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Matrix Representation of Linear Functions

A linear function (or map or transformation) f : Rn→ Rm can be
represented by a matrix A, A ∈ Rm×n, such that

f (x) = Ax = y,∀x ∈ Rn,y ∈ Rm

span(A:,1, · · · ,A:,n) is called the column space of A
rank(A) = dim(span(A:,1, · · · ,A:,n))
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System of Linear Equations

Given A and y , solve x in Ax = y

What kind of A that makes Ax = y always have a solution?
Since Ax = ΣixiA:,i, the column space of A must contain Rm, i.e.,
Rm ⊆ span(A:,1, · · · ,A:,n)
Implies n≥ m

When does Ax = y always have exactly one solution?
A has at most m columns; otherwise there is more than one x
parametrizing each y
Implies n = m and the columns of A are linear independent with each
other
A−1 exists at this time, and x = A−1y
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Vector Norms

A norm of vectors is a function ‖ · ‖ that maps vectors to
non-negative values satisfying

‖x‖= 0⇒ x = 0
‖x+ y‖ ≤ ‖x‖+‖y‖ (the triangle inequality)
‖cx‖= |c| · ‖x‖,∀c ∈ R

E.g., the Lp norm

‖x‖p =

(
∑

i
|xi|p

)1/p

L2(Euclidean) norm: ‖x‖= (x>x)1/2

L1norm: ‖x‖1 = ∑i |xi|
Max norm: ‖x‖∞ = maxi |xi|

x>y = ‖x‖‖y‖cosθ , where θ is the angle between x and y
x and y are orthonormal iff x>y = 0 (orthogonal) and ‖x‖= ‖y‖= 1
(unit vectors)
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Matrix Norms

Frobenius norm
‖A‖F =

√
∑
i,j

A2
i,j

Analogous to the L2 norm of a vector

An orthogonal matrix is a square matrix whose column (resp. rows)
are mutually orthonormal, i.e.,

A>A = I = AA>

Implies A−1 = A>
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Decomposition

Integers can be decomposed into prime factors
E.g., 12 = 2×2×3
Helps identify useful properties, e.g., 12 is not divisible by 5

Can we decompose matrices to identify information about their
functional properties more easily?
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Eigenvectors and Eigenvalues

An eigenvector of a square matrix A is a non-zero vector v such that
multiplication by A alters only the scale of v :

Av = λv,

where λ ∈R is called the eigenvalue corresponding to this eigenvector

If v is an eigenvector, so is any its scaling cv,c ∈ R,c 6= 0
cv has the same eigenvalue
Thus, we usually look for unit eigenvectors
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Eigendecomposition I

Every real symmetric matrix A ∈ Rn×n can be decomposed into

A = Qdiag(λ )Q>

λ ∈ Rn consists of real-valued eigenvalues (usually sorted in descending
order)
Q = [v(1), · · · ,v(n)] is an orthogonal matrix whose columns are
corresponding eigenvectors

Eigendecomposition may not be unique
When any two or more eigenvectors share the same eigenvalue
Then any set of orthogonal vectors lying in their span are also
eigenvectors with that eigenvalue

What can we tell after decomposition?
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Eigendecomposition II

Because Q = [v(1), · · · ,v(n)] is an orthogonal matrix, we can think of A
as scaling space by λi in direction v(i)
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Rayleigh’s Quotient

Theorem (Rayleigh’s Quotient)

Given a symmetric matrix A ∈ Rn×n, then ∀x ∈ Rn,

λmin ≤
x>Ax
x>x

≤ λmax,

where λmin and λmax are the smallest and largest eigenvalues of A.

x>Px
x>x = λi when x is the corresponding eigenvector of λi
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Singularity

Suppose A = Qdiag(λ )Q>, then A−1 = Qdiag(λ )−1Q>

A is non-singular (invertible) iff none of the eigenvalues is zero
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Positive Definite Matrices I

A is positive semidefinite (denoted as A� O) iff its eigenvalues are
all non-negative

x>Ax≥ 0 for any x
A is positive definite (denoted as A� O) iff its eigenvalues are all
positive

Further ensures that x>Ax = 0⇒ x = 0

Why these matter?
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Positive Definite Matrices II
A function f is quadratic iff it can be written as
f (x) = 1

2 x>Ax−b>x+ c, where A is symmetric

x>Ax is called the quadratic form

Figure: Graph of a quadratic form when A is a) positive definite; b)
negative definite; c) positive semidefinite (singular); d) indefinite matrix.
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Singular Value Decomposition (SVD)

Eigendecomposition requires square matrices. What if A is not square?

Every real matrix A ∈ Rm×n has a singular value decomposition:

A = UDV>,

where U ∈ Rm×m, D ∈ Rm×n, and V ∈ Rn×n

U and V are orthogonal matrices, and their columns are called the left-
and right-singular vectors respectively
Elements along the diagonal of D are called the singular values

Left-singular vectors of A are eigenvectors of AA>

Right-singular vectors of A are eigenvectors of A>A
Non-zero singular values of A are square roots of eigenvalues of AA>

(or A>A)
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Moore-Penrose Pseudoinverse I

Matrix inversion is not defined for matrices that are not square

Suppose we want to make a left-inverse B ∈ Rn×m of a matrix
A ∈ Rm×n so that we can solve a linear equation Ax = y by
left-multiplying each side to obtain x = By

If m > n, then it is possible to have no such B
If m < n, then there could be multiple B’s

By letting B = A† the Moore-Penrose pseudoinverse, we can make
headway in these cases:

When m = n and A−1 exists, A† degenerates to A−1

When m > n, A† returns the x for which Ax is closest to y in terms of
Euclidean norm ‖Ax− y‖
When m < n, A† returns the solution x = A†y with minimal Euclidean
norm ‖x‖ among all possible solutions
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Moore-Penrose Pseudoinverse II

The Moore-Penrose pseudoinverse is defined as:

A† = lim
α↘0

(A>A+αIn)
−1A>

A†A = I

In practice, it is computed by A† = VD†U>, where UDV> = A
D† ∈ Rn×m is obtained by taking the inverses of its non-zero elements
then taking the transpose
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Traces

tr(A) = ∑i Ai,i

tr(A) = tr(A>)
tr(aA+bB) = atr(A)+btr(B)
‖A‖2

F = tr(AA>) = tr(A>A)
tr(ABC) = tr(BCA) = tr(CAB)

Holds even if the products have different shapes
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Determinant I

Determinant det(·) is a function that maps a square matrix A ∈ Rn×n

to a real value:

det(A) = ∑
i
(−1)i+1A1,i det(A−1,−i),

where A−1,−i is the (n−1)× (n−1) matrix obtained by deleting the
i-th row and j-th column

det(A>) = det(A)
det(A−1) = 1/det(A)

det(AB) = det(A)det(B)
det(A) = ∏i λi

What does it mean? det(A) can be also regarded as the signed area
of the image of the “unit square”
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Determinant II
Let A =

[
a c
b d

]
, we have A

[
1
0

]
=

[
a
b

]
, A
[

0
1

]
=

[
c
d

]
, and

det(A) = ad−bc

Figure: The area of the parallelogram is the absolute value of the determinant of
the matrix formed by the images of the standard basis vectors representing the
parallelogram’s sides.
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Determinant III

The absolute value of the determinant can be thought of as a measure
of how much multiplication by the matrix expands or contracts space

If det(A) = 0, then space is contracted completely along at least one
dimension

A is invertible iff det(A) 6= 0

If det(A) = 1, then the transformation is volume-preserving
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