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(1 Random Variables & Probability Distributions
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Random Variables

o A random variable x is a variable that can take on different values
randomly

o E.g., Pr(x=x1) =0.1, Pr(x =x) = 0.3, etc.
o Technically, x is a function that maps events to a real values

o Must be coupled with a probability distribution P that specifies how
likely each value is

o x ~ P(0) means “x has distribution P parametrized by 6"
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Probability Mass and Density Functions

o If x is discrete, P(x = x) denotes a probability mass function
Py(x) =Pr(x =x)
o E.g., the output of a fair dice has discrete uniform distribution with
P(x) =1/s
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Probability Mass and Density Functions

o If x is discrete, P(x = x) denotes a probability mass function
Py(x) =Pr(x =x)
o E.g., the output of a fair dice has discrete uniform distribution with
P(x) =1/s
o If x is continuous, P(x = x) denotes a probability density function
px(x) 20
o Is px(x) a probability? No, it is "rate of increase in probability at x"

Pr(a <x <D) :/[ ]p(x)dx
a,b

o px(x) can be greater than 1
o E.g., a continuous uniform distribution within [a,b] has p(x) = 1/b—a if
X € [a,b]; 0 otherwise
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Marginal Probability

o Consider a probability distribution over a set of variables, e.g., P(x,y)

o The probability distribution over the subset of random variables called
the marginal probability distribution:

P(x=x) =Y P(xy) or [ plry)dy

o Also called the sum rule of probability
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Conditional Probability

o Conditional density function:

P(x=x,y=y)

Px=xly =) = = p

o Defined only when P(y =y) >0
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Conditional Probability

o Conditional density function:

P(x=x,y=y)

Px=xly =) = = p

o Defined only when P(y =y) >0
o Product rule of probability:

p(x(l)

Y )

xM) = P(xM)Ir_,p(x@ |x1) ...

1

Y

o E.g., P(a,b,c) =P(a|b,c)P(b|c)P(c)
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Independence and Conditional Independence

o We say random variables x is independent with vy iff
P(x|y) =P(x)

o Implies P(x,y) = P(x)P(y)
o Denoted by x Ly
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Independence and Conditional Independence

o We say random variables x is independent with vy iff
P(x|y) =P(x)

o Implies P(x,y) =P(x)P(y)
o Denoted by x Ly
o We say random variables x is conditionally independent with y
given z iff
P(x]y,z) = P(x|z)
o Implies P(x,y|z) = P(x|z)P(y|z)
o Denoted by x Ly|z
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Expectation

o The expectation (or expected value or mean) of some function f
with respect to x is the “average” value that f takes on:!

Everlf(x)] = TP () or [ pu(elf (o= py

X

1The bracket [-] here is used to distinguish the parentheses inside and has nothing to
do with functionals.
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Expectation

o The expectation (or expected value or mean) of some function f
with respect to x is the “average” value that f takes on:!

Everlf(x)] = TP () or [ pu(elf (o= py

X

o Expectation is linear: Elaf(x) 4 b] = aE[f(x)] + b for deterministic a
and b

o E[E[f(x)]] = E[f(x)], as E[f(x)] is deterministic

1The bracket [-] here is used to distinguish the parentheses inside and has nothing to

do with functionals.
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Expectation over Multiple Variables

o Defined over the join probability distribution, e.g.,

BIf(x,y)] = Y Pxy(x,y)f (x,y) or / ypx,y(x,y)f(x,y)dxdy

X,y
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Expectation over Multiple Variables

o Defined over the join probability distribution, e.g.,

BIf(x,y)] = Y Pxy(x,y)f (x,y) or / ypx,y(x,y)f(x,y)dxdy

o E[f(x)]y =y] = [ pxjy(x|y)f(x)dx is called the conditional
expectation

o E[f(x)g(y)] = E[f(x)]E[g(y)] if x and y are independent [Proof]
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Variance

o The variance measures how much the values of f deviate from its
expected value when seeing different values of x:

