Deep Learning Lab 11-2
Visualization & Style Transfer



Outline

e Visualization

* Neural Style Transfer
* A Neural Algorithm of Artistic Style
e AdalN (Adaptive Instance Normalization)

» Save and Load models (Checkpoints)



VGG19

* VGG19 is known for its simplicity, using only 3x3
convolutional layers stacked on top of each other in
increasing depth.

VGG 19

=
y

7
e

) 5 5 =

depth=64 depth=128 3x3conv

<A

7 . maxpool maxpool | maxpool maxpool
maxpool

depth=256 depth=512 depth=512
3x3 conv 3x3 conv
convd 1 conv5 1
conv4 2 convs_2
conv4 3 convS_3
conv4_4 convS_4

3x3 conv 3x3 conv conv3_1
convl 1 conv2_1 conv3_2
convl_2 conv2_2 conv3_3

conv3_4

-




VGG1S

* CNN learns how to create useful representations of
the data to differentiate between different classes.

Mo

{ maxpool | maxpool | maxpool | maxpool

| maxpool | depth=256 depth=512  depth=512  ,e-4096
depth=64 depth=128 3x3conv  3x3conv 3x3 conv FC1
3x3 conv 3x3 conv conv3_1 conv4_1 conv5_1 FC2
convl 1 conv2_1  conv3_2 conva4_2 convs_2 size=1000
convl_2 conv2_ 2  conv3_3 conva_3 convs_3 softmax

conv3 4 conv4_4 convS_4



VGG19

* |In this tutorial, we are going to use VGG19
pretrained on ImageNet for visualization.

* ImageNet is a large dataset used in ImageNet Large
Scale Visual Recognition Challenge(ILSVRC). The
training dataset contains around 1.2 million images
composed of 1000 dlfferent types of obJects




More about Pretrained Networks...

* Pretrained network is useful and convenient for
several further usages, such as style transfer,
transfer learning, fine-tuning, and so on.

* Generally, using pretrained network can save a lot
of time and also easier to train a model on more
complex dataset or small dataset.



Outline

e Visualization



Visualize Filters

* Visualize the weights of the convolution filters to
nelp us understand what neural network have
earned.

e Learned filters are simply weights, yet because of
the specialized two-dimensional structure of the
filters, the weight values have a spatial relationship
to each other and plotting each filter as a two-
dimensional image is meaningful (or could be)



Visualize Filters

e Let's look at some filters in the first convolutional
layer.

* The dark squares indicate small or inhibitory
weights and the light squares represent large or
excitatory weights.

.
LIl
aaleal T




Visualize Feature Maps

* Activation maps, called feature maps, capture the
result of applying the filters to input, such as the
input image or another feature map.

 The idea of visua
iInput image wou

izing a feature map for a specific
d be to understand what features

of the input are detected or preserved in the

feature maps



Visualize Feature Maps

* Result of applying the filters in the first
convolutional layer is a lot of versions of the input
image with different features highlighted.

.
.
¥ -‘1‘1‘

: ‘€ Aq

!.1'7.‘ ‘ .




Visualize “Deeper” Feature Maps

 Let's visualize the feature maps output from each
block of VGG19.

VGG 19

//
N
~

- [ﬂ
ﬂ]j 0 = ==l

i  maxpool | maxpool | maxpool | maxpool

/.

| T—_— depth=256 depth=512  depth=512 i 0-4006
depth=64 depth=128 3x3conv  3x3 conv 3x3 conv "F(iv'w
3x3 conv 3x3 conv conv3_1 convd_1 convs 1 FC2
convl 1 conv2 1 conv3_2 conv4 2 convS_2 size=1000
convl 2 conv2_2 conv3 3 conv4 3 conv5 3 SR aK

conv3 4 conv4 4 convS 4












o
g i
|
1 =
i
_ & .
' B
- ."\_s i




=]
i
]

HEEENEEEE
HEEEENENE
1L rlte
REEEESEEEE




Visualize “Deeper” Feature Maps

* Feature maps closer to the input of the model
capture a lot of fine detail in the image and that as
we progress deeper into the model, the feature
maps show less and less detail.

