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Random Variables

A random variable x is a variable that can take on different values
randomly

E.g., Pr(x = x1) = 0.1, Pr(x = x2) = 0.3, etc.
Technically, x is a function that maps events to a real values

Must be coupled with a probability distribution P that specifies how
likely each value is

x ∼ P(θ) means “x has distribution P parametrized by θ ”
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Probability Mass and Density Functions

If x is discrete, P(x = x) denotes a probability mass function
Px(x) = Pr(x = x)

E.g., the output of a fair dice has discrete uniform distribution with
P(x) = 1/6

If x is continuous, P(x = x) denotes a probability density function
px(x)≥ 0

Is px(x) a probability? No, it is “rate of increase in probability at x”

Pr(a ≤ x ≤ b) =
∫
[a,b]

p(x)dx

px(x) can be greater than 1
E.g., a continuous uniform distribution within [a,b] has p(x) = 1/b−a if
x ∈ [a,b]; 0 otherwise
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Marginal Probability

Consider a probability distribution over a set of variables, e.g., P(x,y)

The probability distribution over the subset of random variables called
the marginal probability distribution:

P(x = x) = ∑
y

P(x,y) or
∫

p(x,y)dy

Also called the sum rule of probability
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Conditional Probability

Conditional density function:

P(x = x |y = y) =
P(x = x,y = y)

P(y = y)

Defined only when P(y = y)> 0

Product rule of probability:

P(x(1), · · · ,x(n)) = P(x(1))Πn
i=2P(x(i) |x(1), · · · ,x(i−1))

E.g., P(a,b,c) = P(a |b,c)P(b |c)P(c)
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Independence and Conditional Independence

We say random variables x is independent with y iff

P(x |y) = P(x)

Implies P(x,y) = P(x)P(y)
Denoted by x ⊥ y

We say random variables x is conditionally independent with y
given z iff

P(x |y,z) = P(x |z)

Implies P(x,y |z) = P(x |z)P(y |z)
Denoted by x ⊥ y |z
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Expectation

The expectation (or expected value or mean) of some function f
with respect to x is the “average” value that f takes on:1

Ex∼P[f(x)] = ∑
x

Px(x)f (x) or
∫

px(x)f (x)dx = µf(x)

Expectation is linear: E[af(x)+b] = aE[f(x)]+b for deterministic a
and b

E[E[f(x)]] = E[f(x)], as E[f(x)] is deterministic

1The bracket [·] here is used to distinguish the parentheses inside and has nothing to
do with functionals.
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Expectation over Multiple Variables

Defined over the join probability distribution, e.g.,

E[f(x,y)] = ∑
x,y

Px,y(x,y)f (x,y) or
∫

x,y
px,y(x,y)f (x,y)dxdy

E[f(x) |y = y] =
∫

px |y(x |y)f (x)dx is called the conditional
expectation
E[f(x)g(y)] = E[f(x)]E[g(y)] if x and y are independent [Proof]
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Variance

The variance measures how much the values of f deviate from its
expected value when seeing different values of x:

Var[f(x)] = E
[
(f(x)−E[f(x)])2]= σ

2
f(x)

σf(x) is called the standard deviation

Var[f(x)] = E[f(x)2]−E[f(x)]2 [Proof]
Var[af (x)+b] = a2Var[f(x)] for deterministic a and b [Proof]

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Machine Learning 11 / 78



Variance

The variance measures how much the values of f deviate from its
expected value when seeing different values of x:

Var[f(x)] = E
[
(f(x)−E[f(x)])2]= σ

2
f(x)

σf(x) is called the standard deviation

Var[f(x)] = E[f(x)2]−E[f(x)]2 [Proof]
Var[af (x)+b] = a2Var[f(x)] for deterministic a and b [Proof]

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Machine Learning 11 / 78



Covariance I

Covariance gives some sense of how much two values are linearly
related to each other

Cov[f(x),g(y)] = E [(f(x)−E[f(x)])(g(y)−E[g(y)])]

If sign positive, both variables tend to take on high values
simultaneously
If sign negative, one variable tend to take on high value while the other
taking on low one

If x and y are independent, then Cov(x,y) = 0 [Proof]
The converse is not true as X and Y may be related in a nonlinear way
E.g., y = sin(x) and x ∼ Uniform(−2π,2π)
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Covariance II

Var(ax+by) = a2Var(x)+b2Var(y)+2abCov(x,y) [Proof]

Var(x+y) = Var(x)+Var(y) if x and y are independent

Cov(ax+b,cy+d) = acCov(x,y) [Proof]
Cov(ax+by,cw+dv) =
acCov(x,w)+adCov(x,v)+bcCov(y,w)+bdCov(y,v) [Proof]
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Multivariate Random Variables I

A multivariate random variable is denoted by x = [x1, · · · ,xd]
⊤

Normally, xi’s (attributes or variables or features) are dependent
with each other
P(x) is a joint distribution of x1, · · · ,xd

The mean of x is defined as µx = E(x) = [µx1 , · · · ,µxd ]
⊤

The covariance matrix of x is defined as:

Σx =


σ2

x1
σx1,x2 · · · σx1,xd

σx2,x1 σ2
x2

· · · σx2,xd
...