Var[f(x)] = E [(f(x) — E[f(x)])?] = o7,

o Oy is called the standard deviation
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Variance

o The variance measures how much the values of f deviate from its
expected value when seeing different values of x:

Var[f(x)] = E [(f(x) — E[f(x)])?] = o7,

o Oy is called the standard deviation
o Varl[f(x)] = E[f(x)?] — E[f(x)]? [Proof]
o Var[af(x) +b] = a*Var[f(x)] for deterministic @ and b [Proof]
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Covariance |

o Covariance gives some sense of how much two values are linearly
related to each other

Covl[f(x),2(y)] = E[(f(x) — E[f(x)])(2(y) — E[g(y)])]

o If sign positive, both variables tend to take on high values

simultaneously
o If sign negative, one variable tend to take on high value while the other

taking on low one
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Covariance |

o Covariance gives some sense of how much two values are linearly
related to each other

Covl[f(x),2(y)] = E[(f(x) — E[f(x)])(2(y) — E[g(y)])]

o If sign positive, both variables tend to take on high values
simultaneously
o If sign negative, one variable tend to take on high value while the other
taking on low one
o If x and y are independent, then Cov(x,y) =0 [Proof]

o The converse is not true as X and Y may be related in a nonlinear way
o E.g., y=sin(x) and x ~ Uniform(—27,27)
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Covariance |l

o Var(ax + by) = a*Var(x) + b*Var(y) 4 2abCov(x,y) [Proof]
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Covariance |l

o Var(ax + by) = a*Var(x) + b*Var(y) 4 2abCov(x,y) [Proof]
o Var(x+y) = Var(x) + Var(y) if x and y are independent

o Cov(ax+b,cy+d) = acCov(x,y) [Proof]
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Covariance |l

o Var(ax + by) = a*Var(x) + b*Var(y) 4 2abCov(x,y) [Proof]
o Var(x+y) = Var(x) + Var(y) if x and y are independent

o Cov(ax+b,cy+d) = acCov(x,y) [Proof]

o Cov(ax+by,cw+dv) =
acCov(x,w) +adCov(x,v) + bcCov(y,w) + bdCov(y,v) [Proof]
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(@ Multivariate & Derived Random Variables
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Multivariate Random Variables |
o A multivariate random variable is denoted by x = [x1,---,x4] "

o Normally, x;'s (attributes or variables or features) are dependent
with each other
o P(x) is a joint distribution of xj,---,xg4
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Multivariate Random Variables |

o A multivariate random variable is denoted by x = [x1,---,x4] "

o Normally, x;'s (attributes or variables or features) are dependent
with each other

o P(x) is a joint distribution of xj,---,xg4
o The mean of x is defined as pt, = E(X) = [Ly,, ", Ux,]
o The covariance matrix of x is defined as:

2

o5, O-Xlz-,xz o Oxyxg
Ox, x1 ze 0 Oxgxy
Z"x - .
2
Oxgx1 Oxgxp “°° Gxd

0 Oxx; = Cov(x;,x;) = E[(x; — ;) (X ,ux,)} = E(xix;) — Hx; Hx;
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Multivariate Random Variables |

o A multivariate random variable is denoted by x = [x1,---,x4] "

o Normally, x;'s (attributes or variables or features) are dependent

with each other
o P(x) is a joint distribution of xj,---,xg4

o The mean of x is defined as pt, = E(X) = [Ly,, ", Ux,]
o The covariance matrix of x is defined as:

2

o5, O-Xlz-,xz o Oxyxg
Ox, x1 ze 0 Oxgxy
Yy =
2
Oxgx1 Oxgxp “°° Ox,

o Guyny = Cov(x %) = El(xi — ix,) (5 — tsg)] = E(x0%) — b b
° Zx=COV(X)=E[(X—uX)(X—ux) ] =E(xx") —pypy
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Multivariate Random Variables ||

o X is always symmetric
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Multivariate Random Variables ||

o X is always symmetric

o Xy is always positive semidefinite [Homework]
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Multivariate Random Variables ||

