
Deep Learning Lab 11-2
Visualization & Style Transfer

Datalab
Department of Computer Science,

National Tsing Hua University,

Taiwan

Outline

• Visualization
• Neural Style Transfer

• A Neural Algorithm of Artistic Style
• AdaIN (Adaptive Instance Normalization)

• Save and Load models (Checkpoints)

VGG19

• VGG19 is known for its simplicity, using only 3×3
convolutional layers stacked on top of each other in
increasing depth.

VGG19

• CNN learns how to create useful representations of
the data to differentiate between different classes.

VGG19

• In this tutorial, we are going to use VGG19
pretrained on ImageNet for visualization.

• ImageNet is a large dataset used in ImageNet Large
Scale Visual Recognition Challenge(ILSVRC). The
training dataset contains around 1.2 million images
composed of 1000 different types of objects

More about Pretrained Networks...

• Pretrained network is useful and convenient for
several further usages, such as style transfer,
transfer learning, fine-tuning, and so on.

• Generally, using pretrained network can save a lot
of time and also easier to train a model on more
complex dataset or small dataset.

Outline

• Visualization
• Neural Style Transfer

• A Neural Algorithm of Artistic Style
• AdaIN (Adaptive Instance Normalization)

• Save and Load models (Checkpoints)

Visualize Filters

• Visualize the weights of the convolution filters to
help us understand what neural network have
learned.

• Learned filters are simply weights, yet because of
the specialized two-dimensional structure of the
filters, the weight values have a spatial relationship
to each other and plotting each filter as a two-
dimensional image is meaningful (or could be)

Visualize Filters

• Let's look at some filters in the first convolutional
layer.

• The dark squares indicate small or inhibitory
weights and the light squares represent large or
excitatory weights.

Visualize Feature Maps

• Activation maps, called feature maps, capture the
result of applying the filters to input, such as the
input image or another feature map.

• The idea of visualizing a feature map for a specific
input image would be to understand what features
of the input are detected or preserved in the
feature maps

Visualize Feature Maps

• Result of applying the filters in the first
convolutional layer is a lot of versions of the input
image with different features highlighted.

Visualize “Deeper” Feature Maps

• Let's visualize the feature maps output from each
block of VGG19.

Visualize “Deeper” Feature Maps

• Feature maps closer to the input of the model
capture a lot of fine detail in the image and that as
we progress deeper into the model, the feature
maps show less and less detail.

• This pattern was to be expected, as the model
abstracts the features from the image into more
general concepts that can be used to make a
classification.

• block 1 block 2 block 3 block 4 block 5

Visualize “Deeper” Feature Maps

• block 1 block 2 block 3 block 4 block 5

Visualize Gradients

• Visualizing convolutional output is a pretty useful
technique for visualizing shallow convolution layers.

• Unfortunately, when we get into the deeper layers,
it’s hard to understand them just by just looking at
the convolution output.

Visualize Gradients

• If we want to understand what the deeper layers
are really doing, we can try to use backpropagation
to show us the gradients of a particular neuron
with respect to our input image, which is called
saliency map.

• We will make a forward pass up to the layer that we
are interested in, and then backpropagate to help
us understand which pixels contributed the most to
the activation of that layer.

Visualize Gradients

• Compute the gradient of maximum neurons among
all activations in the required layer with respect to
the input image.

Visualize Gradients

• We can also visualize the gradient of any single
feature map.

Guided-Backpropagation

• As we can see above, the results are still hard to
explain and not very satisfying.

• Ideally, neurons act like detectors of particular
image features. We are only interested in what
image features the neuron detects, not in what
kind of stuff it doesn’t detect.

• Therefore, when propagating the gradient, we set
all the negative gradients to 0.

Guided-Backpropagation

• Thus, the gradient is “guided” by both the input
and the error signal.

Guided-Backpropagation

• Thus, the gradient is “guided” by both the input
and the error signal.

Guided-Backpropagation

• Thus, the gradient is “guided” by both the input
and the error signal.

Outline

• Visualization
• Neural Style Transfer

• A Neural Algorithm of Artistic Style
• AdaIN (Adaptive Instance Normalization)

• Save and Load models (Checkpoints)

Neural Style Transfer

• Leon Gatys and his co-authors has a very
interesting work called "A Neural Algorithm of
Artistic Style" that uses neural representations to
separate and recombine content and style of
arbitrary images, providing a neural algorithm for
the creation of artistic images

Neural Style Transfer

Outline

• Visualization
• Neural Style Transfer

• A Neural Algorithm of Artistic Style
• AdaIN (Adaptive Instance Normalization)

• Save and Load models (Checkpoints)

A Neural Algorithm of Artistic Style

• At a high level, in order for a network to perform
image classification, it must understand the image.

• This requires taking the raw image as input pixels
and building an internal representation that
converts the raw image pixels into a complex
understanding of the features present within the
image.

A Neural Algorithm of Artistic Style

• Use the intermediate layers of the model to get the
content and style representations of the image.

• Content representation
• Style representation

A Neural Algorithm of Artistic Style

• Use the intermediate layers of the model to get the
content and style representations of the image.

• Content representation
• Content features of the content image is calculated by

feeding the content image into the neural network, and
extract the activations of those.
content_layers

• Style representation

A Neural Algorithm of Artistic Style

• Use the intermediate layers of the model to get the
content and style representations of the image.

• Content representation
• Style representation

• For style features, we extract the correlation of the
features of the style-image layer-wise (gram matrix). By
adding up the feature correlations of multiple layers,
which corresponding to style_layers, we obtain a multi-
scale representation of the input image, which captures
its texture information instead of the object
arrangement in the input image

A Neural Algorithm of Artistic Style

A Neural Algorithm of Artistic Style

• Our goal is to create an output image which is
synthesized by finding an image that
simultaneously matches the content features of the
photograph and the style features of the respective
piece of art.