...
. . .

...
σxd,x1 σxd,x2 · · · σ2

xd


σxi,xj = Cov(xi,xj) = E[(xi −µxi)(xj −µxj)] = E(xixj)−µxi µxj

Σx = Cov(x) = E
[
(x−µx)(x−µx)

⊤]= E(xx⊤)−µxµ⊤
x
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Multivariate Random Variables II

Σx is always symmetric

Σx is always positive semidefinite [Homework]
Σx is nonsingular iff it is positive definite
Σx is singular implies that x has either:

Deterministic/independent/non-linearly dependent attributes causing
zero rows, or
Redundant attributes causing linear dependency between rows
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Derived Random Variables

Let y = f(x;w) = w⊤x be a random variable transformed from x
µy = E(w⊤x) = w⊤E(x) = w⊤µx

σ2
y = w⊤Σxw [Homework]
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What Does Pr(x = x) Mean?

1 Bayesian probability: it’s a degree of belief or qualitative levels of
certainty

2 Frequentist probability: if we can draw samples of x, then the
proportion of frequency of samples having the value x is equal to
Pr(x = x)
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Bayes’ Rule

P(y |x) = P(x |y)P(y)
P(x)

=
P(x |y)P(y)

ΣyP(x |y = y)P(y = y)

Bayes’ Rule is so important in statistics (and ML as well) such that
each term has a name:

posteriorof y =
(likelihood of y)× (priorof y)

evidence

Why is it so important?
E.g., a doctor diagnoses you as having a disease by letting x be
“symptom” and y be “disease”

P(x |y) and P(y) may be estimated from sample frequencies more easily
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Point Estimation

Point estimation is the attempt to estimate some fixed but unknown
quantity θ of a random variable by using sample data

Let {x(1), · · · ,x(n)} be a set of n independent and identically
distributed (i.i.d.) samples of a random variable x, a point estimator
or statistic is a function of the data:

θ̂n = g(x(1), · · · ,x(n))

θ̂n is called the estimate of θ
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Sample Mean and Covariance

Given X = [x(1), · · · ,x(n)]⊤ ∈ Rn×d the i.i.d samples, what are the
estimates of the mean and covariance of x?

A sample mean:

µ̂x =
1
n

n

∑
i=1

x(i)

A sample covariance matrix:

Σ̂x =
1
n

n

∑
i=1

(x(i)− µ̂x)(x
(i)− µ̂x)

⊤

σ̂2
xi,xj

= 1
n ∑

n
s=1(x

(s)
i − µ̂xi)(x

(s)
j − µ̂xj)

If each x(i) is centered (by subtracting µ̂x first), then Σ̂x =
1
n X⊤X
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Σ̂x =
1
n

n

∑
i=1

(x(i)− µ̂x)(x
(i)− µ̂x)

⊤

σ̂2
xi,xj

= 1
n ∑

n
s=1(x

(s)
i − µ̂xi)(x

(s)
j − µ̂xj)

If each x(i) is centered (by subtracting µ̂x first), then Σ̂x =
1
n X⊤X
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Principal Components Analysis (PCA) I

Give a collection of data points X= {x(i)}N
i=1, where x(i) ∈ RD

Suppose we want to lossily compress X, i.e., to find a function f such
that f (x(i)) = z(i) ∈ RK , where K < D

How to keep the maximum info in X?
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Principal Components Analysis (PCA) II

Let x(i)’s be i.i.d. samples of a random variable x
Let f be linear, i.e., f (x) = W⊤x for some W ∈ RD×K

Principal Component Analysis (PCA) finds K orthonormal vectors
W =

[
w(1), · · · ,w(K)

]
such that the transformed variable z = W⊤x has

the most “spread out” attributes, i.e., each attribute zj = w(j)⊤x has
the maximum variance Var(zj)

w(1), · · · ,w(K) are called the principle components
Why w(1), · · · ,w(K) need to be orthogonal with each other?