* This pattern was to be expected, as the model
abstracts the features from the image into more
general concepts that can be used to make a
classification.

e block 1 block 2 block 3 block 4 block 5



Visualize “Deeper” Feature Maps

e blockl block?2 block3 block4 block5
EEEENEEER
BB EEEENN




Visualize Gradients

* Visualizing convolutional output is a pretty useful
technique for visualizing shallow convolution layers.

* Unfortunately, when we get into the deeper layers,
it’s hard to understand them just by just looking at
the convolution output.



Visualize Gradients

* If we want to understand what the deeper layers
are really doing, we can try to use backpropagation
to show us the gradients of a particular neuron
with respect to our input image, which is called
saliency map.

* We will make a forward pass up to the layer that we
are interested in, and then backpropagate to help
us understand which pixels contributed the most to
the activation of that layer.



Visualize Gradients

 Compute the gradient of maximum neurons among
all activations in the required layer with respect to
the input image.

250 (==t 250




Visualize Gradients

* We can also visualize the gradient of any single
feature map.




Guided-Backpropagation

 As we can see above, the results are still hard to
explain and not very satisfying.

* |deally, neurons act like detectors of particular
image features. We are only interested in what
image features the neuron detects, not in what
kind of stuff it doesn’t detect.

* Therefore, when propagating the gradient, we set
all the negative gradients to O.



Guided-Backpropagation

* Thus, the gradient is “guided” by both the input
and the error signal.

a) Forward pass 1o I b) 1]|1|s 1|0
i i T dee b fL-1- L |
Input image f 7 ' =15 f | Forward pass P, I
Feature map | 312]4 0]2
Backward pass
Reconstructed JB = 1_ ojo] .. I STl B
image R’ 012 | Backward pass: R . B
' backpropagation E
———————————————————— I 0f-1]3 2|1
c) o 1 _ o AN — el £ |
activation: [T =relu(f;) = max(f;,0) I STl o > BB
) 9 rout Backward pass:
backpropagation: R! = (f/ > 0)- Rﬁ“. where R'*1 = 3fm : r— 6|lo|1| «<— |6 |3
fi 2|03 2|1
backward R — ). Rl |
'deconvnet": R i |
| Backward pass: 0 N O 2
guided R=(f!>0)-(R ) . R+ guided 6lojJo| «— |63
backpropagation: : ‘ ) ' backpropagation olo|3 2|1
I




Guided-Backpropagation

* Thus, the gradient is “guided” by both the input
and the error signal.

Input




Guided-Backpropagation

* Thus, the gradient is “guided” by both the input
and the error signal.

Input




Outline

* Neural Style Transfer
* A Neural Algorithm of Artistic Style
e AdalN (Adaptive Instance Normalization)



Neural Style Transfer

* Leon Gatys and his co-authors has a very
interesting work called "A Neural Algorithm of
Artistic Style" that uses neural representations to
separate and recombine content and style of
arbitrary images, providing a neural algorithm for
the creation of artistic image

1




Neural Style Transfer




Outline

* Neural Style Transfer
* A Neural Algorithm of Artistic Style



A Neural Algorithm of Artistic Style

* At a high level, in order for a network to perform
image classification, it must understand the image.

* This requires taking the raw image as input pixels
and building an internal representation that
converts the raw image pixels into a complex
understanding of the features present within the
Image.



A Neural Algorithm of Artistic Style

* Use the intermediate layers of the model to get the
content and style representations of the image.

* Content representation
* Style representation



A Neural Algorithm of Artistic Style

* Use the intermediate layers of the model to get the
content and style representations of the image.

* Content representation

* Content features of the content image is calculated by
feeding the content image into the neural network, and
extract the activations of those.

content layers

* Style representation



A Neural Algorithm of Artistic Style

* Use the intermediate layers of the model to get the
content and style representations of the image.

* Content representation

* Style representation

* For style features, we extract the correlation of the
features of the style-image layer-wise (gram matrix). By
adding up the feature correlations of multiple layers,
which corresponding to style layers, we obtain a multi-
scale representation of the input image, which captures
its texture information instead of the object
arrangement in the input image



A Neural Algorithm of Artistic Style

1 1 i\ i\ 1

I I | |

W AV

Convolutional Neural Network

Input image D

Content
Representations

Content Reconstructions



A Neural Algorithm of Artistic Style

e Our goal is to create an output image which is
synthesized by finding an image that
simultaneously matches the content features of the
photograph and the style features of the respective
piece of art.

