
Deep Learning Lab 9:
Neural Networks from Scratch

& TensorFlow 101

DataLab

Department of Computer Science,
National Tsing Hua University, Taiwan

Outline

• Neural Networks from Scratch

• Why TensorFlow?

• Environment Setup

• TensorFlow 2 Quickstart

• Dataset Preparation

• Building Model via Sequential API, Functional API, and Model Subclassing

• Better performance with tf.function

• Customize gradient flow by tf.custom_gradient

Outline

• Neural Networks from Scratch

• Why TensorFlow?

• Environment Setup

• TensorFlow 2 Quickstart

• Dataset Preparation

• Building Model via Sequential API, Functional API, and Model Subclassing

• Better performance with tf.function

• Customize gradient flow by tf.custom_gradient

Neural Networks from Scratch

• In this lab, you will learn the fundamentals of how you can
build neural networks without the help of the deep
learning frameworks, and instead by using NumPy

Neural Networks from Scratch

• Creating complex neural networks with different
architectures with deep learning frameworks should be
a standard practice for any Machine Learning Engineer
and Data Scientist

• But a genuine understanding of how a neural network
works is equally as valuable

Model Architecture

• We are going to build a deep neural network with 3 layers
in total: 1 input layer, 1 hidden layers and 1 output layer

• All layers will be fully-connected

• In this tutorial, we will use MNIST dataset

• MNIST contains 70,000 images of hand-written digits, 60,000 for training
and 10,000 for testing, each 28x28=784 pixels, in greyscale with
pixel-values from 0 to 255

Model Architecture

• To be able to classify digits, we must end up with the
probabilities of an image belonging to a certain class

• Input layer: Flatten images into one array with
28x28=784 elements. This means our input layer will
have 784 nodes

• Hidden layer: Reduce the number of nodes from 784 in
the input layer to 64 nodes, so there’s 64 nodes in
hidden layer

• Output layer: Reduce 64 nodes to a total of 10 nodes,
and we can evaluate them against the label. The label is
in the form of an array with 10 elements, where one of
the elements is 1, while the rest is 0

Model Architecture

H
idden Layer, 784x64

O
utput Layer, 64x10

Input Layer (Flatten)

Model Architecture

• When instantiating the DeepNeuralNetwork class, we
pass in an array of sizes that defines the number of
activations for each layer

• This initializes the class by the init function

Initialization

•

Initialization

•

Feedforward

• The forward pass consists of the dot operation, which
turns out to be just matrix multiplication

• We have to multiply the weights by the activations of
the previous layer, and then apply the activation
function to the outcome

• In the last layer we use the softmax activation function,
since we wish to have probabilities of each class, so
that we can measure how well our current forward pass
performs

Activation Functions

• One magical power in deep neural networks is the
non-linear activation functions

• They enable us to learn the non-linear relationship
between input and output

Activation Functions

• We provide derivatives of activation functions, which are
required when backpropagating through networks

• As you have learned in the earlier lecture, a numerical stable version of the

softmax function was chosen

Backpropagation

• Backpropagation, short for backward propagation of
errors, is key to supervised learning of deep neural
networks

• It has enabled the recent surge in popularity of deep learning algorithms
since the early 2000s

• The backward pass is hard to get right, because there are so many sizes
and operations that have to align, for all the operations to be successful

Training

• We have defined a forward and backward pass, but how
can we start using them?

• We have to make a training loop and choose an optimizer
to update the parameters of the neural network

Training

Number of epochs

Running through each batch

Compute predictions

Compute gradients

Update networks

Optimization

•

Optimization

Results

• The results completely dependent on how the weights are
initialized and the activation function we use

• Experimentally, due to non-bounded behavior of relu(), the learning
rate should be set much smaller than the one
for sigmoid() (bounded)

• Training with SGD optimizer with momentum should have better result
since it avoids from getting stuck in local minima or saddle points

• The reason behind this phenomenon is complicated and beyond the
scope of this class. In short, the training results will be more stable and
consistent as the batch size increases

Sigmoid + Momentum optimizer

ReLU + SGD optimizer

Outline

• Neural Networks from Scratch

• Why TensorFlow?