Each w(j) keeps information that cannot be explained by others, so
together they preserve the most info

Why ∥w(j)∥= 1 for all j?
Only directions matter—we don’t want to maximize Var(zj) by finding
a long w(j)

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Machine Learning 25 / 78



Principal Components Analysis (PCA) II

Let x(i)’s be i.i.d. samples of a random variable x
Let f be linear, i.e., f (x) = W⊤x for some W ∈ RD×K

Principal Component Analysis (PCA) finds K orthonormal vectors
W =

[
w(1), · · · ,w(K)

]
such that the transformed variable z = W⊤x has

the most “spread out” attributes, i.e., each attribute zj = w(j)⊤x has
the maximum variance Var(zj)

w(1), · · · ,w(K) are called the principle components

Why w(1), · · · ,w(K) need to be orthogonal with each other?
Each w(j) keeps information that cannot be explained by others, so
together they preserve the most info

Why ∥w(j)∥= 1 for all j?
Only directions matter—we don’t want to maximize Var(zj) by finding
a long w(j)

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Machine Learning 25 / 78



Principal Components Analysis (PCA) II

Let x(i)’s be i.i.d. samples of a random variable x
Let f be linear, i.e., f (x) = W⊤x for some W ∈ RD×K

Principal Component Analysis (PCA) finds K orthonormal vectors
W =

[
w(1), · · · ,w(K)

]
such that the transformed variable z = W⊤x has

the most “spread out” attributes, i.e., each attribute zj = w(j)⊤x has
the maximum variance Var(zj)

w(1), · · · ,w(K) are called the principle components
Why w(1), · · · ,w(K) need to be orthogonal with each other?

Each w(j) keeps information that cannot be explained by others, so
together they preserve the most info

Why ∥w(j)∥= 1 for all j?
Only directions matter—we don’t want to maximize Var(zj) by finding
a long w(j)

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Machine Learning 25 / 78



Principal Components Analysis (PCA) II

Let x(i)’s be i.i.d. samples of a random variable x
Let f be linear, i.e., f (x) = W⊤x for some W ∈ RD×K

Principal Component Analysis (PCA) finds K orthonormal vectors
W =

[
w(1), · · · ,w(K)

]
such that the transformed variable z = W⊤x has

the most “spread out” attributes, i.e., each attribute zj = w(j)⊤x has
the maximum variance Var(zj)

w(1), · · · ,w(K) are called the principle components
Why w(1), · · · ,w(K) need to be orthogonal with each other?

Each w(j) keeps information that cannot be explained by others, so
together they preserve the most info

Why ∥w(j)∥= 1 for all j?
Only directions matter—we don’t want to maximize Var(zj) by finding
a long w(j)

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Machine Learning 25 / 78



Principal Components Analysis (PCA) II

Let x(i)’s be i.i.d. samples of a random variable x
Let f be linear, i.e., f (x) = W⊤x for some W ∈ RD×K

Principal Component Analysis (PCA) finds K orthonormal vectors
W =

[
w(1), · · · ,w(K)

]
such that the transformed variable z = W⊤x has

the most “spread out” attributes, i.e., each attribute zj = w(j)⊤x has
the maximum variance Var(zj)

w(1), · · · ,w(K) are called the principle components
Why w(1), · · · ,w(K) need to be orthogonal with each other?

Each w(j) keeps information that cannot be explained by others, so
together they preserve the most info

Why ∥w(j)∥= 1 for all j?

Only directions matter—we don’t want to maximize Var(zj) by finding
a long w(j)

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Machine Learning 25 / 78



Principal Components Analysis (PCA) II

Let x(i)’s be i.i.d. samples of a random variable x
Let f be linear, i.e., f (x) = W⊤x for some W ∈ RD×K

Principal Component Analysis (PCA) finds K orthonormal vectors
W =

[
w(1), · · · ,w(K)

]
such that the transformed variable z = W⊤x has

the most “spread out” attributes, i.e., each attribute zj = w(j)⊤x has
the maximum variance Var(zj)

w(1), · · · ,w(K) are called the principle components
Why w(1), · · · ,w(K) need to be orthogonal with each other?

Each w(j) keeps information that cannot be explained by others, so
together they preserve the most info

Why ∥w(j)∥= 1 for all j?
Only directions matter—we don’t want to maximize Var(zj) by finding
a long w(j)

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Machine Learning 25 / 78



Solving W I

For simplicity, let’s consider K = 1 first
How to evaluate Var(z1)?

