Linear Algebra

Shan-Hung Wu
shwu@cs.nthu.edu.tw
Department of Computer Science,
National Tsing Hua University, Taiwan
Machine Learning

Outline

(1) Span \& Linear Dependence
(2) Norms
(3) Eigendecomposition
4) Singular Value Decomposition
(5) Traces and Determinant

Outline

(1) Span \& Linear Dependence

2 Norms

(3) Eigendecomposition

4) Singular Value Decomposition

5 Traces and Determinant

Matrix Representation of Linear Functions

- A linear function (or map or transformation) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ can be represented by a matrix $\boldsymbol{A}, \boldsymbol{A} \in \mathbb{R}^{m \times n}$, such that

$$
f(\boldsymbol{x})=\boldsymbol{A x}=\boldsymbol{y}, \forall \boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{y} \in \mathbb{R}^{m}
$$

Matrix Representation of Linear Functions

- A linear function (or map or transformation) $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ can be represented by a matrix $\boldsymbol{A}, \boldsymbol{A} \in \mathbb{R}^{m \times n}$, such that

$$
f(\boldsymbol{x})=\boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}, \forall \boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{y} \in \mathbb{R}^{m}
$$

- $\operatorname{span}\left(\boldsymbol{A}_{:, 1}, \cdots, \boldsymbol{A}_{:, n}\right)$ is called the column space of \boldsymbol{A}
- $\operatorname{rank}(\boldsymbol{A})=\operatorname{dim}\left(\operatorname{span}\left(\boldsymbol{A}_{:, 1}, \cdots, \boldsymbol{A}_{:, n}\right)\right)$

System of Linear Equations

- Given \boldsymbol{A} and \boldsymbol{y}, solve \boldsymbol{x} in $\boldsymbol{A x}=\boldsymbol{y}$

System of Linear Equations

- Given \boldsymbol{A} and \boldsymbol{y}, solve \boldsymbol{x} in $\boldsymbol{A x}=\boldsymbol{y}$
- What kind of \boldsymbol{A} that makes $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}$ always have a solution?

System of Linear Equations

- Given \boldsymbol{A} and \boldsymbol{y}, solve \boldsymbol{x} in $\boldsymbol{A x}=\boldsymbol{y}$
- What kind of \boldsymbol{A} that makes $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}$ always have a solution?
- Since $\boldsymbol{A x}=\Sigma_{i} x_{i} \boldsymbol{A}_{;, i}$, the column space of \boldsymbol{A} must contain \mathbb{R}^{m}, i.e., $\mathbb{R}^{m} \subseteq \operatorname{span}\left(\boldsymbol{A}_{:, 1}, \cdots, \boldsymbol{A}_{:, n}\right)$
- Implies $n \geq m$

System of Linear Equations

- Given \boldsymbol{A} and \boldsymbol{y}, solve \boldsymbol{x} in $\boldsymbol{A x}=\boldsymbol{y}$
- What kind of \boldsymbol{A} that makes $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}$ always have a solution?
- Since $\boldsymbol{A} \boldsymbol{x}=\Sigma_{i} x_{i} \boldsymbol{A}_{;, i}$, the column space of \boldsymbol{A} must contain \mathbb{R}^{m}, i.e., $\mathbb{R}^{m} \subseteq \operatorname{span}\left(\boldsymbol{A}_{:, 1}, \cdots, \boldsymbol{A}_{:, n}\right)$
- Implies $n \geq m$
- When does $\boldsymbol{A x}=\boldsymbol{y}$ always have exactly one solution?

System of Linear Equations

- Given \boldsymbol{A} and \boldsymbol{y}, solve \boldsymbol{x} in $\boldsymbol{A x}=\boldsymbol{y}$
- What kind of \boldsymbol{A} that makes $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}$ always have a solution?
- Since $\boldsymbol{A} \boldsymbol{x}=\Sigma_{i} x_{i} \boldsymbol{A}_{:, i}$, the column space of \boldsymbol{A} must contain \mathbb{R}^{m}, i.e., $\mathbb{R}^{m} \subseteq \operatorname{span}\left(\boldsymbol{A}_{:, 1}, \cdots, \boldsymbol{A}_{:, n}\right)$
- Implies $n \geq m$
- When does $\boldsymbol{A x}=\boldsymbol{y}$ always have exactly one solution?
- \boldsymbol{A} has at most m columns; otherwise there is more than one \boldsymbol{x} parametrizing each \boldsymbol{y}
- Implies $n=m$ and the columns of \boldsymbol{A} are linear independent with each other

