayer
output: | [(?, ?)] output: | [(?, ?)]
_ _ input: (?::2)) _ input: (2. 2)
embedding: Embedding embedding 1: Embedding
output: | (?, ?, 64) output: | (?, ?, 64)
i ?,?, 64 i £ ?,?, 64 i t: ~12
Istm: LSTM ' () Istm 1: LSTM i () tags: InputLayer - I)l

output: | (?, 128) output: (2, 32) output: | [(?, 12)]

input: | [(?, 128), (?, 32), (?, 12)]

concatenate: Concatenate

output: (2,:172)
- input: | (?,172) input: | (?, 172)
priority: Dense department: Dense
output: (?, 1) output: (?, 4)

https://nthu-datalab.github.io/ml/labs/10_TensorFlow101/10_NN-from-Scratchs.html

Gradients and Automatic Differentiation

® TensorFlow provides the t£.GradientTape API

for automatic differentiation; that is, computing the
gradient of a computation with respect to some inputs

® |n short, you can regard tape.gradient (loss,
model.trainable variable) as

oL
oW,

Sequential API, Functional API, and Model Subclassing

model = tf.keras.models.Sequential ([
tf.keras.layers.Flatten(input shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10)

class MyModel(tf.keras.Model):
def init (self):
super (MyModel, self). init ()
self.flatten = tf.keras.layers.Flatten()
self.dropout = tf.keras.layers.Dropout(0.2)
self.dl = tf.keras.layers.Dense(128, activation='relu')
self.d2 = tf.keras.layers.Dense(10)

1)

def call(self, x):

x = self.flatten(x)
x = self.dl(x)
inputs = tf.keras.Input(shape=(28, 28)) x = self.dropout (x)

return self.d2(x)

model = MyModel()
model.build(input shape=(None, 28, 28

= tf.keras.layers.Flatten() (inputs)
= tf.keras.layers.Dense(128, activation="relu") (x)
tf.keras.layers.Dropout(0.2) (x)

outputs = tf.keras.layers.Dense(10) (x)

KoM W
nnn

Architecture

model = tf.keras.Model (inputs=inputs, outputs=outputs, name="mnist model"

model.summary ()

loss_object = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
optimizer = tf.keras.optimizers.Adam()

@tf.function
def train_step(images, labels):

loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from logits=True)
model.compile(optimizer="adam',

loss=loss_fn,

metrics=['accuracy'])

@tf.function

model.fit(x_train, y train, batch size=32, epochs=5) def test_step(images, labels):

EPOCHS = 5
Epoch 1/5
1875/1875 [] - 4s 2ms/step - loss: 0.3009 - accuracy: 0.9121 SOLR-E ChE D g (EECLE
B h 2/5 # Reset the metrics at the start of the next epoch
poc train_loss.reset_states()
1875/1875 I 1 - 2s 1lms/step - loss: 0.1441 - accuracy: 0.9569 train accuracy.reset states()

test _loss.reset_states()
model.evaluate(x_test, y test, verbose=2) test_accuracy rgset states(
for images, labels in train ds:

313/313 - 1s - loss: 0.0744 - accuracy: 0.9789 ; K
train_step(images, labels)

for test images, test labels in test ds:
test_step(test_images, test labels)
-
Deflne LO template = 'Epoch {:0}, Loss: {:.4f}, Accuracy: {:.4f}, Test Loss: {:.4f}, Test Accuracy: {:.4f
print (template.format(epoch+l,
train loss.result(),

Sequential API, Functional API, and Model Subclassing

e m

VvV |V

® All models can interact with each other, whether they’re

sequential models, functional models, or subclassed
models

Outline

® Neural Networks from Scratch
® Why TensorFlow?
® Environment Setup

® TensorFlow 2 Quickstart

® Dataset Preparation
® Building Model via Sequential API, Functional API, and Model Subclassing
® Better performance with tf.function

® Customize gradient flow by tf.custom_gradient

Better Performance with tf.function

® |n TensorFlow 2, eager execution is turned on by default.
The user interface is intuitive and flexible

® But this can come at the expense of performance and
deployability

® You can use tf . function to make graphs out of your

programs. It is a transformation tool that creates
Python-independent dataflow graphs out of your Python
code

https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/function

Better Performance with tf.function

® | et's create two function with same operation, one runs
iIn eager and another runs in graph mode

def £ eager(x, y):

for i in tf.range(Y
__ = tf.reduce mean(tf.multiply(x ** 2, 3) + y)
return tf.reduce mean(tf.multiply(x ** 2, 3) + y)

