
Lab 11-1 Convolution Neural
Network & Data Pipelines

NTHU DataLab, 2024

Outline

• Convolution neural network

• Input pipeline

• Optimization for Input pipeline

Outline

• Convolution neural network

• Input pipeline

• Optimization for Input pipeline

Convolution Neural Network

• Build a CNN model via Sequential API
• A stack of Conv2D and MaxPooling2D layers

Convolution Neural Network

• Build a CNN model via Sequential API
• A stack of Conv2D and MaxPooling2D layers

Width * Height * Channel

Convolution Neural Network

• Build a CNN model via Sequential API
• A stack of Conv2D and MaxPooling2D layers

Filters: the number of output filters in the convolution

Convolution Neural Network

• Build a CNN model via Sequential API
• A stack of Conv2D and MaxPooling2D layers

Kernel size: specifying the height and width of the 2D convolution window

Convolution Neural Network

• Build a CNN model via Sequential API
• A stack of Conv2D and MaxPooling2D layers

(Default value)

Convolution Neural Network

• Build a CNN model via Sequential API
• A stack of Conv2D and MaxPooling2D layers

-1 8

4

00 0

109

0

11

0 8

-15

0 0

-3

1

-1

3

-6-1 1 -1

10 1

8 -1

Convolution Neural Network

• Build a CNN model via Sequential API
• A stack of Conv2D and MaxPooling2D layers

Convolution Neural Network

• Build a CNN model via Sequential API
• A stack of Conv2D and MaxPooling2D layers

0 0 0 0 0 0 0
0

0

0

0

0

0
0

0

0 0 0 0 0 0

0
0

0
0

0

0

0

0

0

When padding="same" and strides=1, the output has the same size as the input.

Outline

• Convolution neural network

• Input pipeline

• Optimization for Input pipeline

Input Pipeline

• A series of input data processing before training

Input Pipeline

• A series of input data processing before training

Rotate

Input Pipeline

• A series of input data processing before training

Shuffle

Input Pipeline

• A series of input data processing before training

Batch

Input Pipeline

• A series of input data processing before training

• Building the input pipeline is long and painful, and it’s hard to reuse
due to different type of data

• TensorFlow provides an API tf.data enables you to build complex
input pipelines from simple, reusable pieces

Input Pipeline - TensorFlow

• To apply transformations on your input data, we will need to
construct a tf.data.Dataset object

Input Pipeline - TensorFlow

• Construct Dataset
• For small data (in-memory)

All input tensors must have the same size in their first dimensions

The given tensors are sliced along their first dimension.

...
raw_data_b: [0, 1, 2, … , 199]

raw_data_a:

Input Pipeline - TensorFlow

• Construct Dataset
• For small data (in-memory)

data label

Input Pipeline - TensorFlow

• Transformations
• Map: apply the function to each the elements of this dataset

• Shuffle: maintains a fixed-size buffer and chooses the next element uniformly
at random from that buffer

• Batch: combines consecutive elements of this dataset into batches

• Repeat: repeat this dataset so each original value is seen multiple times

• Prefetch: allows later elements to be prepared while the current element is
being processed

Input Pipeline - TensorFlow

• Transformations
• Map: apply the function to each the elements of this dataset

Map function

reduce the dimension

Input Pipeline - TensorFlow

• Transformations
• Map: apply the function to each the elements of this dataset

• Data augmentation: a technique to increase the diversity of your training set by
applying random transformations such as image rotation

Input Pipeline - TensorFlow

• Transformations
• Shuffle: maintains a fixed-size buffer and chooses the next element uniformly

at random from that buffer

Buffer size

data 1

data 2

data 3

data 4

data 5

data 6

data 1

data 2

data 3

data 4
Buffer size: 4 Output

data 2

Buffer

data 1

data 5

data 3

data 4

Buffer

Input Pipeline - TensorFlow

• Transformations
• Batch: combines consecutive elements of this dataset into batches

• Be careful that if you apply shuffle after batch, you'll get shuffled batch but
data in a batch remains the same

shuffle -> batch batch -> shuffle

Input Pipeline - TensorFlow

• Transformations
• Repeat: repeat this dataset so each original value is seen multiple times