System of Linear Equations

- Given \boldsymbol{A} and \boldsymbol{y}, solve \boldsymbol{x} in $\boldsymbol{A x}=\boldsymbol{y}$
- What kind of \boldsymbol{A} that makes $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}$ always have a solution?
- Since $\boldsymbol{A x}=\Sigma_{i} x_{i} \boldsymbol{A}_{;, i}$, the column space of \boldsymbol{A} must contain \mathbb{R}^{m}, i.e., $\mathbb{R}^{m} \subseteq \operatorname{span}\left(\boldsymbol{A}_{:, 1}, \cdots, \boldsymbol{A}_{:, n}\right)$
- Implies $n \geq m$
- When does $\boldsymbol{A x}=\boldsymbol{y}$ always have exactly one solution?
- \boldsymbol{A} has at most m columns; otherwise there is more than one \boldsymbol{x} parametrizing each \boldsymbol{y}
- Implies $n=m$ and the columns of \boldsymbol{A} are linear independent with each other
- \boldsymbol{A}^{-1} exists at this time, and $\boldsymbol{x}=\boldsymbol{A}^{-1} \boldsymbol{y}$

Outline

(1) Span \& Linear Dependence

(2) Norms

(3) Eigendecomposition

4) Singular Value Decomposition

5 Traces and Determinant

Vector Norms

- A norm of vectors is a function $\|\cdot\|$ that maps vectors to non-negative values satisfying
- $\|\boldsymbol{x}\|=0 \Rightarrow \boldsymbol{x}=\mathbf{0}$
- $\|\boldsymbol{x}+\boldsymbol{y}\| \leq\|\boldsymbol{x}\|+\|\boldsymbol{y}\|$ (the triangle inequality)
- $\|\boldsymbol{c x}\|=|c| \cdot\|\boldsymbol{x}\|, \forall c \in \mathbb{R}$

Vector Norms

- A norm of vectors is a function $\|\cdot\|$ that maps vectors to non-negative values satisfying
- $\|\boldsymbol{x}\|=0 \Rightarrow \boldsymbol{x}=\mathbf{0}$
- $\|\boldsymbol{x}+\boldsymbol{y}\| \leq\|\boldsymbol{x}\|+\|\boldsymbol{y}\|$ (the triangle inequality)
- $\|c \boldsymbol{x}\|=|c| \cdot\|\boldsymbol{x}\|, \forall c \in \mathbb{R}$
- E.g., the L^{p} norm

$$
\|\boldsymbol{x}\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

- L^{2} (Euclidean) norm: $\|\boldsymbol{x}\|=\left(\boldsymbol{x}^{\top} \boldsymbol{x}\right)^{1 / 2}$
- L^{1} norm: $\|\boldsymbol{x}\|_{1}=\sum_{i}\left|x_{i}\right|$
- Max norm: $\|\boldsymbol{x}\|_{\infty}=\max _{i}\left|x_{i}\right|$

Vector Norms

- A norm of vectors is a function $\|\cdot\|$ that maps vectors to non-negative values satisfying
- $\|\boldsymbol{x}\|=0 \Rightarrow \boldsymbol{x}=\mathbf{0}$
- $\|\boldsymbol{x}+\boldsymbol{y}\| \leq\|\boldsymbol{x}\|+\|\boldsymbol{y}\|$ (the triangle inequality)
- $\|c \boldsymbol{x}\|=|c| \cdot\|\boldsymbol{x}\|, \forall c \in \mathbb{R}$
- E.g., the L^{p} norm

$$
\|\boldsymbol{x}\|_{p}=\left(\sum_{i}\left|x_{i}\right|^{p}\right)^{1 / p}
$$

- L^{2} (Euclidean) norm: $\|\boldsymbol{x}\|=\left(\boldsymbol{x}^{\top} \boldsymbol{x}\right)^{1 / 2}$
- L^{1} norm: $\|\boldsymbol{x}\|_{1}=\sum_{i}\left|x_{i}\right|$
- Max norm: $\|\boldsymbol{x}\|_{\infty}=\max _{i}\left|x_{i}\right|$
- $\boldsymbol{x}^{\top} \boldsymbol{y}=\|\boldsymbol{x}\|\|\boldsymbol{y}\| \cos \theta$, where θ is the angle between \boldsymbol{x} and \boldsymbol{y}
- \boldsymbol{x} and \boldsymbol{y} are orthonormal iff $\boldsymbol{x}^{\top} \boldsymbol{y}=0$ (orthogonal) and $\|\boldsymbol{x}\|=\|\boldsymbol{y}\|=1$ (unit vectors)