@tf.function
def f graph(x, y):
for i in tf.range() ¢
__ = tf.reduce mean(tf.multiply(x ** 2, 3) + y)
return tf.reduce mean(tf.multiply(x ** 2, 3) + y)

%time = f eager(x, y)

CPU times: user 16 s, sys: 0 ns, total: 16 s
Wall time: 16 s

%time = f graph(x, y)

CPU times: user 1.08 ms, sys: 3.05 ms, total: 4.13 ms
Wall time: 2.83 ms

Debugging

® |n general, debugging code is easier in eager mode than

inside tf£ . function. You should ensure that your code
executes error-free in eager mode first

¢ Debug in eager mode, then decorate
with @t £ . function

¢ Don't rely on Python side effects like object mutation or
list appends

® tf. function works best with TensorFlow ops;
NumPy and Python calls are converted to constants

Python Side Effects

® Python side effects like printing, appending to lists, and

mutating globals only happen the first time you call a
function with a set of inputs

® Afterwards, the traced t £ .Graph is reexecuted, without
executing the Python code

Python Side Effects

g=20

@tf.function
def mutate globals(x):
return x + g

tf.function captures the value of the global during the first run
print("First call: ", mutate globals(tf.constant(1l)))
g = 10 # Update the global

Subsequent runs may silently use the cached value of the globals
print("Second call: ", mutate globals(tf.constant(2)))

tf.function re-runs the Python function when the type or shape of the argument changes
This will end up reading the latest value of the global
print("Third call, different type: ", mutate globals(tf.constant([4.])))

First call: tf.Tensor(l, shape=(), dtype=int32)
Second call: tf.Tensor(2, shape=(), dtype=int32)
Third call, different type: tf.Tensor([1l4.], shape=(1l,), dtype=float32)

Python Side Effects

g = tf.variable(o, dtype=tf.int32, name="g')
@tf.function

def mutate globals(x):
return X + g

print(“"First call: ", mutate globals(tf.constant(1)))
g.assign(10) # Update the variable

print(“"Second call: ", mutate globals(tf.constant(2)))

First call: tf.Tensor(1, shape=(), dtype=int32)
Second call: tf.Tensor(12, shape=(), dtype=int32)

Outline

® Neural Networks from Scratch
® Why TensorFlow?
® Environment Setup

® TensorFlow 2 Quickstart

® Dataset Preparation
® Building Model via Sequential API, Functional API, and Model Subclassing
® Better performance with tf.function

® Customize gradient flow by tf.custom_gradient

Customize Gradient Flow

® tf.custom gradient is a decorator to define a
function with a custom gradient

® This may be useful for multiple reasons, including providing a more
efficient or numerically stable gradient for a sequence of operations

https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/custom_gradient

Customize Gradient Flow

® Consider the following function that commonly occurs in
the computation of cross entropy and log likelihoods:

y =log.(1 + e*)

def loglpexp(X):

®* The derivative Ofy IS: return tf.math.log(1 + tf.exp(x))
® d_y - ex B 1
dx 14¢e* 14e*

®* Due to numerical instability, the gradient this function
evaluated at x=100 is NaN

x = tf.constant()
with tf.GradientTape() as g:
g.watch(x)
y = loglpexp(x)
dy = g.gradient(y, x) # Will be evaluated as NaN
print("dy/dx =", dy.numpy())

dy/dx = nan

Customize Gradient Flow

® The gradient expression can be analytically simplified to
provide numerical stabilitv:

dy e* 1

a_1+ex 1+ e*

@tf.custom gradient
def loglpexp(x):

return tf.math. log(+ e), grad

X = tf.constant(100.)
with tf.GradientTape() as g:
g.watch(x)
y = loglpexp(x)
dy = g.gradient(y, x) # Will be evaluated as 1.0
print("dy/dx =", dy.numpy())

dy/dx = 1.0

Reference

® TensorFlow

® 3 ways to create a Keras model with TensorFlow 2.0

® Pytorch vs Tensorflow in 2020

https://www.tensorflow.org/
https://www.pyimagesearch.com/2019/10/28/3-ways-to-create-a-keras-model-with-tensorflow-2-0-sequential-functional-and-model-subclassing/
https://towardsdatascience.com/pytorch-vs-tensorflow-in-2020-fe237862fae1