* We can define the loss function as the composition
of the dissimilarity of:

* The content features between the output image and the
content image.

e The style features between the output image and the
style image.



A Neural Algorithm of Artistic Style

 Content loss

* Minimize squared-error loss between two feature
representations, where F and P are the representations
of original and the generated image respectively.

o =i l - 2
Leontent (P, T, 1) = 3 Z (Fi; — Pij)

i.j



A Neural Algorithm of Artistic Style

 Style loss

e Use Gram matrix to calculate style loss, consisting
feature correlations between the different filter
responses. Minimize the mean-squared distance
between two Gram matrices. A and G represents original
and generated image respectively, and w are weighting
factors

Gl = Fl gt -, - 1 Y AL
1] ZA: tk* gk LI 41\’;[-‘31\[’2 Z ( 1] Al.})

3,7
L

Latye(@, %) = ) wE,

(=0



A Neural Algorithm of Artistic Style

y vy ‘ B — f
Ep. = Z ((" - "11) Etuml — ”Cvonh-nt = .‘3£stylr

e e, (;f', X f",’g ’-','1.
Y

siar ! >
:Zoomﬁ_a;: > |A" Gl
- g% - \___/

dE,
‘poom DFL
. 4




A Neural Algorithm of Artistic Style

e So far, we have learned how to train a neural
network by using gradient descent to update the
weights.

dL

oW

e How to use the loss function we have defined?
* We have to update our input image!

oL
Ox



A Neural Algorithm of Artistic Style

Content Image Style Image




A Neural Algorithm of Artistic Style

250 £

0 100 200 300 400 500

0 100 200 300 400

Train step: 1000

Rt e g

250

300

0 100 200 300 400 500 0 100 200 300 400



A Neural Algorithm of Artistic Style

e Decrease these using an explicit regularization term
on the high frequency components of the image. In
style transfer, this is often called the total variation
loss.

2 2
V(‘\-) = Z \/l.",+|,,' i .\.,',,I - |.\‘u+| =
iJ

* |n practice, to speed up the computation, we implement the following
version instead:

V(\) = Z I."r+l,/ - .\'.'_;I - ¢ I.\‘:._;+I = Yij
iJ



A Neural Algorithm of Artistic Style

* w/ total loss w/o total loss




Outline

* Neural Style Transfer

e AdalN (Adaptive Instance Normalization)



AdalN (Adaptive Instance
Normalization)

* The method we mentioned above requires a slow
iterative optimization process, which limits its
practical application.

e Xun Huang and Serge Belongie from Cornell
University propose another framework, which
enables arbitrary style transfer in real-time, known
as "Arbitrary Style Transfer in Real-time with
Adaptive Instance Normalization”.



AdalN (Adaptive Instance
Normalization)

* At the heart of this method is a novel Adaptive
Instance Normalization (AdalN) layer aligning the
mean and variance of the content features with
those of the style features.

* Instance normalization performs style
normalization by normalizing feature statistics,
which have been found to carry the style
information of an image in the earlier works.



AdalN (Adaptive Instance

Normalization)

O

wﬁ

VGG
Encoder

s

-

/ Japooa(g \

A

tyle Transfer Netwo_rk

AdalN

/S

VGG
Encoder




AdalN (Adaptive Instance
Normalization)

* What are encoder and decoder?
* Take autoencoder as an example:

Bottleneck Layer
Input Image Output Image

------

Encoder Decoder



AdalN (Adaptive Instance
Normalization)

e AdalN receives a content input and style input, and
simply aligns the channel-wise mean and variance

of to match those of.

* It is worth knowing that unlike BN(Batch
Normalization), IN(Instance Normalization) or
CIN(Conditional Instance Normalization), AdalN has
no learnable affine parameters. Instead, it
adaptively computes the affine parameters from

the style inputs:

X = p(x)

AdalN(x, y) = a(y) ( )+ u(y)

o(x)






Be Aware of Pretrained Model

* Pretrained model is quite useful for many reasons.

* However, before diving into pretrained model, we
should understand:

* Input and output
* Data preprocessing

def preprocess_image(path, init shape=(448, 448)):
image tf.io.read file(path)
image tf.image.decode jpeg(image, channels=3)
image tf.image.resize(image, init_shape)
image tf.image.random crop(image, size=IMG_SHAPE)
image tf.cast(image, tf.float32)

# Convert image from RGB to BGR, then zero-center each color channel with
# respect to the ImageNet dataset, without scaling.

image = image[..., ::-1] # RGB to BGR

image -= (103.939, 116.779, 123.68) # BGR means

return image



Outline

» Save and Load models (Checkpoints)



Save and Load Models

* Model progress can be saved during and after
training.