Input Pipeline - TensorFlow

• Transformations
• Prefetch: allows later elements to be prepared while the current element is

being processed

• This often improves latency and throughput, at the cost of using additional
memory to store prefetched elements

it will prompt the tf.data runtime to tune the value dynamically at runtime

Input Pipeline - TensorFlow

• Transformations
• Prefetch: allows later elements to be prepared while the current element is

being processed

• This often improves latency and throughput, at the cost of using additional
memory to store prefetched elements

Input Pipeline - TensorFlow

• Transformations
• Prefetch: allows later elements to be prepared while the current element is

being processed

it will prompt the tf.data runtime to tune the value dynamically at runtime

Input Pipeline - TensorFlow

• Transformations
• Prefetch: allows later elements to be prepared while the current element is

being processed

it will prompt the tf.data runtime to tune the value dynamically at runtime

Input Pipeline - TensorFlow

• Now you can iterate through the data and train

• Aware that if you do batch, the first dimension will be the batch size

Memory limited?

• Construct Dataset
• For small data (in-memory)

data label

...
raw_data_b: [0, 1, 2, … , 199]

raw_data_a:

200 * 5 * 8 byte ~ 7.8KB

What if x_train are 4000 colored images with (height, width) =(1024,1024)?

Memory limited?

• Construct Dataset
• For small data (in-memory)

data label

...
raw_data_b: [0, 1, 2, … , 199]

raw_data_a:

200 * 5 * 8 byte ~ 7.8KB

What if x_train are 4000 colored images with (height, width) =(1024,1024)?

(CPU Memory, irrelative to smaller batch size

Memory limited?

• Use image path as x_train, rather than digits of pixels directly
• Load digits during training (prefetch)

Outline

• Convolution neural network

• Input pipeline

• Optimization for Input pipeline

Optimization for Input pipeline

Assignment

• Goal
• Try some the input transfromation mentioned above (e.g. shuffle, batch, repeat,

map(random_crop, random_flip_left_right, ...)) but without optimization terms (e.g.
prefetch, cache, num_parallel_calls), comparing the performance to the no input
transfromation

• Retrain your model with optimized terms, compare the time consuming

• Training both models above for at least 3 epochs

• Briefly summarize what you did and explain the performance results (accuracy and time
consuming)

• Deadline: 2024/10/30 (Thr) 23:59

	Slide 1: Lab 11-1 Convolution Neural Network & Data Pipelines
	Slide 2: Outline
	Slide 3: Outline
	Slide 4: Convolution Neural Network
	Slide 5: Convolution Neural Network
	Slide 6: Convolution Neural Network
	Slide 7: Convolution Neural Network
	Slide 8: Convolution Neural Network
	Slide 9: Convolution Neural Network
	Slide 10: Convolution Neural Network
	Slide 11: Convolution Neural Network
	Slide 12: Outline
	Slide 13: Input Pipeline
	Slide 14: Input Pipeline
	Slide 15: Input Pipeline
	Slide 16: Input Pipeline
	Slide 17: Input Pipeline
	Slide 18: Input Pipeline - TensorFlow
	Slide 19: Input Pipeline - TensorFlow
	Slide 20: Input Pipeline - TensorFlow
	Slide 21: Input Pipeline - TensorFlow
	Slide 22: Input Pipeline - TensorFlow
	Slide 23: Input Pipeline - TensorFlow
	Slide 24: Input Pipeline - TensorFlow
	Slide 25: Input Pipeline - TensorFlow
	Slide 26: Input Pipeline - TensorFlow
	Slide 27: Input Pipeline - TensorFlow
	Slide 28: Input Pipeline - TensorFlow
	Slide 29: Input Pipeline - TensorFlow
	Slide 30: Input Pipeline - TensorFlow
	Slide 31: Input Pipeline - TensorFlow
	Slide 32: Memory limited?
	Slide 33: Memory limited?
	Slide 34: Memory limited?
	Slide 35: Outline
	Slide 36: Optimization for Input pipeline
	Slide 37: Assignment