Recall that z1 = w(1)⊤x implies σ2
z1
= w(1)⊤Σxw(1) [Homework]

How to get Σx?
An estimate: Σ̂x =

1
N X⊤X (assuming x(i)’s are centered first)

Optimization problem to solve:

arg max
w(1)∈RD

w(1)⊤X⊤Xw(1), subject to ∥w(1)∥= 1

X⊤X is symmetric thus can be eigendecomposed
By Rayleigh’s Quotient, the optimal w(1) is given by the eigenvector of
X⊤X corresponding to the largest eigenvalue
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Solving W II

Optimization problem for w(2):

arg max
w(2)∈RD

w(2)⊤X⊤Xw(2), subject to ∥w(2)∥= 1 and w(2)⊤w(1) = 0

By Rayleigh’s Quotient again, w(2) is the eigenvector corresponding to
the 2-nd largest eigenvalue
For general case where K > 1, the w(1), · · · ,w(K) are eigenvectors of
X⊤X corresponding to the largest K eigenvalues

Proof by induction [Proof]
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Solving W II

Optimization problem for w(2):

arg max
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Visualization

Figure: PCA learns a linear projection that aligns the direction of greatest
variance with the axes of the new space. With these new axes, the estimated
covariance matrix Σ̂z = W⊤

Σ̂xW ∈ RK×K is always diagonal.
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Sure and Almost Sure Events

Given a continuous random variable x, we have Pr(x = x) = 0 for any
value x

Will the event x = x occur?

Yes!
An event A happens surely if always occurs
An event A happens almost surely if Pr(A) = 1 (e.g., Pr(x ̸= x) = 1)
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Equality of Random Variables I

Definition (Equality in Distribution)

Two random variables x and y are equal in distribution iff
Pr(x ≤ a) = Pr(y ≤ a) for all a.

Definition (Almost Sure Equality)

Two random variables x and y are equal almost surely iff Pr(x = y) = 1.

Definition (Equality)

Two random variables x and y are equal iff they maps the same events to
same values.
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Equality of Random Variables II

What’s the difference between the “equality in distribution” and
“almost sure equality?”

Almost sure equality implies equality in distribution, but converse not
true
E.g., let x and y be binary random variables and
Px(0) = Px(1) = Py(0) = Py(1) = 0.5

They are equal in distribution
But Pr(x = y) = 0.5 ̸= 1
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Convergence of Random Variables I

Definition (Convergence in Distribution)

A sequence of random variables {x(1),x(2), · · ·} converges in distribution
to x iff limn→∞ P

(
x(n) = x

)
= P(x = x)

Definition (Convergence in Probability)

A sequence of random variables {x(1),x(2), · · ·} converges in probability
to x iff for any ε > 0, limn→∞ Pr

(
|x(n)−x|< ε

)
= 1.

Definition (Almost Sure Convergence)

A sequence of random variables {x(1),x(2), · · ·} converges almost surely
to x iff Pr

(
limn→∞ x(n) = x

)
= 1.
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Convergence of Random Variables II

What’s the difference between the convergence “in probability” and
“almost surely?”

Almost sure convergence implies convergence in probability, but
converse not true
limn→∞ Pr

(
|x(n)−x|< ε

)
= 1 leaves open the possibility that

|x(n)−x|> ε happens an infinite number of times
Pr
(
limn→∞ x(n) = x

)
= 1 guarantees that |x(n)−x|> ε almost surely

will not occur
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Distribution of Derived Variables I

Consider a continuous scalar random variable x

Suppose y = f (x) and f−1 exists, does P(y = y) = P(x = f−1(y))
always hold?

No, when x and y are continuous
1D example: let x ∼ Unifrom(0,1) and y = 2x ∼ Unifrom(0,2)

If py(y) = px(
1
2 y), then∫ 2

y=0
py(y)dy =

∫ 2

y=0
px(

1
2

y)dy = 2 ̸= 1

Violates the unit measure axiom of probability
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Distribution of Derived Variables II
Recall that Pr(y = y) = py(y)dy and Pr(x = x) = px(x)dx
To preserve unit measure, we need to ensure that

py(f (x))dy = px(x)dx,∀x

We have

px(x) = py(f (x))
∣∣∣∣∂ f (x)

∂x

∣∣∣∣ (or py(y) = px(f−1(y))
∣∣∣∣∂ f−1(y)

∂y

∣∣∣∣)
Absolute values deal with the case where y =−cx

In 1D example: py(y) = 1
2 px(

1
2 y) for all y
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Distribution of Derived Variables III

In multivariate case where y = f(x), we need to ensure that

py(f(x))|det(∆)|= px(x)dx1dx2 · · · ,∀x

dx1dx2 · · · : volume of dx
|det(∆)|: volume of dy, where ∆ captures the linear relationship
between dy and dx

We have px(x) = py(f(x))
∣∣∣ 1

dx1dx2···det(∆)
∣∣∣= py(f(x)) |det(J(f)(x))|

J(f)(x) is the Jacobian matrix of f at input x
Or equivalently, py(y) = px(f−1(y))

∣∣det
(
J(f−1)(y)

)∣∣
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Distribution of Derived Variables IV

Why 1
dx1dx2···det(∆) = det(J(f)(x))?