 This means a model can resume where it left off
and avoid long training times.

e Saving also means you can share your model and
others can recreate your work.



Save and Load Models

* "Saving a TensorFlow model" typically means one
of two things:
* Checkpoints
* SavedModel



Checkpoints

* Checkpoints capture the exact value of all
parameters (t£.variable Objects) used by a model

* Checkpoints do not contain any description of the
computation defined by the model and thus are
typically only useful when source code that will use
the saved parameter values is available.



Saved Model

* The Saved Model format on the other hand
includes a serialized description of the computation
defined by the model in addition to the parameter
values (checkpoint)

* Models in this format are independent of the
source code that created the model. They are thus
suitable for deployment via TensorFlow Serving,
TensorFlow Lite, TensorFlow.js, or programs in
other programming languages (the C, C++, Java, Go,
Rust, C# etc. TensorFlow APIs)



Saved Model

Training Deployment

Data Design Model Design
tf.data Keras
TF Datasets Estimators

Cloud, On-prem
TensorFlow Serving

Training
Distribution Strategy Serialization

SavedModel
&3 E3

Android, iOS, Raspberry Pi
TensorFlow Lite

Analysis Model Repository Browser and Node

Tensorboard TensorFlow Hub TensorFlow.JS




Inside Checkpoints

* There are various parameters used by the model,
including hyperparameters, weights and optimizer
slot variables.

net \step \ save_counter
optimizer 11

bias kernel

beta_2 epsilon “iter /“learning_rate /decay bela_l-'n_m"'u_\;'Ai”‘-._rﬁ"-"-._v

W S



Checkpoints

* There are several ways to save TensorFlow models,
depending on the APl you are using.

* In this section, we are going to demonstrate.
e tf.keras.callbacks.ModelCheckpoint
 Model.save weights
e tf.train.Checkpoints



tf.keras.callbacks.ModelCheckpoint

* The tf.keras.callbacks.ModelCheckpoint callback
allows to continually save the model both during
and at the end of training, and this method saves
all parameters used by a model, including weights
and optimizer.



tf.keras.callbacks.ModelCheckpoint

EPOCHS = 5

# Checkpoint path and its name
CKP_DIR_SAVE_CALLBACKS = './checkpoints_save_callbacks/ckpt-{epoch}.ckpt'’
checkpoint_dir = os.path.dirname(CKP_DIR_SAVE_CALLBACKS)

model.compile(optimizer="'adam’,
loss='sparse categorical crossentropy'’,
metrics=[ 'accuracy'])

# Create a callback that saves the model's weights every 1 epochs
cp_callback = tf.keras.callbacks.ModelCheckpoint (
filepath=CKP_DIR_SAVE_CALLBACKS,
verbose=1,
save _weights_only=True,
period=1)

# Train the model with the new callback
model.fit(train_images,
train_labels,
epochs=EPOCHS,
callbacks=[cp_callback],
validation_data=(test_images,test_labels))



tf.keras.callbacks.ModelCheckpoint

Before restore weights

# Create a new model instance

model = MyModel()

model.compile(optimizer="'adam',
loss='sparse categorical crossentropy',
metrics=[ 'accuracy'])

# Re-evaluate the model
loss, acc = model.evaluate(test_images, test_labels, verbose=2)
print("Restored model, accuracy: {:5.2f}%".format(100*acc))

1000/1 - 0s - 291 -
Restored model, accuracy: 10.40%

cy: 0.1040

After restore weights

# Load the previously saved weights
latest = tf.train.latest_checkpoint(checkpoint_dir)
model.load weights(latest)

# Re-evaluate the model
loss, acc = model.evaluate(test_images, test labels, verbose=2)
print("Restored model, accuracy: {:5.2f}%".format(100*acc))

1000/1 - 0s -
Restored mode{,

acy: 0.8550

accuracy: 85.50%




Model.save weights

 Manually saving them is just as simple with
the Model.save weights method, and it is quite useful
during custom training. In our Deep Learning course,
most of assignments and competitions are required
custom training

