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Matrix Representation of Linear Functions

o A linear function (or map or transformation) f : R” — R™ can be
represented by a matrix A, A € R™*", such that

f(x)=Ax=y,VxeR" y cR"
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Matrix Representation of Linear Functions

o A linear function (or map or transformation) f : R” — R™ can be
represented by a matrix A, A € R™*", such that

f(x)=Ax=y,VxeR" y cR"

o span(A.;,---,A.,) is called the column space of A
o rank(A) =dim(span(A.,,--- ,A.,))
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System of Linear Equations

o GivenA andy , solve x in Ax =y
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System of Linear Equations

o GivenA andy , solve x in Ax =y
o What kind of A that makes Ax =y always have a solution?

o Since Ax =Xx;A. ;, the column space of A must contain R™, i.e.,
R™ C span(A. 1, -+ ,A.n)
o Implies n>m
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o GivenA andy , solve x in Ax =y
o What kind of A that makes Ax =y always have a solution?
o Since Ax =Xx;A. ;, the column space of A must contain R™, i.e.,
R™ g span(AZ,la e aAI,n)
o Implies n>m
o When does Ax =y always have exactly one solution?
o A has at most m columns; otherwise there is more than one x
parametrizing each y
o Implies n =m and the columns of A are linear independent with each
other
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System of Linear Equations

o GivenA andy , solve x in Ax =y
o What kind of A that makes Ax =y always have a solution?
o Since Ax =Xx;A. ;, the column space of A must contain R™, i.e.,
R™ C span(A. 1, - ,A. )
o Implies n>m
o When does Ax =y always have exactly one solution?
o A has at most m columns; otherwise there is more than one x
parametrizing each y
o Implies n =m and the columns of A are linear independent with each
other
o A~ ! exists at this time, and x :A’ly
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Vector Norms

o A norm of vectors is a function || -|| that maps vectors to
non-negative values satisfying
o |x]|=0=x=0
o [x+y| <|x|[+]ly]l (the triangle inequality)
o Jlex|[ =] |lx[|,ve € R
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Vector Norms

o A norm of vectors is a function || -|| that maps vectors to
non-negative values satisfying
o |x]|=0=x=0
o [x+y| <|x|[+]ly]l (the triangle inequality)
o Jlex|[ =] |lx[|,ve € R

1p
el = (Z \x#?)

o L2(Euclidean) norm: ||x| = (x"x)"2
o L'norm: ||x||; = X x|
o Max norm: |lx||. = max; |x;]

o E.g., the I” norm
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Vector Norms

o A norm of vectors is a function || -|| that maps vectors to
non-negative values satisfying
o |x|=0=x=0
o |lx+y|l < |lx|| + Iyl (the triangle inequality)
o [lex|| = lef - [le[], Ve € R

lell, = (Z M”) !

o L2(Euclidean) norm: |jx|| = (x"x)"?
o L'norm: ||x||; = ¥ |xi|
o Max norm: ||x]| = max; |x;]|

o E.g., the I” norm

o x'y = ||x|||[y||cos @, where 8 is the angle between x and y

o x and y are orthonormal iff x 'y = 0 (orthogonal) and ||x|| = |ly|| =1
(unit vectors)
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Matrix Norms

o Frobenius norm

lAllr= /Y A%
ij

o Analogous to the L? norm of a vector

o An orthogonal matrix is a square matrix whose column (resp. rows)
are mutually orthonormal, i.e.,

ATA=I=AA"

o ImpliesA™' =AT
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Decomposition

o Integers can be decomposed into prime factors
o Eg., 12=2%x2x3
o Helps identify useful properties, e.g., 12 is not divisible by 5
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Decomposition

o Integers can be decomposed into prime factors
o Eg., 12=2%x2x3
o Helps identify useful properties, e.g., 12 is not divisible by 5

o Can we decompose matrices to identify information about their
functional properties more easily?
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Eigenvectors and Eigenvalues

o An eigenvector of a square matrix A is a non-zero vector v such that
multiplication by A alters only the scale of v :

Av = Ay,

where A € R is called the eigenvalue corresponding to this eigenvector
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Eigenvectors and Eigenvalues

o An eigenvector of a square matrix A is a non-zero vector v such that
multiplication by A alters only the scale of v :