2D example:

1
dx1dx2

det
([

a c
b d

])
= 1

dx1dx2
det
([

a b
c d

])
= det

([
a

dx1

b
dx1

c
dx2

d
dx2

])
= det

([
∂y1
∂x1

∂y2
∂x1

∂y1
∂x2

∂y2
∂x2

])

== det

([
∂y1
∂x1

∂y1
∂x2

∂y2
∂x1

∂y2
∂x2

])
= det(J(f)(x))
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Random Experiments

The value of a random variable x can be think of as the outcome of an
random experiment
Helps us define P(x)
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Bernoulli Distribution (Discrete)

Let x ∈ {0,1} be the outcome of tossing a coin, we have:

Bernoulli(x = x;ρ) =

{
ρ, if x = 1
1−ρ, otherwise

or ρ
x(1−ρ)1−x

Properties: [Proof]
E(x) = ρ

Var(x) = ρ(1−ρ)
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Categorical Distribution (Discrete)

Let x ∈ {1, · · · ,k} be the outcome of rolling a k-sided dice, we have:

Categorical(x = x;ρ) =
k

∏
i=1

ρ
1(x;x=i)
i , where 1⊤ρ = 1

An extension of the Bernoulli distribution for k states
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Multinomial Distribution (Discrete)

Let x ∈ Rk be a random vector where xi the number of the outcome i
after rolling a k-sided dice n times:

Multinomial(x= x;n,ρ)=
n!

x1! · · ·xk!

k

∏
i=1

ρ
xi
i , where 1⊤ρ = 1 and 1⊤x= n

Properties: [Proof]
E(x) = nρ

Var(x) = n
(
diag(ρ)−ρρ⊤)

(i.e., Var(xi) = nρi(1−ρi) and Var(xi,xj) =−nρiρj)
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Normal/Gaussian Distribution (Continuous)

Theorem (Central Limit Theorem)

The sum x of many independent random variables is approximately
normally/Gaussian distributed:

N (x = x; µ,σ2) =

√
1

2πσ2 exp
(
− 1

2σ2 (x−µ)2
)
.

Holds regardless of the original distributions of individual variables
µx = µ and σ2

x = σ2

To avoid inverting σ2, we can parametrize the distribution using the
precision β :

N (x = x; µ,β−1) =

√
β

2π
exp
(
−β

2
(x−µ)2

)
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Confidence Intervals

Figure: Graph of N (µ,σ2).

We say the interval [µ −2σ ,µ +2σ ] has about the 95% confidence
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Why Is Gaussian Distribution Common in ML?

1 It can model noise in data (e.g., Gaussian white noise)
Can be considered to be the accumulation of a large number of small
independent latent factors affecting data collection process

2 Out of all possible probability distributions (over real numbers) with
the same variance, it encodes the maximum amount of uncertainty

Assuming P(y |x)∼ N , we insert the least amount of prior knowledge
into a model

3 Convenient for many analytical manipulations
Closed under affine transformation, summation, marginalization,
conditioning, etc.
Many of the integrals involving Gaussian distributions that arise in
practice have simple closed form solutions
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Properties

Closed under affine transformation: if x ∼ N (µ,σ2), then
ax+b ∼N (aµ +b,a2σ2) for any deterministic a,b ∈R, a ̸= 0 [Proof]

z = x−µ

σ
∼ N (0,1) the z-normalization or standardization of x

Closed under summation: if x(1) ∼ N (µ(1),σ2(1)) is independent with
x(2) ∼ N (µ(2),σ2(2)), then x(1)+x(2) ∼ N (µ(1)+µ(2),σ2(1)+σ2(2))
[Homework: px(1)+x(2)(x) =

∫
px(1)(x− y)px(2)(y)dy the convolution]

Not true if x(1) and x(2) are dependent
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Multivariate Gaussian Distribution

When x is sum of many random vectors:

N (x = x; µ,Σ) =

√
1

(2π)ddet(Σ)
exp
[
−1

2
(x−µ)⊤Σ

−1(x−µ)