* Another thing you should notice is the difference
between tf.keras.callbacks.ModelCheckpoint
and Model.save weights. The former one saves all
parameters used in model, including weights and
optimizers, while the latter one only saves weights. No
information about optimizer is saved



Model.save weights

 Manually saving them is just as simple with
the Model.save weights method, and it is quite useful
during custom training. In our Deep Learning course,
most of assignments and competitions are required
custom training

* Another thing you should notice is the difference
between tf.keras.callbacks.ModelCheckpoint
and Model.save weights. The former one saves all
parameters used in model, including weights and
optimizers, while the latter one only saves weights. No
information about optimizer is saved



Model.save weights

CKP_DIR_SAVE_WEIGHTS = './checkpoints_save weights'

for epoch in range(EPOCHS):
for images, labels in train_ds:
train step(images, labels)

for test_images, test labels in test_ds:
test_step(test_images, test_labels)

template = 'Epoch {:0}, Loss: {:.2f}, Accuracy: {:.2f}, Test Loss: {:.2f}, Test Accuracy: {:.2f}'
print (template.format(epoch+1,

train_loss.result(),

train_accuracy.result()*100,

test_loss.result(),

test _accuracy,result()*100))

Model.save weights during training
# You can modify the saving frequency by simply using "if epoch == ?, then
print("Saved checkpoint for step {}: {}".format(int(epoch+l), CKP_DIR_SAVE WEIQHTS + f'/ckpt-{epoch+1l}'))
model.save _weights(os.path.join(CKP_DIR_SAVE WEIGHTS, f'ckpt-{epoch}'))

# Rese [cs for the next epoch
train_loss.reset_states()
train_accuracy.reset_states()
test_loss.reset_states()
test_accuracy.reset_states()



tf.train.Checkpoint

* Another way to save checkpoint during custom training is
touse tf.train.Checkpoint API, capturing the exact
value of all parameters used by model

» Additionally, this API allows you to decide what you want
to save exactly

CKP_DIR_SAVE_CHECKPOINTS = './checkpoints_save_checkpoints'

# Place the models and optimizers you want to store

# as the arguments of tf.train.Checkpoint

# You can store several different models and optimizers at the same time

ckpt = tf.train.Checkpoint(step=tf.Variable(l), optimizer=optimizer, model=model)
manager = tf.train.CheckpointManager(ckpt, CKP_DIR_SAVE_CHECKPOINTS, max_to_keep=3)



Checkpoint

® tf.keras.callbacks.ModelCheckpoint

* The easiest one, but not so flexible

e Save weights and optimizer

®* Model.save weights

¢ Flexible, which can be used in custom training

e Save weights

® tf.train.Checkpoints

* Flexible, which can be used in custom training
* Save weights and optimizer

¢ Able to specify what you want to save exactly



Assignment

In this assignment, you need to do following things:

Part | (A Neural Algorithm of Artistic Style)

1. Implement total variational loss. tf.image.total_variation is not allowed (10%).

2. Change the weights for the style, content, and total variational loss (10%).

3. Use other layers in the model (10%).
e You need to calculate both content loss and style loss from different layers in the model

4. Write a brief report. Explain how the results are affected when you change the weights, use different layers for calculating loss (10%).
e |nsert markdown cells in the notebook to write the report.

Part Il (AdalN)

1. Implement AdalN layer and use single content image to create 25 images with different styles (60%).

You can dowaload WikiArt and MSCOCO 2014 from here.



Reference

e VGG 19 model

* The code of style transfer is based on Tersorflow
official tutorial, while the code of visualization is
based on How to Visualize Filters and Feature Maps

in Convolutional Neural Networks by Jason
Brownlee

* Original work of Style Transfer's TensorFlow

implementation is from Anish Athalye's GitHub
account anishathalye



Reference

* Guided-backpropagation: Striving for Simplicity:
The All Convolutional Net J. T. Springenberg and A.
Dosovitskiy et al., ICLR’15 Workshop

 Style transfer: A Neural Algorithm of Artistic Style,
Gatys et al., arXiv’'15

 AdalN: "Arbitrary Style Transfer in Real-time with
Adaptive Instance Normalization", Huang et al.,
ICLR’17 Workshop / ICCV’17

 The tutorial of "Save and Load Model" is based on
Tensorflow official tutorial