Av = Ay,

where A € R is called the eigenvalue corresponding to this eigenvector
o If v is an eigenvector, so is any its scaling cv,c € R,c #0

o c¢v has the same eigenvalue
o Thus, we usually look for unit eigenvectors
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Eigendecomposition |

o Every real symmetric matrix A € R™" can be decomposed into

A = Qdiag(2)Q"

o A € R” consists of real-valued eigenvalues (usually sorted in descending
order)

o @=1[v,... »(]is an orthogonal matrix whose columns are
corresponding eigenvectors
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Eigendecomposition |

o Every real symmetric matrix A € R™" can be decomposed into

A = Qdiag(2)Q"

o A € R” consists of real-valued eigenvalues (usually sorted in descending
order)

o @=1[v,... »(]is an orthogonal matrix whose columns are
corresponding eigenvectors

o Eigendecomposition may not be unique

o When any two or more eigenvectors share the same eigenvalue
o Then any set of orthogonal vectors lying in their span are also
eigenvectors with that eigenvalue
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Eigendecomposition |

o Every real symmetric matrix A € R™" can be decomposed into

A = Qdiag(2)Q"

o A € R” consists of real-valued eigenvalues (usually sorted in descending
order)

o @=1[v,... »(]is an orthogonal matrix whose columns are
corresponding eigenvectors

o Eigendecomposition may not be unique

o When any two or more eigenvectors share the same eigenvalue

o Then any set of orthogonal vectors lying in their span are also
eigenvectors with that eigenvalue

o What can we tell after decomposition?
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Eigendecomposition Il

o Because @ = [v(V) ... v("] is an orthogonal matrix, we can think of A
as scaling space by A; in direction v/

Before multiplication
- -

After multiplication

3 - 3 T
2k ] 2l ’\1”(1_
1}t - 1k i
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Rayleigh’'s Quotient

Theorem (Rayleigh’s Quotient)
Given a symmetric matrix A € R"*", then Vx € R",

xAx

x'x

)vmin <

< Amax;

where Apin and Amax are the smallest and largest eigenvalues of A.

T . .
* Px _ 2. when x is the corresponding eigenvector of A;
xTx
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Singularity

o Suppose A = Qdiag(A)Q ", then A~ = Qdiag(1)~'Q"

Shan-Hung Wu (CS, NTHU) Linear Algebra Machine Learning 15 /26



Singularity

o Suppose A = Qdiag(A)Q ", then A~ = Qdiag(1)~'Q"
o A is non-singular (invertible) iff none of the eigenvalues is zero
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Positive Definite Matrices |

o A is positive semidefinite (denoted as A - O) iff its eigenvalues are
all non-negative

o x"Ax >0 for any x

o A is positive definite (denoted as A > O) iff its eigenvalues are all
positive
o Further ensures that x"TAx=0=x=10

o Why these matter?
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Positive Definite Matrices Il

o A function f is quadratic iff it can be written as
f(x)=1xTAx —b"x +c, where A is symmetric
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Positive Definite Matrices Il

o A function f is quadratic iff it can be written as
f(x)=1xTAx —b"x +c, where A is symmetric
o x"Ax is called the quadratic form

Figure: Graph of a quadratic form when A is a) positive definite; b)
negative definite; c) positive semidefinite (singular); d) indefinite matrix.

Shan-Hung Wu (CS, NTHU) Linear Algebra Machine Learning 17 /26



Outline

(@ Singular Value Decomposition
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Singular Value Decomposition (SVD)

o Eigendecomposition requires square matrices. What if A is not square?
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Singular Value Decomposition (SVD)

o Eigendecomposition requires square matrices. What if A is not square?

o Every real matrix A € R™*" has a singular value decomposition:
A=UDV',

where U € R™*™ D € R™" and V € R

o U and V are orthogonal matrices, and their columns are called the left-
and right-singular vectors respectively
o Elements along the diagonal of D are called the singular values
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Singular Value Decomposition (SVD)

o Eigendecomposition requires square matrices. What if A is not square?

o Every real matrix A € R™*" has a singular value decomposition:
A=UDV',

where U € R™™ D € R™*" and V € R"*"
o U and V are orthogonal matrices, and their columns are called the left-
and right-singular vectors respectively
o Elements along the diagonal of D are called the singular values

o Left-singular vectors of A are eigenvectors of AA"
o Right-singular vectors of A are eigenvectors of A'A

o Non-zero singular values of A are square roots of eigenvalues of AAT
(orATA)
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Moore-Penrose Pseudoinverse |

o Matrix inversion is not defined for matrices that are not square
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o Matrix inversion is not defined for matrices that are not square

o Suppose we want to make a left-inverse B € R"*" of a matrix
A € R™" so that we can solve a linear equation Ax =y by
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o If m > n, then it is possible to have no such B
o If m < n, then there could be multiple B's
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Moore-Penrose Pseudoinverse |

o Matrix inversion is not defined for matrices that are not square

o Suppose we want to make a left-inverse B € R"*" of a matrix
A € R™" so that we can solve a linear equation Ax =y by
left-multiplying each side to obtain x = By

o If m > n, then it is possible to have no such B
o If m < n, then there could be multiple B's

o By letting B=A" the Moore-Penrose pseudoinverse, we can make
headway in these cases:

o When m=n and A~ ! exists, A" degenerates to Al
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Moore-Penrose Pseudoinverse |

