Flappy Bird Frame-Based Policy Gradient

Fall 2023

Two New Knowledge

- Generalized Advantage Estimation (GAE)
 - UC Berkley CS285: Lecture 6, Part 4
 - <u>Video</u>
 - <u>Slides</u>
 - Original paper
- Proximal Policy Optimization (PPO)
 - University of Waterloo CS885: Lecture 15b
 - <u>Video</u>
 - <u>Slides</u>
 - Original paper

Outline

- Recap
- GAE
- PPO

Recap

- Policy gradient has 2 parts
 - Left part is a log probability of executing an action
 - Right part is an advantage term.

∇ log prob. of actions X

- 1. $\sum_{t=0}^{\infty} r_t$: total reward of the trajectory.
- 2. $\sum_{t'=t}^{\infty} r_{t'}$: reward following action a_t . 3. $\sum_{t'=t}^{\infty} r_{t'} - b(s_t)$: baselined version of previous formula
- 4. $Q^{\pi}(s_t, a_t)$: state-action value function.
- 5. $A^{\pi}(s_t, a_t)$: advantage function.
- 6. $r_t + V^{\pi}(s_{t+1}) V^{\pi}(s_t)$: TD residual.

Left part

Right part: Several formula can be chosen

Outline

- Recap
- GAE
- PPO

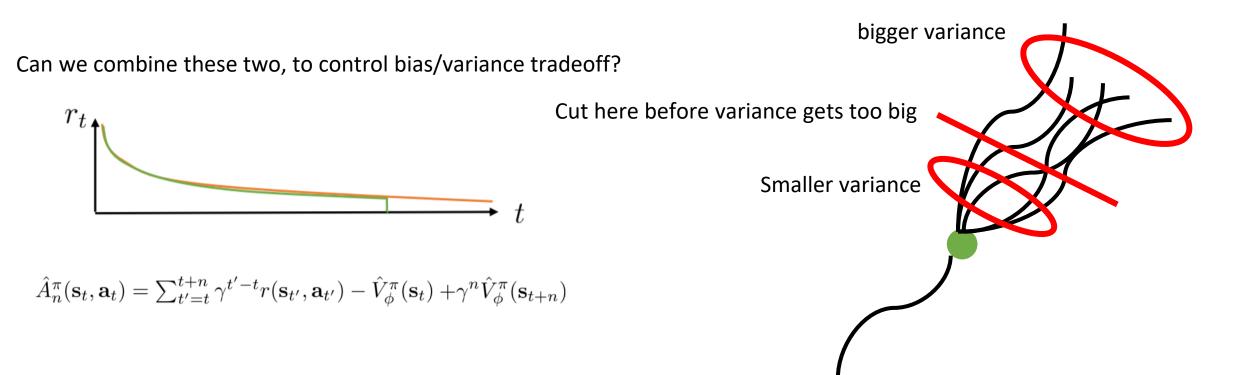
Generalized Advantage Estimation (GAE)

Eligibility traces & n-step returns

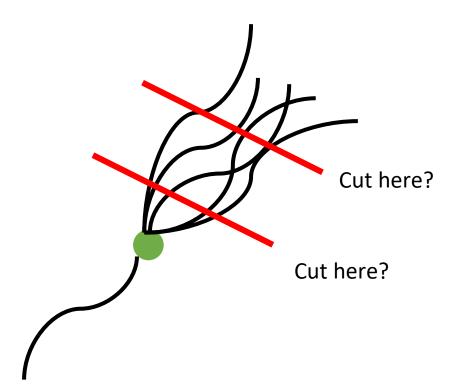
$$\hat{A}_{\mathrm{C}}^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = r(\mathbf{s}_t, \mathbf{a}_t) + \gamma \hat{V}_{\phi}^{\pi}(\mathbf{s}_{t+1}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_t)$$

 $\hat{A}_{\mathrm{MC}}^{\pi}(\mathbf{s}_t, \mathbf{a}_t) = \sum_{t'=t}^{\infty} \gamma^{t'-t} r(\mathbf{s}_{t'}, \mathbf{a}_{t'}) - \hat{V}_{\phi}^{\pi}(\mathbf{s}_t)$

- + lower variance
- higher bias if value is wrong (it always is)
- + no bias
- higher variance (because single-sample estimate)

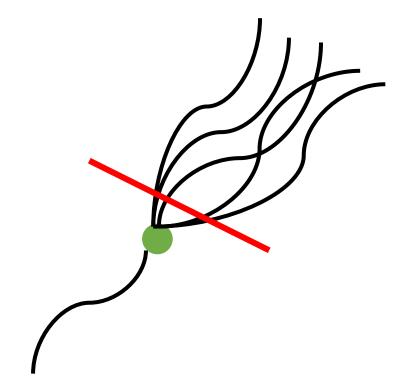


Do We Have to Choose Just One N?



