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Encoder-Decoder Model

e Labl12-1: Neural Machine Translation

* Encoder RNN: reads the source sentence and transforms it into a rich
fixed-length vector representation

e Decoder RNN: uses the representation as the initial hidden state and
generates the target sentence
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Encoder-Decoder Model

* Image Captioning
* Encoder CNN: reads the images and transforms it into a rich fixed-length
vector representation

e Decoder RNN: uses the representation as the initial hidden state and
generates the target sentence
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Encoder-Decoder Model

* m-RNN (multimodal RNN)

Fully Connected

Deep Image Feature Extraction
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Encoder-Decoder Model

* m-RNN (multimodal RNN)
* The language model part learns the dense feature embedding for each word
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Encoder-Decoder Model

* m-RNN (multimodal RNN)

* The language model part learns the dense feature embedding for each word
* The image part contains a deep CNN which extracts image features

Deep Image Feature Extraction
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Encoder-Decoder Model

* m-RNN (multimodal RNN)

* The language model part learns the dense feature embedding for each word
* The image part contains a deep CNN which extracts image features

* The multimodal part connects the language model and the deep CNN
together by a one-layer representation

Deep Image Feature Extraction
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Encoder-Decoder Model

*NIC

* A generative model based on a deep recurrent architecture that combines
recent advances in computer vision and machine translation

* Uses a more powerful CNN in the encoder
* The image is only input once
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Attention Based

* Attention allows the model to focus on the relevant parts of the input
sequence as needed

. Encoder Decoder hidden
1. Prepare inputs hidden state at time step 4
states

' | scores
2. Score each hidden state 13 9 9 | Attention weights for
decoder time step #4

3. Softmax the scores 0.96 | 0.02 | 0.02 | softmax scores
4. Multiply each vector by
its softmaxed score - +

5. Sum up the weighted Context vector for
vectors decoder time step #4



Attention Based

* Attention allows the model to focus on the relevant parts of the input
sequence as needed

* Show, Attend and Tell: Neural Image Caption Generation with Visual Attention

A
bird
flying
over

14x14 Feature Map
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body
of
water
1. Input 2. Convolutional 3. RNN with attention 4. Word by

Image  Feature Extraction over the image word
generation




Attention Based
* First, extract the features from image by Inception-v3

Grid Size Reduction o .
(with some modifications) L2

Input: rgngsxs. Output 848:2048 2% Inception Module C

5x Inception Module A 4x Inception Module B

Convolution Input: Output:
AvgPool 299x299x3 8x8x2048
MaxPool
Concat - .
Dropout — Auxiliary Classifier
Fully connected
Softmax

Final part:8x8x2048 -> 1001




Attention Based

* First, extract the features from image by Inception-v3

* We have a 8*8*2048 size feature map, the last layer has 8*8 pixel
locations which corresponds to certain portion in image

* That means we have 64 pixel locations
* The model will then learn an attention over these locations




Attention Based

* The rest is similar to the neural machine translation task

Neural Machine Translation
SEQUENCE TO SEQUENCE MODEL WITH ATTENTION

Encoding Stage Attention Decoding Stage

Animation:


https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention

target[:, 1] * Training: (teacher forcing) target[:, 2]
‘ |[<start>, target[O, 1]],

<start>, target|1, 1}/, .
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Attention Based
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class RNN_Decoder(tf.keras.Model):
def _ init__ (self, embedding_dim, units, vocab_size):
super(RNN_Decoder, self)._ init_ ()

self.units = units

self.embedding = tf.keras.layers.Embedding(vocab_size, embedding_dim)
self.gru = tf.keras.layers.GRU(self.units,
return_sequences=True,
return_state=True,
recurrent_initializer="'glorot_uniform')

self.fcl = tf.keras.layers.Dense(self.units)
self.fc2 = tf.keras.layers.Dense(vocab_size)
self.attention = BahdanauAttention(self.units)

def call(self, x, features, hidden):
# defining attention as a separate model

context_vector, attention_weights = self.attention(features, hidden)

# x shape after passing through embedding == (batch_size, 1, embedding dim)

x = self.embedding(x)

# x shape after concatenation == (batch_size, 1, embedding dim + hidden size)
x = tf.concat([tf.expand_dims(context_vector, 1), x], axis=-1)

# passing the concatenated vector to the GRU
output, state = self.gru(x)

# shape == (batch_size, max_Length, hidden size)
x = self.fcl(output)
#
X

x shape == (batch_size * max_Llength, hidden size)

tf.reshape(x, (-1, x.shape[2]))

output shape == (batch_size * max_Length, vocab)

#
x = self.fc2(x)

return x, state, attention_weights

* Training: (teacher forcing)
|[<start>, target[O, 1]], \

1411

target([:, 2]

*

r . _a»_ __a. 2 _ .__ _alfa

@tf.function
def train_step(img_tensor, target):
loss = @

# initializing the hidden state for each batch
# because the captions are not related from image to image
hidden = decoder.reset_state(batch_size=target.shape[@])

dec_input = tf.expand_dims([tokenizer.word_index['<start>']] * BATCH_SIZE, 1)

with tf.GradientTape() as tape:
features = encoder(img_tensor)

for i in range(l, target.shape[1]):
# passing the features through the decoder
predictions, hidden, _ = decoder(dec_input, features, hidden)

loss += loss_function(target[:, i], predictions)

# using teacher forcing
dec_input = tf.expand_dims(target[:, i], 1)

total_loss = (loss / int(target.shape[1]))

trainable_variables = encoder.trainable_variables + decoder.trainable_variables
gradients = tape.gradient(loss, trainable_variables)
optimizer.apply gradients(zip(gradients, trainable_variables))

return loss, thal loss
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hidden

(batch_size, units)

x(dec_input)
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Assignment

* CAPTCHA

* An acronym for “Completely Automated Public Turing test to tell Computers
and Humans Apart”

* A type of challenge—-response test used in computing to determine whether
or not the user is human

* Prevents spam attacks and protects websites from bots




Assignment

* reCAPTCHA

* Establish that a computer user is human
* Assist in the digitization of books or improve machine learning

Select all squares with

traffic lights

If there are none, click skip

S 1eX1 a { =eCAPTCHA
Privacy & Terms




Assignment

* We are going to train a captcha recognizer in this lab

e Dataset
* 140,000 CAPTCHAs




Assignment

* Requirement
* Use any model architectures you want
* Design your own model architecture

* The first 100,000 as training data, the next 20,000 as validation
data, and the rest as testing data

* Only if the whole word matches exactly does it count as correct
* Predict the answer to the testing data and write them in a file
* Accuracy on validation set should be at least 90%

* Please submit your code file and the answer file
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