]
µx = µ and Σx = Σ (must be nonsingular)

If x ∼ N (µ,Σ), then each attribute xi is univariate normal
Converse not true
However, if x1, · · · ,xd are Gaussian and independent with each other,
then x ∼ N (µ,Σ), where µ = [µ1, · · · ,µd]

⊤ and Σ = diag(σ2
1 , · · · ,σ2

d )

What does the graph of N (µ,Σ) look like?
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Bivariate Example I
Consider the Mahalanobis distance first

N (µ,Σ) =

√
1

(2π)ddet(Σ)
exp
[
−1

2
(x−µ)⊤Σ

−1(x−µ)

]

Cov(x
1
,x

2
)=0, Var(x

1
)=Var(x

2
)

x
1

x
2

Cov(x
1
,x

2
)=0, Var(x

1
)>Var(x

2
)

Cov(x
1
,x

2
)>0 Cov(x

1
,x

2
)<0

The level sets closer to the
center µx are lower
Increasing Cov[x1,x2]
stretches the level sets along
the 45◦ axis
Decreasing Cov[x1,x2]
stretches the level sets along
the −45◦ axis
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Bivariate Example II
The hight of N (µ,Σ) =

√
1

(2π)ddet(Σ) exp
[
−1

2(x−µ)⊤Σ
−1(x−µ)

]
in

its graph is inversely proportional to the Mahalanobis distance
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A multivariate Gaussian distribution is isotropic iff Σ = σI
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Properties

Closed under affine transformation: if x ∼ N (µ,Σ), then
w⊤x ∼ N (w⊤µ,w⊤Σw) for any deterministic w ∈ Rd

More generally, given W ∈ Rd×k, k < d, we have
W⊤x ∼ N (W⊤

µ,W⊤
ΣW) that is k-variate normal

I.e., the projection of x onto a k-dimensional subspace is still normal

Consider x =

[
x1
x2

]
∼ N (µ =

[
µ1
µ2

]
,Σ =

[
Σ1,1 Σ1,2
Σ2,1 Σ2,2

]
):

Closed under marginalization: x1 ∼ N (µ1,Σ1,1) [Proof:
P(x1) =

∫
x2

P(x1,x2 ; µ,Σ)dx2)]
Closed under conditioning:
(x1 |x2)∼ N (µ1 +Σ1,2Σ

−1
2,2(x2 −µ2), Σ1,1 −Σ1,2Σ

−1
2,2Σ2,1) [Proof]
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Exponential Distribution (Continuous)
In deep learning, we often want to have a probability distribution with
a sharp point at x = 0

To accomplish this, we can use the exponential distribution:

Exponential(x = x;λ ) = λ1(x;x ≥ 0)exp(−λx)
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Laplace Distribution (Continuous)

Laplace distribution can be think of as a “two-sided” exponential
distribution centered at µ :

Laplace(x = x; µ,b) =
1
2b

exp
(
−|x−µ|

b

)
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Dirac Distribution (Continuous)

In some cases, we wish to specify that all of the mass in a probability
distribution clusters around a single data point µ

This can be accomplished by using the Dirac distribution:

Dirac(x = x; µ) = δ (x−µ),

where δ (·) is the Dirac delta function that
1 Is zero-valued everywhere except at input 0
2 Integrals to 1
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Empirical Distribution (Continuous)

Given a dataset X= {x(i)}N
i=1 where x(i)’s are i.i.d. samples of x

What is the distribution P(θ) that maximizes the likelihood P(θ |X) of
X?

If x is discrete, the distribution simply reflects the empirical frequency
of values:

Empirical(x = x;X) =
1
N

N

∑
i=1

1(x;x = x(i))

If x is continuous, we have the empirical distribution:

Empirical(x = x;X) =
1
N

N

∑
i=1

δ (x−x(i))
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Mixtures of Distributions

We may define a probability distribution by combining other simpler
probability distributions {P(i)(θ (i))}i

E.g., the mixture model:

Mixture(x = x;ρ,{θ
(i)}i) =∑

i
P(i)(x = x|c = i;θ

(i))Categorical(c = i;ρ)

The empirical distribution is a mixture distribution (where ρi = 1/N)
The component identity variable c is a latent variable

Whose values are not observed
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Gaussian Mixture Model
A mixture model is called the Gaussian mixture model iff
P(i)(x = x|c = i;θ

(i)) = N (i)(x = x|c = i; µ(i),Σ(i)), ∀i

Variants: Σ
(i) = Σ or Σ

(i) = diag(σ) or Σ
(i) = σI

Any smooth density can be approximated by a Gaussian mixture
model with enough components