Cut Everywhere All at Once

Cut everywhere all at once and use exponentially-weighted average to add up



The Derivative of GAE

$$\begin{split} \hat{A}_{t}^{(k)} &:= \sum_{l=0}^{k-1} \gamma^{l} \delta_{t+l}^{V} = -V(s_{t}) + r_{t} + \gamma r_{t+1} + \dots + \gamma^{k-1} r_{t+k-1} + \gamma^{k} V(s_{t+k}) \\ \hat{A}_{t}^{(\infty)} &= \sum_{l=0}^{\infty} \gamma^{l} \delta_{t+l}^{V} = -V(s_{t}) + \sum_{l=0}^{\infty} \gamma^{l} r_{t+l}, \quad \gamma^{\infty} V(s_{t+k}) \text{ becomes zero} \end{split}$$

The notations of this slide are from the original paper

The Derivative of GAE (Con.)

$$exponential weighted awerage
V
A_{t}^{GAE} = A_{t}^{GAE} + \lambda A_{t}^{(2)} + \lambda^{2} A_{t}^{(3)} + \lambda^{3} A_{t}^{(4)} + \cdots$$

$$= A_{t}^{GAE} + \lambda A_{t}^{(2)} + \lambda^{2} A_{t}^{(3)} + \lambda^{3} A_{t}^{(4)} + \cdots$$

$$= A_{t}^{U} + \lambda A_{t}^{2} + \lambda^{2} A_{t}^{(5)} + \lambda^{3} A_{t}^{(9)} + \cdots$$

$$= (1 - \lambda) (A_{t}^{(1)} + \lambda A_{t}^{(2)} + \lambda^{2} A_{t}^{(2)} + \lambda^{2} A_{t}^{(3)} + \lambda^{3} A_{t}^{(4)} + \cdots)$$

The Derivative of GAE (Con.)

The generalized advantage estimator $GAE(\gamma, \lambda)$ is defined as the exponentially-weighted average of these k-step estimators:

$$\hat{A}_{t}^{\text{GAE}(\gamma,\lambda)} := (1-\lambda) \left(\hat{A}_{t}^{(1)} + \lambda \hat{A}_{t}^{(2)} + \lambda^{2} \hat{A}_{t}^{(3)} + \ldots \right) \quad \text{Exponentially-weighted average} \\
= (1-\lambda) \left(\delta_{t}^{V} + \lambda (\delta_{t}^{V} + \gamma \delta_{t+1}^{V}) + \lambda^{2} (\delta_{t}^{V} + \gamma \delta_{t+1}^{V} + \gamma^{2} \delta_{t+2}^{V}) + \ldots \right) \\
= (1-\lambda) \left(\delta_{t}^{V} (1+\lambda+\lambda^{2}+\ldots) + \gamma \delta_{t+1}^{V} (\lambda+\lambda^{2}+\lambda^{3}+\ldots) + \gamma^{2} \delta_{t+2}^{V} (\lambda^{2}+\lambda^{3}+\lambda^{4}+\ldots) + \ldots \right) \\
= (1-\lambda) \left(\delta_{t}^{V} \left(\frac{1}{1-\lambda} \right) + \gamma \delta_{t+1}^{V} \left(\frac{\lambda}{1-\lambda} \right) + \gamma^{2} \delta_{t+2}^{V} \left(\frac{\lambda^{2}}{1-\lambda} \right) + \ldots \right) \\
= \sum_{l=0}^{\infty} (\gamma \lambda)^{l} \delta_{t+l}^{V} \tag{16}$$

Two Special Case

There are two notable special cases of this formula, obtained by setting $\lambda = 0$ and $\lambda = 1$.

$$GAE(\gamma, 0): \quad \hat{A}_t := \delta_t \qquad = r_t + \gamma V(s_{t+1}) - V(s_t) \tag{17}$$

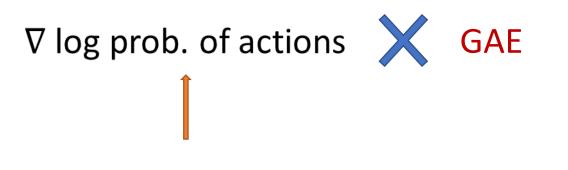
$$GAE(\gamma, 1): \quad \hat{A}_t := \sum_{l=0}^{\infty} \gamma^l \delta_{t+l} = \sum_{l=0}^{\infty} \gamma^l r_{t+l} - V(s_t)$$
(18)

Outline

- Recap
- GAE
- PPO

Proximal Policy Optimization Algorithms

Now We've Learned GAE



Let's improve the left part

Efficiently Use Data

- We should drop all trajectory data after update the agent. Because the distribution of the agent's action shifts after update.
- Can't we use old data to update the agent more times?