Matrix Norms

- Frobenius norm

$$
\|\boldsymbol{A}\|_{F}=\sqrt{\sum_{i, j} A_{i, j}^{2}}
$$

- Analogous to the L^{2} norm of a vector
- An orthogonal matrix is a square matrix whose column (resp. rows) are mutually orthonormal, i.e.,

$$
\boldsymbol{A}^{\top} \boldsymbol{A}=\boldsymbol{I}=\boldsymbol{A} \boldsymbol{A}^{\top}
$$

- Implies $\boldsymbol{A}^{-1}=\boldsymbol{A}^{\top}$

Outline

(1) Span \& Linear Dependence

2 Norms

(3) Eigendecomposition

4 Singular Value Decomposition

5 Traces and Determinant

Decomposition

- Integers can be decomposed into prime factors
- E.g., $12=2 \times 2 \times 3$
- Helps identify useful properties, e.g., 12 is not divisible by 5

Decomposition

- Integers can be decomposed into prime factors
- E.g., $12=2 \times 2 \times 3$
- Helps identify useful properties, e.g., 12 is not divisible by 5
- Can we decompose matrices to identify information about their functional properties more easily?

Eigenvectors and Eigenvalues

- An eigenvector of a square matrix \boldsymbol{A} is a non-zero vector \boldsymbol{v} such that multiplication by \boldsymbol{A} alters only the scale of \boldsymbol{v} :

$$
\boldsymbol{A} \boldsymbol{v}=\lambda \boldsymbol{v}
$$

where $\lambda \in \mathbb{R}$ is called the eigenvalue corresponding to this eigenvector

Eigenvectors and Eigenvalues

- An eigenvector of a square matrix \boldsymbol{A} is a non-zero vector \boldsymbol{v} such that multiplication by \boldsymbol{A} alters only the scale of \boldsymbol{v} :

$$
\boldsymbol{A} \boldsymbol{v}=\lambda \boldsymbol{v}
$$

where $\lambda \in \mathbb{R}$ is called the eigenvalue corresponding to this eigenvector

- If \boldsymbol{v} is an eigenvector, so is any its scaling $c \boldsymbol{v}, c \in \mathbb{R}, c \neq 0$
- $c v$ has the same eigenvalue
- Thus, we usually look for unit eigenvectors

Eigendecomposition I

- Every real symmetric matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ can be decomposed into

$$
\boldsymbol{A}=\boldsymbol{Q} \operatorname{diag}(\lambda) \boldsymbol{Q}^{\top}
$$

- $\lambda \in \mathbb{R}^{n}$ consists of real-valued eigenvalues (usually sorted in descending order)
- $\boldsymbol{Q}=\left[\boldsymbol{\nu}^{(1)}, \cdots, \boldsymbol{v}^{(n)}\right]$ is an orthogonal matrix whose columns are corresponding eigenvectors

Eigendecomposition I

- Every real symmetric matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ can be decomposed into

$$
\boldsymbol{A}=\boldsymbol{Q} \operatorname{diag}(\boldsymbol{\lambda}) \boldsymbol{Q}^{\top}
$$

- $\lambda \in \mathbb{R}^{n}$ consists of real-valued eigenvalues (usually sorted in descending order)
- $\boldsymbol{Q}=\left[\boldsymbol{\nu}^{(1)}, \cdots, \boldsymbol{v}^{(n)}\right]$ is an orthogonal matrix whose columns are corresponding eigenvectors
- Eigendecomposition may not be unique
- When any two or more eigenvectors share the same eigenvalue
- Then any set of orthogonal vectors lying in their span are also eigenvectors with that eigenvalue

Eigendecomposition I

- Every real symmetric matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ can be decomposed into

$$
\boldsymbol{A}=\boldsymbol{Q} \operatorname{diag}(\boldsymbol{\lambda}) \boldsymbol{Q}^{\top}
$$

- $\lambda \in \mathbb{R}^{n}$ consists of real-valued eigenvalues (usually sorted in descending order)
- $\boldsymbol{Q}=\left[\boldsymbol{\nu}^{(1)}, \cdots, \boldsymbol{v}^{(n)}\right]$ is an orthogonal matrix whose columns are corresponding eigenvectors
- Eigendecomposition may not be unique
- When any two or more eigenvectors share the same eigenvalue
- Then any set of orthogonal vectors lying in their span are also eigenvectors with that eigenvalue
- What can we tell after decomposition?