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Machine Learning 57 / 78



Gaussian Mixture Model
A mixture model is called the Gaussian mixture model iff
P(i)(x = x|c = i;θ

(i)) = N (i)(x = x|c = i; µ(i),Σ(i)), ∀i
Variants: Σ

(i) = Σ or Σ
(i) = diag(σ) or Σ

(i) = σI

Any smooth density can be approximated by a Gaussian mixture
model with enough components

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Machine Learning 57 / 78



Gaussian Mixture Model
A mixture model is called the Gaussian mixture model iff
P(i)(x = x|c = i;θ

(i)) = N (i)(x = x|c = i; µ(i),Σ(i)), ∀i
Variants: Σ

(i) = Σ or Σ
(i) = diag(σ) or Σ

(i) = σI

Any smooth density can be approximated by a Gaussian mixture
model with enough components

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Machine Learning 57 / 78



Outline

1 Random Variables & Probability Distributions

2 Multivariate & Derived Random Variables

3 Bayes’ Rule & Statistics

4 Application: Principal Components Analysis

5 Technical Details of Random Variables

6 Common Probability Distributions

7 Common Parametrizing Functions

8 Information Theory

9 Application: Decision Trees & Random Forest

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Machine Learning 58 / 78



Parametrizing Functions

A probability distribution P(θ) is parametrized by θ

In ML, θ may be the output value of a deterministic function
Called parametrizing function
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Logistic Function
The logistic function (a special case of sigmoid functions) is
defined as:

σ (x) =
exp(x)

exp(x)+1
=

1
1+ exp(−x)

Always takes on values between (0,1)

Commonly used to produce the ρ parameter of Bernoulli distribution
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Softplus Function

The softplus function :

ζ (x) = log(1+ exp(x))

A “softened” version of x+ = max(0,x)

Range: (0,∞)

Useful for producing the β or σ parameter of Gaussian distribution
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Properties [Homework]

1−σ(x) = σ(−x)

logσ(x) =−ζ (−x)
d
dx σ(x) = σ(x)(1−σ(x))
d
dx ζ (x) = σ(x)

∀x ∈ (0,1),σ−1(x) = log
( x

1−x

)
∀x > 0,ζ−1(x) = log(exp(x)−1)

ζ (x) =
∫ x
−∞

σ(y)dy
ζ (x)−ζ (−x) = x

ζ (−x) is the softened x− = max(0,−x)
x = x+− x−
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What’s Information Theory

Probability theory allows us to make uncertain statements and reason
in the presence of uncertainty

Information theory allows us to quantify the amount of uncertainty
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Self-Information

Given a random variable x, how much information you receive when
seeing an event x = x?

1 Likely events should have low information
E.g., we are less surprised when tossing a biased coins

2 Independent events should have additive information
E.g, “two heads” should have twice as much info as “one head”

The self-information:

I(x = x) =− logP(x = x)

Called bit if base-2 logarithm is used
Called nat if base-e
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Entropy
Self-information deals with a particular outcome

We can quantify the amount of uncertainty in an entire probability
distribution using the entropy:

H(x ∼ P) = Ex∼P[I(x)] =−∑
x

P(x) logP(x) or −
∫

p(x) logp(x)dx

Let 0log0 = limx→0 x logx = 0
Called Shannon entropy when x is discrete; differential entropy
when x is continuous

Figure: Shannon entropy H(x) over Bernoulli distributions with different ρ.
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Average Code Length

Shannon entropy gives a lower bound on the number of “bits” needed
on average to encode values drawn from a distribution P

Consider a random variable x ∼ Uniform having 8 equally likely states
To send a value x to receiver, we would encode it into 3 bits
Shannon entropy: H(x ∼ Uniform) =−8× 1

8 log2
1
8 = 3

If the probabilities of the 8 states are (1
2 ,

1
4 ,

1
8 ,

1
16 ,

1
64 ,

1
64 ,

1
64 ,

1
64) instead

H(x) = 2
The encoding 0,10,110,1110,111100,111101,111110,111111 gives the
average code length 2
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Kullback-Leibler (KL) Divergence
How many extra “bits” needed in average to transmit a value drawn
from distribution P when we use a code that was designed for another
distribution Q?