TRPO/PPO is a method that we could leverage old data by simply multiplying a correction item when update the agent

Importance Sampling

• Importance sampling is a statistic technique to estimate one distribution by sampling from another distribution

 $E_{x \sim p}[f(x)] = \int f(x)p(x)dx$ = $\int f(x)\frac{p(x)}{q(x)}q(x)dx$ = $E_{x \sim q}[f(x)\frac{p(x)}{q(x)}]$ $\approx \frac{1}{N}\sum_{i=1,x^i \in q}^N f(x^i)\frac{p(x^i)}{q(x^i)}$

Estimate p from q

Reference: cs885-spring18-lecture15b p.5

Surrogate Objective

$$\nabla J(\theta) = E_{(s_t, a_t) \sim \pi_{\theta}} [\nabla \log \pi_{\theta}(a_t | s_t) A(s_t, a_t)]$$

$$E_{x\sim p}[f(x)] = E_{x\sim q}[f(x)\frac{p(x)}{q(x)}]$$

$$= E_{(s_t, a_t) \sim \pi_{\theta_{old}}} \left[\frac{\pi_{\theta}(s_t, a_t)}{\pi_{\theta_{old}}(s_t, a_t)} \nabla \log \pi_{\theta}(a_t | s_t) A(s_t, a_t) \right]$$

$$J(\theta) = E_{(s_t, a_t) \sim \pi_{\theta_{old}}} \left[\frac{\pi_{\theta}(s_t, a_t)}{\pi_{\theta_{old}}(s_t, a_t)} A(s_t, a_t) \right]$$
 Surrogate objective function

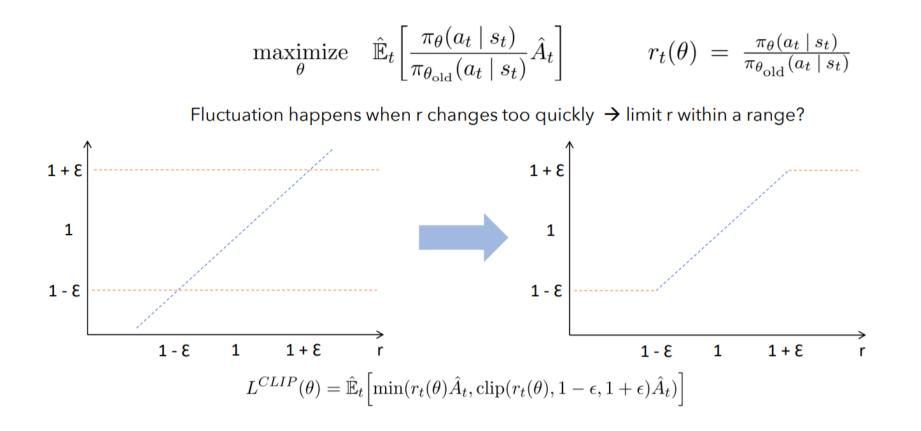
Reference: cs885-spring18-lecture15b p.7

TRPO objective

- TRPO use conjugate gradient algorithm
 - Slow because need to calculate Hessian matrix

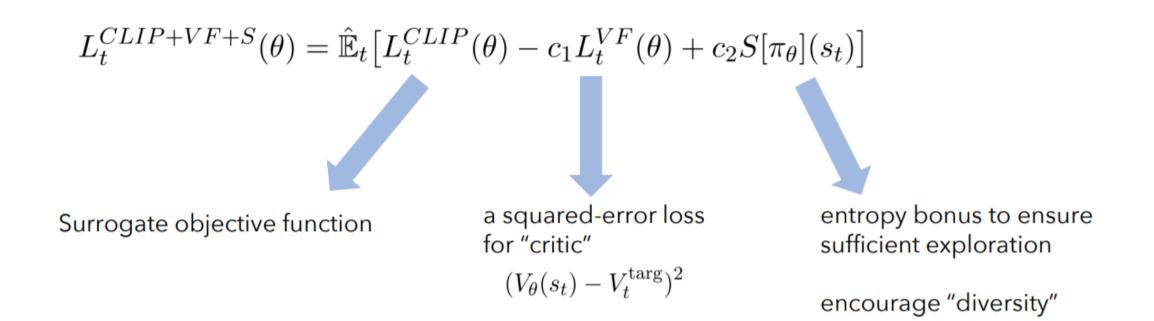
$$\begin{aligned} & \underset{\theta}{\text{maximize}} \quad \hat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t \mid s_t)}{\pi_{\theta_{\text{old}}}(a_t \mid s_t)} \hat{A}_t \right] \\ & \text{subject to} \quad \hat{\mathbb{E}}_t [\text{KL}[\pi_{\theta_{\text{old}}}(\cdot \mid s_t), \pi_{\theta}(\cdot \mid s_t)]] \leq \delta. \end{aligned}$$

PPO with Clipped Objective



Reference: cs885-spring18-lecture15b p.15

PPO in Practice



* c1, c2: empirical values, in the paper, c1=1, c2=0.01

Reference: cs885-spring18-lecture15b p.17

Assignment

Run the code of PPO X GAE.

Write a report about what you observe.

Deadline:

2024/01/04 (Thur) 23:59