Eigendecomposition II

- Because $\boldsymbol{Q}=\left[\boldsymbol{v}^{(1)}, \cdots, \boldsymbol{v}^{(n)}\right]$ is an orthogonal matrix, we can think of \boldsymbol{A} as scaling space by λ_{i} in direction $\boldsymbol{v}^{(i)}$

Rayleigh's Quotient

Theorem (Rayleigh's Quotient)
Given a symmetric matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$, then $\forall \boldsymbol{x} \in \mathbb{R}^{n}$,

$$
\lambda_{\min } \leq \frac{\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^{\top} \boldsymbol{x}} \leq \lambda_{\max }
$$

where $\lambda_{\min }$ and $\lambda_{\max }$ are the smallest and largest eigenvalues of \boldsymbol{A}.

- $\frac{\boldsymbol{x}^{\top} \boldsymbol{P} \boldsymbol{x}}{\boldsymbol{x}^{\top} \boldsymbol{x}}=\lambda_{i}$ when \boldsymbol{x} is the corresponding eigenvector of λ_{i}

Singularity

- Suppose $\boldsymbol{A}=\boldsymbol{Q} \operatorname{diag}(\boldsymbol{\lambda}) \boldsymbol{Q}^{\top}$, then $\boldsymbol{A}^{-1}=\boldsymbol{Q} \operatorname{diag}(\boldsymbol{\lambda})^{-1} \boldsymbol{Q}^{\top}$

Singularity

- Suppose $\boldsymbol{A}=\boldsymbol{Q} \operatorname{diag}(\boldsymbol{\lambda}) \boldsymbol{Q}^{\top}$, then $\boldsymbol{A}^{-1}=\boldsymbol{Q} \operatorname{diag}(\boldsymbol{\lambda})^{-1} \boldsymbol{Q}^{\top}$
- \boldsymbol{A} is non-singular (invertible) iff none of the eigenvalues is zero

Positive Definite Matrices I

- \boldsymbol{A} is positive semidefinite (denoted as $\boldsymbol{A} \succeq \boldsymbol{O}$) iff its eigenvalues are all non-negative
- $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x} \geq 0$ for any \boldsymbol{x}
- \boldsymbol{A} is positive definite (denoted as $\boldsymbol{A} \succ \boldsymbol{O}$) iff its eigenvalues are all positive
- Further ensures that $\boldsymbol{x}^{\top} \boldsymbol{A x}=0 \Rightarrow \boldsymbol{x}=\mathbf{0}$
- Why these matter?

Positive Definite Matrices II

- A function f is quadratic iff it can be written as $f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}^{\top} \boldsymbol{x}+c$, where \boldsymbol{A} is symmetric

Positive Definite Matrices II

- A function f is quadratic iff it can be written as $f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}^{\top} \boldsymbol{x}+c$, where \boldsymbol{A} is symmetric
- $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}$ is called the quadratic form

Positive Definite Matrices II

- A function f is quadratic iff it can be written as $f(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}-\boldsymbol{b}^{\top} \boldsymbol{x}+c$, where \boldsymbol{A} is symmetric
- $\boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{x}$ is called the quadratic form

Figure: Graph of a quadratic form when \boldsymbol{A} is a) positive definite; b) negative definite; c) positive semidefinite (singular); d) indefinite matrix.

Outline

(1) Span \& Linear Dependence

Singular Value Decomposition (SVD)

- Eigendecomposition requires square matrices. What if \boldsymbol{A} is not square?

