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VGG19

• VGG19 is known for its simplicity, using only 3×3 
convolutional layers stacked on top of each other in 
increasing depth.



VGG19

• CNN learns how to create useful representations of 
the data to differentiate between different classes.



VGG19

• In this tutorial, we are going to use VGG19 
pretrained on ImageNet for visualization.

• ImageNet is a large dataset used in ImageNet Large 
Scale Visual Recognition Challenge(ILSVRC). The 
training dataset contains around 1.2 million images 
composed of 1000 different types of objects 



More about Pretrained Networks...

• Pretrained network is useful and convenient for 
several further usages, such as style transfer, 
transfer learning, fine-tuning, and so on.

• Generally, using pretrained network can save a lot 
of time and also easier to train a model on more 
complex dataset or small dataset.
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Visualize Filters

• Visualize the weights of the convolution filters to 
help us understand what neural network have 
learned.

• Learned filters are simply weights, yet because of 
the specialized two-dimensional structure of the 
filters, the weight values have a spatial relationship 
to each other and plotting each filter as a two-
dimensional image is meaningful (or could be)



Visualize Filters

• Let's look at some filters in the first convolutional 
layer.

• The dark squares indicate small or inhibitory 
weights and the light squares represent large or 
excitatory weights.



Visualize Feature Maps

• Activation maps, called feature maps, capture the 
result of applying the filters to input, such as the 
input image or another feature map.

• The idea of visualizing a feature map for a specific 
input image would be to understand what features 
of the input are detected or preserved in the 
feature maps



Visualize Feature Maps

• Result of applying the filters in the first 
convolutional layer is a lot of versions of the input 
image with different features highlighted.



Visualize “Deeper” Feature Maps

• Let's visualize the feature maps output from each 
block of VGG19.













Visualize “Deeper” Feature Maps

• Feature maps closer to the input of the model 
capture a lot of fine detail in the image and that as 
we progress deeper into the model, the feature 
maps show less and less detail.

• This pattern was to be expected, as the model 
abstracts the features from the image into more 
general concepts that can be used to make a 
classification.

• block 1 block 2 block 3 block 4 block 5



Visualize “Deeper” Feature Maps

• block 1      block 2       block 3      block 4      block 5



Visualize Gradients

• Visualizing convolutional output is a pretty useful 
technique for visualizing shallow convolution layers.

• Unfortunately, when we get into the deeper layers, 
it’s hard to understand them just by just looking at 
the convolution output.



Visualize Gradients

• If we want to understand what the deeper layers 
are really doing, we can try to use backpropagation 
to show us the gradients of a particular neuron 
with respect to our input image, which is called 
saliency map.

• We will make a forward pass up to the layer that we 
are interested in, and then backpropagate to help 
us understand which pixels contributed the most to 
the activation of that layer.



Visualize Gradients

• Compute the gradient of maximum neurons among 
all activations in the required layer with respect to 
the input image.



Visualize Gradients

• We can also visualize the gradient of any single 
feature map.



Guided-Backpropagation

• As we can see above, the results are still hard to 
explain and not very satisfying.

• Ideally, neurons act like detectors of particular 
image features. We are only interested in what 
image features the neuron detects, not in what 
kind of stuff it doesn’t detect. 

• Therefore, when propagating the gradient, we set 
all the negative gradients to 0.



Guided-Backpropagation

• Thus, the gradient is “guided” by both the input 
and the error signal.



Guided-Backpropagation

• Thus, the gradient is “guided” by both the input 
and the error signal.



Guided-Backpropagation

• Thus, the gradient is “guided” by both the input 
and the error signal.
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Neural Style Transfer

• Leon Gatys and his co-authors has a very 
interesting work called "A Neural Algorithm of 
Artistic Style" that uses neural representations to 
separate and recombine content and style of 
arbitrary images, providing a neural algorithm for 
the creation of artistic images



Neural Style Transfer
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A Neural Algorithm of Artistic Style

• At a high level, in order for a network to perform 
image classification, it must understand the image.

• This requires taking the raw image as input pixels 
and building an internal representation that 
converts the raw image pixels into a complex 
understanding of the features present within the 
image.



A Neural Algorithm of Artistic Style

• Use the intermediate layers of the model to get the 
content and style representations of the image.

• Content representation
• Style representation



A Neural Algorithm of Artistic Style

• Use the intermediate layers of the model to get the 
content and style representations of the image.

• Content representation
• Content features of the content image is calculated by 

feeding the content image into the neural network, and 
extract the activations of those.
content_layers

• Style representation



A Neural Algorithm of Artistic Style

• Use the intermediate layers of the model to get the 
content and style representations of the image.

• Content representation
• Style representation

• For style features, we extract the correlation of the 
features of the style-image layer-wise (gram matrix). By 
adding up the feature correlations of multiple layers, 
which corresponding to style_layers, we obtain a multi-
scale representation of the input image, which captures 
its texture information instead of the object 
arrangement in the input image



A Neural Algorithm of Artistic Style



A Neural Algorithm of Artistic Style

• Our goal is to create an output image which is 
synthesized by finding an image that 
simultaneously matches the content features of the 
photograph and the style features of the respective 
piece of art.

• We can define the loss function as the composition 
of the dissimilarity of:

• The content features between the output image and the 
content image.