o Matrix inversion is not defined for matrices that are not square
o Suppose we want to make a left-inverse B € R"*" of a matrix
A € R™" so that we can solve a linear equation Ax =y by
left-multiplying each side to obtain x = By
o If m > n, then it is possible to have no such B
o If m < n, then there could be multiple B's
o By letting B=A" the Moore-Penrose pseudoinverse, we can make
headway in these cases:
o When m=n and A~ ! exists, A" degenerates to Al
o When m > n, A" returns the x for which Ax is closest to y in terms of
Euclidean norm ||Ax —y]|
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Moore-Penrose Pseudoinverse |

o Matrix inversion is not defined for matrices that are not square

o Suppose we want to make a left-inverse B € R"*" of a matrix
A € R™" so that we can solve a linear equation Ax =y by
left-multiplying each side to obtain x = By
o If m > n, then it is possible to have no such B
o If m < n, then there could be multiple B's
o By letting B=A" the Moore-Penrose pseudoinverse, we can make
headway in these cases:
o When m=n and A~ ! exists, A" degenerates to Al
o When m > n, A" returns the x for which Ax is closest to y in terms of
Euclidean norm ||Ax —y]|
o When m < n, AT returns the solution x :Afy with minimal Euclidean
norm ||x|| among all possible solutions
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Moore-Penrose Pseudoinverse |l

o The Moore-Penrose pseudoinverse is defined as:

AT =lim(A"A+al,) AT
a0

o ATA=1
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Moore-Penrose Pseudoinverse |l

o The Moore-Penrose pseudoinverse is defined as:

AT =lim(A"A+al,) AT
a0
o ATA=1
o In practice, it is computed by AT = VDU, where UDV'™ =A

o D' € R™™ is obtained by taking the inverses of its non-zero elements
then taking the transpose

Shan-Hung Wu (CS, NTHU) Linear Algebra Machine Learning 21/26



Outline

(8 Traces and Determinant

Shan-Hung Wu (CS, NTHU) Linear Algebra Machine Learning 22/26



Traces

) tI‘(A) = ZiAi,i
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Traces

tr(A) =LA

tr(A) =tr(A")

tr(aA + bB) = atr(A) + btr(B)
Al = (44 ") =u(a"A)
tr(ABC) = tr(BCA) = tr(CAB)

o Holds even if the products have different shapes

© 06 06 o o
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Determinant |

o Determinant det(-) is a function that maps a square matrix A € R"*"
to a real value:

det(A) = Z(—I)H]Al,idet(Afl,fi)a

i

where A_; _; is the (n—1) x (n— 1) matrix obtained by deleting the
i-th row and j-th column
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Determinant |

o Determinant det(-) is a function that maps a square matrix A € R"*"
to a real value:

det(A) =Y (=1)"1A jdet(A_; ),
where A_; _; is the (n—1) x (n— 1) matrix obtained by deleting the
i-th row and j-th column
o det(A") =det(A)
o det(A™!) = 1/det(a)
o det(AB) = det(A)det(B)
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Determinant |

o Determinant det(-) is a function that maps a square matrix A € R"*"
to a real value:

det(A) =Y (=1)"1A jdet(A_; ),
where A_; _; is the (n—1) x (n— 1) matrix obtained by deleting the
i-th row and j-th column
det(A") = det(A)
det(A™1) = 1/det(a)
det(AB) = det(A) det(B)
det(A) =IL;Ai
What does it mean?

© © 6 o o
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Determinant |

Qo

© © 6 o o

Determinant det(-) is a function that maps a square matrix A € R"*"
to a real value:

det(A) =Y (=1)"1A jdet(A_; ),
where A_; _; is the (n—1) x (n— 1) matrix obtained by deleting the
i-th row and j-th column
det(AT) = det(A)
det(A™1) = 1/det(a)
det(AB) = det(A) det(B)
det(A) =[L; A
What does it mean? det(A) can be also regarded as the signed area
of the image of the “unit square”
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Determinant |l

i 3 5 1] [ ][2] -]

det(A) = ad — bc

(a+c,b+d)

ad—bc

(a,b)

(0,0

Figure: The area of the parallelogram is the absolute value of the determinant of
the matrix formed by the images of the standard basis vectors representing the
parallelogram’s sides.
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Determinant Ill

o The absolute value of the determinant can be thought of as a measure
of how much multiplication by the matrix expands or contracts space
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Determinant Ill

o The absolute value of the determinant can be thought of as a measure
of how much multiplication by the matrix expands or contracts space

o If det(A) =0, then space is contracted completely along at least one
dimension

o A is invertible iff det(A) #£0
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Determinant Ill

o The absolute value of the determinant can be thought of as a measure
of how much multiplication by the matrix expands or contracts space

o If det(A) =0, then space is contracted completely along at least one
dimension

o A is invertible iff det(A) #£0

o If det(A) =1, then the transformation is volume-preserving
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