Singular Value Decomposition (SVD)

- Eigendecomposition requires square matrices. What if \boldsymbol{A} is not square?
- Every real matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ has a singular value decomposition:

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{V}^{\top}
$$

where $\boldsymbol{U} \in \mathbb{R}^{m \times m}, \boldsymbol{D} \in \mathbb{R}^{m \times n}$, and $\boldsymbol{V} \in \mathbb{R}^{n \times n}$

- \boldsymbol{U} and \boldsymbol{V} are orthogonal matrices, and their columns are called the leftand right-singular vectors respectively
- Elements along the diagonal of \boldsymbol{D} are called the singular values

Singular Value Decomposition (SVD)

- Eigendecomposition requires square matrices. What if \boldsymbol{A} is not square?
- Every real matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ has a singular value decomposition:

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{D} \boldsymbol{V}^{\top}
$$

where $\boldsymbol{U} \in \mathbb{R}^{m \times m}, \boldsymbol{D} \in \mathbb{R}^{m \times n}$, and $\boldsymbol{V} \in \mathbb{R}^{n \times n}$

- \boldsymbol{U} and \boldsymbol{V} are orthogonal matrices, and their columns are called the leftand right-singular vectors respectively
- Elements along the diagonal of \boldsymbol{D} are called the singular values
- Left-singular vectors of \boldsymbol{A} are eigenvectors of $\boldsymbol{A} \boldsymbol{A}^{\top}$
- Right-singular vectors of \boldsymbol{A} are eigenvectors of $\boldsymbol{A}^{\top} \boldsymbol{A}$
- Non-zero singular values of \boldsymbol{A} are square roots of eigenvalues of $\boldsymbol{A} \boldsymbol{A}^{\top}$ (or $\boldsymbol{A}^{\top} \boldsymbol{A}$)

Moore-Penrose Pseudoinverse I

- Matrix inversion is not defined for matrices that are not square

Moore-Penrose Pseudoinverse I

- Matrix inversion is not defined for matrices that are not square
- Suppose we want to make a left-inverse $\boldsymbol{B} \in \mathbb{R}^{n \times m}$ of a matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ so that we can solve a linear equation $\boldsymbol{A x}=\boldsymbol{y}$ by left-multiplying each side to obtain $\boldsymbol{x}=\boldsymbol{B} \boldsymbol{y}$

Moore-Penrose Pseudoinverse I

- Matrix inversion is not defined for matrices that are not square
- Suppose we want to make a left-inverse $\boldsymbol{B} \in \mathbb{R}^{n \times m}$ of a matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ so that we can solve a linear equation $\boldsymbol{A x}=\boldsymbol{y}$ by left-multiplying each side to obtain $\boldsymbol{x}=\boldsymbol{B} \boldsymbol{y}$
- If $m>n$, then it is possible to have no such \boldsymbol{B}
- If $m<n$, then there could be multiple \boldsymbol{B} 's

Moore-Penrose Pseudoinverse I

- Matrix inversion is not defined for matrices that are not square
- Suppose we want to make a left-inverse $\boldsymbol{B} \in \mathbb{R}^{n \times m}$ of a matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ so that we can solve a linear equation $\boldsymbol{A x}=\boldsymbol{y}$ by left-multiplying each side to obtain $\boldsymbol{x}=\boldsymbol{B} \boldsymbol{y}$
- If $m>n$, then it is possible to have no such \boldsymbol{B}
- If $m<n$, then there could be multiple \boldsymbol{B} 's
- By letting $\boldsymbol{B}=\boldsymbol{A}^{\dagger}$ the Moore-Penrose pseudoinverse, we can make headway in these cases:
- When $m=n$ and \boldsymbol{A}^{-1} exists, \boldsymbol{A}^{\dagger} degenerates to \boldsymbol{A}^{-1}

Moore-Penrose Pseudoinverse I

- Matrix inversion is not defined for matrices that are not square
- Suppose we want to make a left-inverse $\boldsymbol{B} \in \mathbb{R}^{n \times m}$ of a matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ so that we can solve a linear equation $\boldsymbol{A x}=\boldsymbol{y}$ by left-multiplying each side to obtain $\boldsymbol{x}=\boldsymbol{B} \boldsymbol{y}$
- If $m>n$, then it is possible to have no such \boldsymbol{B}
- If $m<n$, then there could be multiple \boldsymbol{B} 's
- By letting $\boldsymbol{B}=\boldsymbol{A}^{\dagger}$ the Moore-Penrose pseudoinverse, we can make headway in these cases:
- When $m=n$ and \boldsymbol{A}^{-1} exists, \boldsymbol{A}^{\dagger} degenerates to \boldsymbol{A}^{-1}
- When $m>n, \boldsymbol{A}^{\dagger}$ returns the \boldsymbol{x} for which $\boldsymbol{A} \boldsymbol{x}$ is closest to \boldsymbol{y} in terms of Euclidean norm $\|\boldsymbol{A x}-\boldsymbol{y}\|$