• The style features between the output image and the 
style image .



A Neural Algorithm of Artistic Style

• Content loss
• Minimize squared-error loss between two feature 

representations, where F and P are the representations 
of original and the generated image respectively.



A Neural Algorithm of Artistic Style

• Style loss
• Use Gram matrix to calculate style loss, consisting 

feature correlations between the different filter 
responses. Minimize the mean-squared distance 
between two Gram matrices. A and G represents original 
and generated image respectively, and w are weighting 
factors



A Neural Algorithm of Artistic Style



A Neural Algorithm of Artistic Style

• So far, we have learned how to train a neural 
network by using gradient descent to update the 
weights.

• How to use the loss function we have defined?
• We have to update our input image!



A Neural Algorithm of Artistic Style



A Neural Algorithm of Artistic Style



A Neural Algorithm of Artistic Style

• Decrease these using an explicit regularization term 
on the high frequency components of the image. In 
style transfer, this is often called the total variation 
loss.



A Neural Algorithm of Artistic Style

• w/ total_loss w/o total_loss
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AdaIN (Adaptive Instance 
Normalization)
• The method we mentioned above requires a slow 

iterative optimization process, which limits its 
practical application.

• Xun Huang and Serge Belongie from Cornell 
University propose another framework, which 
enables arbitrary style transfer in real-time, known 
as "Arbitrary Style Transfer in Real-time with 
Adaptive Instance Normalization”.



AdaIN (Adaptive Instance 
Normalization)
• At the heart of this method is a novel Adaptive 

Instance Normalization (AdaIN) layer aligning the 
mean and variance of the content features with 
those of the style features.

• Instance normalization performs style 
normalization by normalizing feature statistics, 
which have been found to carry the style 
information of an image in the earlier works.



AdaIN (Adaptive Instance 
Normalization)



AdaIN (Adaptive Instance 
Normalization)
• What are encoder and decoder?

• Take autoencoder as an example:



AdaIN (Adaptive Instance 
Normalization)
• AdaIN receives a content input and style input, and 

simply aligns the channel-wise mean and variance 
of to match those of.

• It is worth knowing that unlike BN(Batch 
Normalization), IN(Instance Normalization) or 
CIN(Conditional Instance Normalization), AdaIN has 
no learnable affine parameters. Instead, it 
adaptively computes the affine parameters from 
the style inputs:





Be Aware of Pretrained Model

• Pretrained model is quite useful for many reasons.
• However, before diving into pretrained model, we 

should understand:
• Input and output 
• Data preprocessing
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Save and Load Models

• Model progress can be saved during and after 
training.

• This means a model can resume where it left off 
and avoid long training times. 

• Saving also means you can share your model and 
others can recreate your work.



Save and Load Models

• "Saving a TensorFlow model" typically means one 
of two things:

• Checkpoints
• SavedModel 



Checkpoints

• Checkpoints capture the exact value of all 
parameters (tf.Variable objects) used by a model

• Checkpoints do not contain any description of the 
computation defined by the model and thus are 
typically only useful when source code that will use 
the saved parameter values is available.



Saved Model

• The Saved Model format on the other hand 
includes a serialized description of the computation 
defined by the model in addition to the parameter 
values (checkpoint)

• Models in this format are independent of the 
source code that created the model. They are thus 
suitable for deployment via TensorFlow Serving, 
TensorFlow Lite, TensorFlow.js, or programs in 
other programming languages (the C, C++, Java, Go, 
Rust, C# etc. TensorFlow APIs)



Saved Model



Inside Checkpoints

• There are various parameters used by the model, 
including hyperparameters, weights and optimizer 
slot variables.



Checkpoints

• There are several ways to save TensorFlow models, 
depending on the API you are using. 

• In this section, we are going to demonstrate.
• tf.keras.callbacks.ModelCheckpoint
• Model.save_weights
• tf.train.Checkpoints



tf.keras.callbacks.ModelCheckpoint

• The tf.keras.callbacks.ModelCheckpoint callback 
allows to continually save the model both during 
and at the end of training, and this method saves 
all parameters used by a model, including weights 
and optimizer.



tf.keras.callbacks.ModelCheckpoint



tf.keras.callbacks.ModelCheckpoint



Model.save_weights



Model.save_weights



Model.save_weights



tf.train.Checkpoint



Checkpoint



Assignment



Reference

• VGG 19 model
• The code of style transfer is based on Tersorflow

official tutorial, while the code of visualization is 
based on How to Visualize Filters and Feature Maps 
in Convolutional Neural Networks by Jason 
Brownlee

• Original work of Style Transfer's TensorFlow 
implementation is from Anish Athalye's GitHub 
account anishathalye



Reference

• Guided-backpropagation: Striving for Simplicity: 
The All Convolutional Net J. T. Springenberg and A. 
Dosovitskiy et al., ICLR’15 Workshop

• Style transfer: A Neural Algorithm of Artistic Style, 
Gatys et al., arXiv’15

• AdaIN: "Arbitrary Style Transfer in Real-time with 
Adaptive Instance Normalization", Huang et al., 
ICLR’17 Workshop / ICCV’17

• The tutorial of "Save and Load Model" is based on 
Tensorflow official tutorial