• Environment Setup

• TensorFlow 2 Quickstart

• Dataset Preparation

• Building Model via Sequential API, Functional API, and Model Subclassing

• Better performance with tf.function

• Customize gradient flow by tf.custom_gradient

Deep Learning Framework

TensorFlow v.s. PyTorch

• The two frameworks had a lot of major differences in
terms of design, paradigm, syntax, etc till some time back

• But they have since evolved a lot, both have picked up
good features from each other and are no longer that
different

TensorFlow v.s. PyTorch

TensorFlow

• Originally developed by Google Brain, TensorFlow is an
end-to-end open source platform for machine learning,
which has several benefits:

• Easy model building

• Robust ML production anywhere

• Powerful experimentation for research

TensorFlow

Outline

• Neural Networks from Scratch

• Why TensorFlow?

• Environment Setup

• TensorFlow 2 Quickstart

• Dataset Preparation

• Building Model via Sequential API, Functional API, and Model Subclassing

• Better performance with tf.function

• Customize gradient flow by tf.custom_gradient

Software requirements

• Before using TensorFlow, the following NVIDIA® software
must be installed on your system:

• NVIDIA® GPU drivers —CUDA® 11.x requires 450.xx or higher

• CUDA® Toolkit —TensorFlow supports CUDA® 11.0 (TensorFlow >= 2.4.0)

• CUPTI ships with the CUDA® Toolkit

• cuDNN SDK 8.9.5 (see cuDNN versions)

• (Optional) TensorRT 8.0 to improve latency and throughput for inference
on some models

Software requirements

LINK

https://docs.nvidia.com/deeplearning/cudnn/support-matrix/index.html

Install CUDA

• Please refer to TensorFlow website, GPU Support section,
for more details and latest information

• Please check the version of the abovementioned
softwares carefully. There is a strict requirement
between TensorFlow's version and NVIDIA® softwares’

• (Optional) If you are using Anaconda environment, you
can install corresponding CUDA Toolkit and cuDNN
SDK via

• Notice that you still have to install NVIDIA® GPU drivers
manually

https://www.tensorflow.org/install/gpu

Environment Setup

• After installing CUDA Toolkit, you can check CUDA
version with nvcc --version

Environment Setup

• You can also check GPU utilization after installing GPU
driver with nvidia-smi

Install TensorFlow 2

• TensorFlow is tested and supported on the following
64-bit systems:

• Python 3.5–3.8

• Ubuntu 16.04 or later

• macOS 10.12.6 (Sierra) or later (no GPU support)

• Windows 7 or later

• Raspbian 9.0 or later

Install TensorFlow 2

• We can simply install TensorFlow with
Python's pip package manager

• It is recommanded to install TensorFlow in a virtual environment, for more

details, please refer to Install TensorFlow with pip

https://www.tensorflow.org/install/pip

Install TensorFlow 2

• We can test whether TensorFlow is installed successfully
and confirm that TensorFlow is using the GPU by
executing following code

Google Colab

• Google Colab provides a Jupyter notebook environment that
requires no setup with free GPU

• The types of GPUs available in Colab vary over time, including Nvidia K80, T4,
P4, P100

• There is no way to choose what type of GPU you can connect to in Colab at
any given time

• However, there are few constraints when using Google Colab:

• 12 hours lifetimes limit

• Various available GPU memory

• Google announced a new service called Colab
Pro ($9.99/month), which provides faster GPUs, longer
runtimes, and more memory compared with Colab

https://colab.research.google.com/signup
https://colab.research.google.com/signup

Outline

• Neural Networks from Scratch

• Why TensorFlow?

• Environment Setup

• TensorFlow 2 Quickstart

• Dataset Preparation

• Building Model via Sequential API, Functional API, and Model Subclassing

• Better performance with tf.function

• Customize gradient flow by tf.custom_gradient

TensorFlow 2 Quickstart

• Later on you will learn how to build a simple deep neural
network to classify hand-written digit numbers

• This time with TensorFlow!