Moore-Penrose Pseudoinverse I

- Matrix inversion is not defined for matrices that are not square
- Suppose we want to make a left-inverse $\boldsymbol{B} \in \mathbb{R}^{n \times m}$ of a matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ so that we can solve a linear equation $\boldsymbol{A x}=\boldsymbol{y}$ by left-multiplying each side to obtain $\boldsymbol{x}=\boldsymbol{B} \boldsymbol{y}$
- If $m>n$, then it is possible to have no such \boldsymbol{B}
- If $m<n$, then there could be multiple \boldsymbol{B} 's
- By letting $\boldsymbol{B}=\boldsymbol{A}^{\dagger}$ the Moore-Penrose pseudoinverse, we can make headway in these cases:
- When $m=n$ and \boldsymbol{A}^{-1} exists, \boldsymbol{A}^{\dagger} degenerates to \boldsymbol{A}^{-1}
- When $m>n, \boldsymbol{A}^{\dagger}$ returns the \boldsymbol{x} for which $\boldsymbol{A} \boldsymbol{x}$ is closest to \boldsymbol{y} in terms of Euclidean norm \|Ax-y\|
- When $m<n, \boldsymbol{A}^{\dagger}$ returns the solution $\boldsymbol{x}=\boldsymbol{A}^{\dagger} \boldsymbol{y}$ with minimal Euclidean norm $\|\boldsymbol{x}\|$ among all possible solutions

Moore-Penrose Pseudoinverse II

- The Moore-Penrose pseudoinverse is defined as:

$$
\boldsymbol{A}^{\dagger}=\lim _{\alpha \searrow 0}\left(\boldsymbol{A}^{\top} \boldsymbol{A}+\alpha \boldsymbol{I}_{n}\right)^{-1} \boldsymbol{A}^{\top}
$$

- $\boldsymbol{A}^{\dagger} \boldsymbol{A}=\boldsymbol{I}$

Moore-Penrose Pseudoinverse II

- The Moore-Penrose pseudoinverse is defined as:

$$
\boldsymbol{A}^{\dagger}=\lim _{\alpha \searrow 0}\left(\boldsymbol{A}^{\top} \boldsymbol{A}+\alpha \boldsymbol{I}_{n}\right)^{-1} \boldsymbol{A}^{\top}
$$

- $\boldsymbol{A}^{\dagger} \boldsymbol{A}=\boldsymbol{I}$
- In practice, it is computed by $\boldsymbol{A}^{\dagger}=\boldsymbol{V} \boldsymbol{D}^{\dagger} \boldsymbol{U}^{\top}$, where $\boldsymbol{U} \boldsymbol{D} \boldsymbol{V}^{\top}=\boldsymbol{A}$
- $\boldsymbol{D}^{\dagger} \in \mathbb{R}^{n \times m}$ is obtained by taking the inverses of its non-zero elements then taking the transpose

Outline

(1) Span \& Linear Dependence

(3) Eigendecomposition

4) Singular Value Decomposition
(5) Traces and Determinant

Traces

- $\operatorname{tr}(\boldsymbol{A})=\sum_{i} \boldsymbol{A}_{i, i}$

Traces

- $\operatorname{tr}(\boldsymbol{A})=\sum_{i} \boldsymbol{A}_{i, i}$
- $\operatorname{tr}(\boldsymbol{A})=\operatorname{tr}\left(\boldsymbol{A}^{\top}\right)$
- $\operatorname{tr}(a \boldsymbol{A}+b \boldsymbol{B})=a \operatorname{tr}(\boldsymbol{A})+b \operatorname{tr}(\boldsymbol{B})$
- $\|\boldsymbol{A}\|_{F}^{2}=\operatorname{tr}\left(\boldsymbol{A} \boldsymbol{A}^{\top}\right)=\operatorname{tr}\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)$
- $\operatorname{tr}(\boldsymbol{A B C})=\operatorname{tr}(\boldsymbol{B C A})=\operatorname{tr}(\boldsymbol{C A B})$
- Holds even if the products have different shapes

Determinant I

- Determinant $\operatorname{det}(\cdot)$ is a function that maps a square matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ to a real value:

$$
\operatorname{det}(\boldsymbol{A})=\sum_{i}(-1)^{i+1} A_{1, i} \operatorname{det}\left(\boldsymbol{A}_{-1,-i}\right)
$$

where $\boldsymbol{A}_{-1,-i}$ is the $(n-1) \times(n-1)$ matrix obtained by deleting the i-th row and j-th column