• We can define the loss function as the composition
of the dissimilarity of:

• The content features between the output image and the
content image.

• The style features between the output image and the
style image .

A Neural Algorithm of Artistic Style

• Content loss
• Minimize squared-error loss between two feature

representations, where F and P are the representations
of original and the generated image respectively.

A Neural Algorithm of Artistic Style

• Style loss
• Use Gram matrix to calculate style loss, consisting

feature correlations between the different filter
responses. Minimize the mean-squared distance
between two Gram matrices. A and G represents original
and generated image respectively, and w are weighting
factors

A Neural Algorithm of Artistic Style

A Neural Algorithm of Artistic Style

• So far, we have learned how to train a neural
network by using gradient descent to update the
weights.

• How to use the loss function we have defined?
• We have to update our input image!

A Neural Algorithm of Artistic Style

A Neural Algorithm of Artistic Style

A Neural Algorithm of Artistic Style

• Decrease these using an explicit regularization term
on the high frequency components of the image. In
style transfer, this is often called the total variation
loss.

A Neural Algorithm of Artistic Style

• w/ total_loss w/o total_loss

Outline

• Visualization
• Neural Style Transfer

• A Neural Algorithm of Artistic Style
• AdaIN (Adaptive Instance Normalization)

• Save and Load models (Checkpoints)

AdaIN (Adaptive Instance
Normalization)
• The method we mentioned above requires a slow

iterative optimization process, which limits its
practical application.

• Xun Huang and Serge Belongie from Cornell
University propose another framework, which
enables arbitrary style transfer in real-time, known
as "Arbitrary Style Transfer in Real-time with
Adaptive Instance Normalization”.

AdaIN (Adaptive Instance
Normalization)
• At the heart of this method is a novel Adaptive

Instance Normalization (AdaIN) layer aligning the
mean and variance of the content features with
those of the style features.

• Instance normalization performs style
normalization by normalizing feature statistics,
which have been found to carry the style
information of an image in the earlier works.

AdaIN (Adaptive Instance
Normalization)

AdaIN (Adaptive Instance
Normalization)
• What are encoder and decoder?

• Take autoencoder as an example:

AdaIN (Adaptive Instance
Normalization)
• AdaIN receives a content input and style input, and

simply aligns the channel-wise mean and variance
of to match those of.

• It is worth knowing that unlike BN(Batch
Normalization), IN(Instance Normalization) or
CIN(Conditional Instance Normalization), AdaIN has
no learnable affine parameters. Instead, it
adaptively computes the affine parameters from
the style inputs:

Be Aware of Pretrained Model

• Pretrained model is quite useful for many reasons.
• However, before diving into pretrained model, we

should understand:
• Input and output
• Data preprocessing

Outline

• Visualization
• Neural Style Transfer

• A Neural Algorithm of Artistic Style
• AdaIN (Adaptive Instance Normalization)

• Save and Load models (Checkpoints)

Save and Load Models

• Model progress can be saved during and after
training.

• This means a model can resume where it left off
and avoid long training times.

• Saving also means you can share your model and
others can recreate your work.

Save and Load Models

• "Saving a TensorFlow model" typically means one
of two things:

• Checkpoints
• SavedModel

Checkpoints

• Checkpoints capture the exact value of all
parameters (tf.Variable objects) used by a model

• Checkpoints do not contain any description of the
computation defined by the model and thus are
typically only useful when source code that will use
the saved parameter values is available.

Saved Model

• The Saved Model format on the other hand
includes a serialized description of the computation
defined by the model in addition to the parameter
values (checkpoint)

• Models in this format are independent of the
source code that created the model. They are thus
suitable for deployment via TensorFlow Serving,
TensorFlow Lite, TensorFlow.js, or programs in
other programming languages (the C, C++, Java, Go,
Rust, C# etc. TensorFlow APIs)

Saved Model

Inside Checkpoints

• There are various parameters used by the model,
including hyperparameters, weights and optimizer
slot variables.

Checkpoints

• There are several ways to save TensorFlow models,
depending on the API you are using.

• In this section, we are going to demonstrate.
• tf.keras.callbacks.ModelCheckpoint
• Model.save_weights
• tf.train.Checkpoints

tf.keras.callbacks.ModelCheckpoint

• The tf.keras.callbacks.ModelCheckpoint callback
allows to continually save the model both during
and at the end of training, and this method saves
all parameters used by a model, including weights
and optimizer.

tf.keras.callbacks.ModelCheckpoint

tf.keras.callbacks.ModelCheckpoint

Model.save_weights

Model.save_weights

Model.save_weights

tf.train.Checkpoint

Checkpoint

Assignment

Reference

• VGG 19 model
• The code of style transfer is based on Tersorflow

official tutorial, while the code of visualization is
based on How to Visualize Filters and Feature Maps
in Convolutional Neural Networks by Jason
Brownlee

• Original work of Style Transfer's TensorFlow
implementation is from Anish Athalye's GitHub
account anishathalye

Reference

• Guided-backpropagation: Striving for Simplicity:
The All Convolutional Net J. T. Springenberg and A.
Dosovitskiy et al., ICLR’15 Workshop

• Style transfer: A Neural Algorithm of Artistic Style,
Gatys et al., arXiv’15

• AdaIN: "Arbitrary Style Transfer in Real-time with
Adaptive Instance Normalization", Huang et al.,
ICLR’17 Workshop / ICCV’17

• The tutorial of "Save and Load Model" is based on
Tensorflow official tutorial