Input Layer (Flatten)

H
idden Layer, 784x64

O
utput Layer, 64x10

Limit GPU Memory Growth

• By default, TensorFlow maps nearly all of the GPU
memory of all GPUs visible to the process

• This is done to more efficiently use the relatively precious GPU memory
resources on the devices by reducing memory fragmentation

• To limit a specific set of GPUs and to allocate a subset of
the available memory, you can execute

Restrict GPU to use

Allocate subset
of memory

Outline

• Neural Networks from Scratch

• Why TensorFlow?

• Environment Setup

• TensorFlow 2 Quickstart

• Dataset Preparation

• Building Model via Sequential API, Functional API, and Model Subclassing

• Better performance with tf.function

• Customize gradient flow by tf.custom_gradient

Dataset Preparation

• Currently, tf.keras.dataset supports 7 datasets.
Including:

• mnist module: MNIST handwritten digits dataset.

• cifar10 module: CIFAR10 small images classification dataset.

• cifar100 module: CIFAR100 small images classification dataset.

• fashion_mnist module: Fashion-MNIST dataset.

• imdb module: IMDB sentiment classification dataset.

• boston_housing module: Boston housing price regression
dataset.

• reuters module: Reuters topic classification dataset.

https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/datasets

Outline

• Neural Networks from Scratch

• Why TensorFlow?

• Environment Setup

• TensorFlow 2 Quickstart

• Dataset Preparation

• Building Model via Sequential API, Functional API, and Model Subclassing

• Better performance with tf.function

• Customize gradient flow by tf.custom_gradient

Build model via Sequential API

• A Sequential API is the simplest way to build a model,
which is appropriate for a plain stack of layers where
each layer has exactly one input tensor and one output
tensor

Build model via Sequential API

• To classify MNIST, let’s build a simple neural network with
fully-connected layers

• Build the tf.keras.Sequential model by stacking
layers. Choose an optimizer and loss function for training:

Model architecture

Loss function

Optimizer

https://www.tensorflow.org/api_docs/python/tf/keras/Sequential

Build model via Sequential API

• The Model.summary method prints a string summary of
the network, which is quite useful to examining model
architecture before training

= 784*128 + 128

= 128*10 + 10

https://www.tensorflow.org/api_docs/python/tf/keras/Model#summary

Build model via Sequential API

• The Model.fit method adjusts the model parameters to
minimize the loss:

• The Model.evaluate method checks the models
performance, usually on a "Validation-set" or "Test-set"

https://www.tensorflow.org/api_docs/python/tf/keras/Model#fit
https://www.tensorflow.org/api_docs/python/tf/keras/Model#evaluate

Build model via Functional API

• The Keras Functional API is a way to create models that
are more flexible than Sequential API

• The functional API can handle models with non-linear topology, shared
layers, and even multiple inputs or outputs

Build model via Functional API

• The main idea is that a deep learning model is usually a
directed acyclic graph (DAG) of layers. So the functional
API is a way to build graphs of layers

• Consider the following model:

• This is a basic graph with four layers

Build model via Functional API

• Building model using the functional API by creating an
input node first:

• You create a new node in the graph of layers by calling a
layer on this inputs object. The "layer call" action is like
drawing an arrow from "inputs" to this layer you created

Build model via Functional API

• At this point, you can create a Model by specifying its
inputs and outputs in the graph of layers:

= 784*128 + 128

= 128*10 + 10

Build model via Model Subclassing

• Model subclassing is fully-customizable and enables
you to implement your own custom forward-pass of
the model

• However, this flexibility and customization comes at a
cost — model subclassing is way harder to utilize than the
Sequential API or Functional API

Build model via Model Subclassing

• Exotic architectures or custom layer/model
implementations, especially those utilized by
researchers, can be extremely challenging

• Researchers wish to have control over every nuance of
the network and training process — and that’s exactly
what model subclassing provides them

Build model via Model Subclassing

• Build the model with Keras model subclassing API:

Model architecture

Forward path

https://www.tensorflow.org/guide/keras/custom_layers_and_models

Custom Training

• You can always train the model with model.fit and
model.evaluate, no matter which method you used to
build the model

• However, if you need more flexible training and evaluating
process, you can implement your own methods

Training

Custom Training

Number of epochs

Running through each batch

Custom Training

• Similarly, you have to choose the loss function and
optimizer as previous

• Later on, to train the model, we can
use tf.GradientTape to record operations for
automatic differentiation

Boost performance

Compute predictions
Compute
gradients

Update networks

https://www.tensorflow.org/api_docs/python/tf/GradientTape

Gradients and Automatic Differentiation

• One of the most important and powerful features of deep
learning framework is automatic differentiation and
gradients

Gradients and Automatic Differentiation

• As we can see in Neural Networks from Scratch, building
neural networks manually requires strong knowledge of
backpropagation algorithm

• It is interesting as we don't have too many operations or the model
architecture is relatively simple

• But what if we have this model?

https://nthu-datalab.github.io/ml/labs/10_TensorFlow101/10_NN-from-Scratchs.html

Gradients and Automatic Differentiation

• TensorFlow provides the tf.GradientTape API
for automatic differentiation; that is, computing the
gradient of a computation with respect to some inputs

• In short, you can regard tape.gradient(loss,
model.trainable_variable) as

Sequential API, Functional API, and Model Subclassing

Define Model Architecture

Define Loss and then Train

Sequential API, Functional API, and Model Subclassing

• All models can interact with each other, whether they’re
sequential models, functional models, or subclassed
models

Sequential Functional Subclassing

Simple

Flexibility

1 2 3

123

Outline

• Neural Networks from Scratch

• Why TensorFlow?

• Environment Setup

• TensorFlow 2 Quickstart

• Dataset Preparation

• Building Model via Sequential API, Functional API, and Model Subclassing

• Better performance with tf.function

• Customize gradient flow by tf.custom_gradient

Better Performance with tf.function

• In TensorFlow 2, eager execution is turned on by default.
The user interface is intuitive and flexible

• But this can come at the expense of performance and
deployability

• You can use tf.function to make graphs out of your
programs. It is a transformation tool that creates
Python-independent dataflow graphs out of your Python
code

https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/function

Better Performance with tf.function

• Let's create two function with same operation, one runs
in eager and another runs in graph mode

Debugging

• In general, debugging code is easier in eager mode than
inside tf.function. You should ensure that your code
executes error-free in eager mode first

• Debug in eager mode, then decorate
with @tf.function

• Don't rely on Python side effects like object mutation or
list appends

• tf.function works best with TensorFlow ops;
NumPy and Python calls are converted to constants

Python Side Effects

• Python side effects like printing, appending to lists, and
mutating globals only happen the first time you call a
function with a set of inputs

• Afterwards, the traced tf.Graph is reexecuted, without
executing the Python code

Python Side Effects

Python Side Effects

Outline

• Neural Networks from Scratch

• Why TensorFlow?

• Environment Setup

• TensorFlow 2 Quickstart

• Dataset Preparation

• Building Model via Sequential API, Functional API, and Model Subclassing

• Better performance with tf.function

• Customize gradient flow by tf.custom_gradient

Customize Gradient Flow

• tf.custom_gradient is a decorator to define a
function with a custom gradient

• This may be useful for multiple reasons, including providing a more
efficient or numerically stable gradient for a sequence of operations

https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/custom_gradient

Customize Gradient Flow

•

Customize Gradient Flow

• The gradient expression can be analytically simplified to
provide numerical stability:

Reference

• TensorFlow

• 3 ways to create a Keras model with TensorFlow 2.0

• Pytorch vs Tensorflow in 2020

https://www.tensorflow.org/
https://www.pyimagesearch.com/2019/10/28/3-ways-to-create-a-keras-model-with-tensorflow-2-0-sequential-functional-and-model-subclassing/
https://towardsdatascience.com/pytorch-vs-tensorflow-in-2020-fe237862fae1