Determinant I

- Determinant $\operatorname{det}(\cdot)$ is a function that maps a square matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ to a real value:

$$
\operatorname{det}(\boldsymbol{A})=\sum_{i}(-1)^{i+1} A_{1, i} \operatorname{det}\left(\boldsymbol{A}_{-1,-i}\right)
$$

where $\boldsymbol{A}_{-1,-i}$ is the $(n-1) \times(n-1)$ matrix obtained by deleting the i-th row and j-th column

- $\operatorname{det}\left(\boldsymbol{A}^{\top}\right)=\operatorname{det}(\boldsymbol{A})$
- $\operatorname{det}\left(\boldsymbol{A}^{-1}\right)=1 / \operatorname{det}(\boldsymbol{A})$
- $\operatorname{det}(\boldsymbol{A B})=\operatorname{det}(\boldsymbol{A}) \operatorname{det}(\boldsymbol{B})$

Determinant I

- Determinant $\operatorname{det}(\cdot)$ is a function that maps a square matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ to a real value:

$$
\operatorname{det}(\boldsymbol{A})=\sum_{i}(-1)^{i+1} A_{1, i} \operatorname{det}\left(\boldsymbol{A}_{-1,-i}\right)
$$

where $\boldsymbol{A}_{-1,-i}$ is the $(n-1) \times(n-1)$ matrix obtained by deleting the i-th row and j-th column

- $\operatorname{det}\left(\boldsymbol{A}^{\top}\right)=\operatorname{det}(\boldsymbol{A})$
- $\operatorname{det}\left(\boldsymbol{A}^{-1}\right)=1 / \operatorname{det}(\boldsymbol{A})$
- $\operatorname{det}(\boldsymbol{A B})=\operatorname{det}(\boldsymbol{A}) \operatorname{det}(\boldsymbol{B})$
- $\operatorname{det}(\boldsymbol{A})=\prod_{i} \lambda_{i}$
- What does it mean?

Determinant I

- Determinant $\operatorname{det}(\cdot)$ is a function that maps a square matrix $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ to a real value:

$$
\operatorname{det}(\boldsymbol{A})=\sum_{i}(-1)^{i+1} A_{1, i} \operatorname{det}\left(\boldsymbol{A}_{-1,-i}\right)
$$

where $\boldsymbol{A}_{-1,-i}$ is the $(n-1) \times(n-1)$ matrix obtained by deleting the i-th row and j-th column

- $\operatorname{det}\left(\boldsymbol{A}^{\top}\right)=\operatorname{det}(\boldsymbol{A})$
- $\operatorname{det}\left(\boldsymbol{A}^{-1}\right)=1 / \operatorname{det}(\boldsymbol{A})$
- $\operatorname{det}(\boldsymbol{A B})=\operatorname{det}(\boldsymbol{A}) \operatorname{det}(\boldsymbol{B})$
- $\operatorname{det}(\boldsymbol{A})=\prod_{i} \lambda_{i}$
- What does it mean? $\operatorname{det}(\boldsymbol{A})$ can be also regarded as the signed area of the image of the "unit square"

Determinant II

- Let $\boldsymbol{A}=\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]$, we have $\boldsymbol{A}\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}a \\ b\end{array}\right], \boldsymbol{A}\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}c \\ d\end{array}\right]$, and $\operatorname{det}(\boldsymbol{A})=a d-b c$

Figure: The area of the parallelogram is the absolute value of the determinant of the matrix formed by the images of the standard basis vectors representing the parallelogram's sides.

Determinant III

- The absolute value of the determinant can be thought of as a measure of how much multiplication by the matrix expands or contracts space

Determinant III

- The absolute value of the determinant can be thought of as a measure of how much multiplication by the matrix expands or contracts space
- If $\operatorname{det}(\boldsymbol{A})=0$, then space is contracted completely along at least one dimension
- \boldsymbol{A} is invertible iff $\operatorname{det}(\boldsymbol{A}) \neq 0$

Determinant III

- The absolute value of the determinant can be thought of as a measure of how much multiplication by the matrix expands or contracts space
- If $\operatorname{det}(\boldsymbol{A})=0$, then space is contracted completely along at least one dimension
- \boldsymbol{A} is invertible iff $\operatorname{det}(\boldsymbol{A}) \neq 0$
- If $\operatorname{det}(\boldsymbol{A})=1$, then the transformation is volume-preserving