Kullback-Leibler (KL) Divergence or (relative entropy) from
distribution Q to P:

DKL(P∥Q) = Ex∼P

[
log

P(x)
Q(x)

]
=−Ex∼P [logQ(x)]−H(x ∼ P)

The term −Ex∼P [logQ(x)] is called the cross entropy

If P and Q are independent, we can solve

argmin
Q

DKL(P∥Q)

by
argmin

Q
−Ex∼P [logQ(x)]

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Machine Learning 68 / 78



Kullback-Leibler (KL) Divergence
How many extra “bits” needed in average to transmit a value drawn
from distribution P when we use a code that was designed for another
distribution Q?
Kullback-Leibler (KL) Divergence or (relative entropy) from
distribution Q to P:

DKL(P∥Q) = Ex∼P

[
log

P(x)
Q(x)

]
=−Ex∼P [logQ(x)]−H(x ∼ P)

The term −Ex∼P [logQ(x)] is called the cross entropy

If P and Q are independent, we can solve

argmin
Q

DKL(P∥Q)

by
argmin

Q
−Ex∼P [logQ(x)]

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Machine Learning 68 / 78



Kullback-Leibler (KL) Divergence
How many extra “bits” needed in average to transmit a value drawn
from distribution P when we use a code that was designed for another
distribution Q?
Kullback-Leibler (KL) Divergence or (relative entropy) from
distribution Q to P:

DKL(P∥Q) = Ex∼P

[
log

P(x)
Q(x)

]
=−Ex∼P [logQ(x)]−H(x ∼ P)

The term −Ex∼P [logQ(x)] is called the cross entropy

If P and Q are independent, we can solve

argmin
Q

DKL(P∥Q)

by
argmin

Q
−Ex∼P [logQ(x)]

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Machine Learning 68 / 78



Properties

DKL(P∥Q)≥ 0, ∀P,Q

DKL(P∥Q) = 0 iff P and Q are equal almost surely
KL divergence is asymmetric, i.e., DKL(P∥Q) ̸= DKL(Q∥P)

Figure: KL divergence for two normal distributions.
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Minimizer of KL Divergence

Given P, we want to find Q∗ that minimizes the KL divergence
Q∗(from) = argminQ DKL(P∥Q) or Q∗(to) = argminQ DKL(Q∥P)?

Q∗(from) places high probability where P has high probability
Q∗(to) places low probability where P has low probability

Figure: Approximating a mixture P of two Gaussians using a single Gaussian Q.
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Decision Trees

Given a supervised dataset X= {(x(i),y(i))}N
i=1

Can we find out a tree-like function f (i.e, a set of rules) such that
f (x(i)) = y(i)?
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Training a Decision Tree

Start from root which corresponds to all data points
{(x(i),y(i)) : Rules = /0)}
Recursively split leaf nodes until data corresponding to children are
“pure” in labels

How to split? Find a cutting point (j,v) among all unseen attributes
such that after partitioning the corresponding data points
Xparent = {(x(i),y(i) : Rules)} into two groups

Xleft = {(x(i),y(i)) : Rules∪{x(i)j < v}}, and

Xright = {(x(i),y(i)) : Rules∪{x(i)j ≥ v}},

the “impurity” of labels drops the most, i.e., solve

argmax
j,v

(
Impurity(Xparent)− Impurity(Xleft,Xright)

)
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Impurity Measure

argmax
j,v

(
Impurity(Xparent)− Impurity(Xleft,Xright)

)
What’s Impurity(·)?

Entropy is a common choice:

Impurity(Xparent) = H[y ∼ Empirical(Xparent)]

Impurity(Xleft,Xright) = ∑
i=left,right

|X(i)|
|Xparent|

H[y ∼ Empirical(X(i))]

In this case, Impurity(Xparent)− Impurity(Xleft,Xright) is called the
information gain
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Random Forests

A decision tree can be very deep

Deeper nodes give more specific rules
Backed by less training data
May not be applicable to testing data

How to ensure the generalizability of a decision tree?
I.e., to have high prediction accuracy on testing data

1 Pruning (e.g., limit the depth of the tree)
2 Random forest: an ensemble of many (deep) trees
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Training a Random Forest

1 Randomly pick M samples from the training set with replacement
Called the bootstrap samples

2 Grow a decision tree from the bootstrap samples. At each node:
1 Randomly select K features without replacement
2 Find the best cutting point (j,v) and split the node

3 Repeat the steps 1 and 2 for T times to get T trees
4 Aggregate the predictions made by different trees via the majority

vote

Each tree is trained slightly differently because of Step 1 and 2(a)
Provides different “perspectives” when voting
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Decision Boundaries
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Decision Trees vs. Random Forests

Cons of random forests:
Less interpretable model

Pros:
Less sensitive to the depth of trees

The majority voting can “absorb” the noise from individual trees
Can be parallelized

Each tree can grow independently
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