
Lab 11-1 Convolution Neural 
Network & Data Pipelines

NTHU DataLab, 2024



Outline

• Convolution neural network

• Input pipeline

• Optimization for Input pipeline



Outline

• Convolution neural network

• Input pipeline

• Optimization for Input pipeline



Convolution Neural Network

• Build a CNN model via Sequential API
• A stack of Conv2D and MaxPooling2D layers



Convolution Neural Network

• Build a CNN model via Sequential API
• A stack of Conv2D and MaxPooling2D layers

Width * Height * Channel



Convolution Neural Network

• Build a CNN model via Sequential API
• A stack of Conv2D and MaxPooling2D layers

Filters: the number of output filters in the convolution



Convolution Neural Network

• Build a CNN model via Sequential API
• A stack of Conv2D and MaxPooling2D layers

Kernel size: specifying the height and width of the 2D convolution window
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(Default value)



Convolution Neural Network

• Build a CNN model via Sequential API
• A stack of Conv2D and MaxPooling2D layers

-1 8

4

00 0

109

0

11

0 8

-15

0 0

-3

1

-1

3

-6-1 1 -1

10 1

8 -1



Convolution Neural Network

• Build a CNN model via Sequential API
• A stack of Conv2D and MaxPooling2D layers



Convolution Neural Network

• Build a CNN model via Sequential API
• A stack of Conv2D and MaxPooling2D layers

0 0 0 0 0 0 0
0

0

0

0

0

0
0

0

0 0 0 0 0 0

0
0

0
0

0

0

0

0

0

When padding="same" and strides=1, the output has the same size as the input.
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• A series of input data processing before training
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Input Pipeline

• A series of input data processing before training

• Building the input pipeline is long and painful, and it’s hard to reuse 
due to different type of data

• TensorFlow provides an API tf.data enables you to build complex 
input pipelines from simple, reusable pieces



Input Pipeline - TensorFlow

• To apply transformations on your input data, we will need to 
construct a tf.data.Dataset object



Input Pipeline - TensorFlow

• Construct Dataset
• For small data (in-memory)

All input tensors must have the same size in their first dimensions

The given tensors are sliced along their first dimension.

...
raw_data_b: [ 0, 1, 2, … , 199 ]

raw_data_a:



Input Pipeline - TensorFlow

• Construct Dataset
• For small data (in-memory)

data label



Input Pipeline - TensorFlow

• Transformations
• Map: apply the function to each the elements of this dataset

• Shuffle: maintains a fixed-size buffer and chooses the next element uniformly 
at random from that buffer

• Batch: combines consecutive elements of this dataset into batches

• Repeat: repeat this dataset so each original value is seen multiple times

• Prefetch: allows later elements to be prepared while the current element is 
being processed



Input Pipeline - TensorFlow

• Transformations
• Map: apply the function to each the elements of this dataset

Map function

reduce the dimension 



Input Pipeline - TensorFlow

• Transformations
• Map: apply the function to each the elements of this dataset

• Data augmentation: a technique to increase the diversity of your training set by 
applying random transformations such as image rotation



Input Pipeline - TensorFlow

• Transformations
• Shuffle: maintains a fixed-size buffer and chooses the next element uniformly 

at random from that buffer
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Input Pipeline - TensorFlow

• Transformations
• Batch: combines consecutive elements of this dataset into batches

• Be careful that if you apply shuffle after batch, you'll get shuffled batch but 
data in a batch remains the same

shuffle -> batch batch -> shuffle



Input Pipeline - TensorFlow

• Transformations
• Repeat: repeat this dataset so each original value is seen multiple times



Input Pipeline - TensorFlow

• Transformations
• Prefetch: allows later elements to be prepared while the current element is 

being processed

• This often improves latency and throughput, at the cost of using additional 
memory to store prefetched elements

it will prompt the tf.data runtime to tune the value dynamically at runtime
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• Transformations
• Prefetch: allows later elements to be prepared while the current element is 

being processed

it will prompt the tf.data runtime to tune the value dynamically at runtime



Input Pipeline - TensorFlow

• Now you can iterate through the data and train

• Aware that if you do batch, the first dimension will be the batch size



Memory limited?

• Construct Dataset
• For small data (in-memory)

data label

...
raw_data_b: [ 0, 1, 2, … , 199 ]

raw_data_a:

200 * 5 * 8 byte ~ 7.8KB

What if x_train are 4000 colored images with (height, width) =(1024,1024)?



Memory limited?

• Construct Dataset
• For small data (in-memory)

data label

...
raw_data_b: [ 0, 1, 2, … , 199 ]

raw_data_a:

200 * 5 * 8 byte ~ 7.8KB

What if x_train are 4000 colored images with (height, width) =(1024,1024)?

(CPU Memory, irrelative to smaller batch size



Memory limited?

• Use image path as x_train, rather than digits of pixels directly
• Load digits during training (prefetch)
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Optimization for Input pipeline



Assignment

• Goal
• Try some the input transfromation mentioned above (e.g. shuffle, batch, repeat, 

map(random_crop, random_flip_left_right, ...)) but without optimization terms (e.g. 
prefetch, cache, num_parallel_calls), comparing the performance to the no input 
transfromation

• Retrain your model with optimized terms, compare the time consuming

• Training both models above for at least 3 epochs

• Briefly summarize what you did and explain the performance results (accuracy and time 
consuming)

• Deadline: 2024/10/30 (Thr) 23:59
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