Yy is always symmetric
Y is always positive semidefinite [Homework]

Y, is nonsingular iff it is positive definite

© 06 o0 o

Y is singular implies that x has either:

o Deterministic/independent/non-linearly dependent attributes causing
Zero rows, or
o Redundant attributes causing linear dependency between rows
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Derived Random Variables

o Let y=f(x;w) =w'x be a random variable transformed from x
o uy=Ew'x)=w'E(x) =w'p,

o oy =w'Zw [Homework]
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(3 Bayes’ Rule & Statistics
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What Does Pr(x =x) Mean?
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What Does Pr(x =x) Mean?

@ Bayesian probability: it's a degree of belief or qualitative levels of
certainty
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What Does Pr(x =x) Mean?

@ Bayesian probability: it's a degree of belief or qualitative levels of
certainty

@ Frequentist probability: if we can draw samples of x, then the
proportion of frequency of samples having the value x is equal to

Pr(x = x)
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Bayes' Rule

P(x|y)P(y P(x|y)P(y
byl = PELYPO) _ PExIyPEY)
P(x) IP(x|y =y)P(y =)
o Bayes' Rule is so important in statistics (and ML as well) such that
each term has a name:

(likelihood of y) x (priorof'y)
evidence

posteriorof y =
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Bayes' Rule

_ P|y)P(y) P(x|y)P(y)
Plylx) = P(x)  LP(x|y=y)P(y=y)

o Bayes' Rule is so important in statistics (and ML as well) such that
each term has a name:

(likelihood of y) x (priorof'y)
evidence

posteriorof y =

o Why is it so important?
o E.g., a doctor diagnoses you as having a disease by letting x be
“symptom” and y be “disease”
o P(x|y) and P(y) may be estimated from sample frequencies more easily
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Point Estimation

o Point estimation is the attempt to estimate some fixed but unknown
quantity 6 of a random variable by using sample data

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Machine Learning 21/78



Point Estimation

o Point estimation is the attempt to estimate some fixed but unknown
quantity 6 of a random variable by using sample data

o Let {x(1... x("} be a set of n independent and identically
distributed (i.i.d.) samples of a random variable x, a point estimator
or statistic is a function of the data:

o 0, is called the estimate of 6
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Sample Mean and Covariance

o Given X = [x(1) ... x(]T € R"*4 the i.i.d samples, what are the
estimates of the mean and covariance of x?
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Sample Mean and Covariance

o Given X = [x(1) ... x(]T € R"*4 the i.i.d samples, what are the
estimates of the mean and covariance of x?

o A sample mean:

o 62, =1 () — 1) () — )
o If each x) is centered (by subtracting fi, first), then £y = 1xTx
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(@ Application: Principal Components Analysis
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Principal Components Analysis (PCA) |

o Give a collection of data points X = {x()}¥ , where x()) € RP
o Suppose we want to lossily compress X, i.e., to find a function f such
that f(x()) =z() € R, where K < D

o How to keep the maximum info in X7?
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Principal Components Analysis (PCA) I

o Let x's be i.i.d. samples of a random variable x
o Let f be linear, i.e., f(x) = W'x for some W € RP*K

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Machine Learning 25 /78



Principal Components Analysis (PCA) I

o Let x's be i.i.d. samples of a random variable x

o Let f be linear, i.e., f(x) = W'x for some W € RP*K

o Principal Component Analysis (PCA) finds K orthonormal vectors
W= [w(l), e ,w(K)] such that the transformed variable z= W 'x has

the most “spread out” attributes, i.e., each attribute zj =w()Tx has
the maximum variance Var(z;)

o w) ... W& are called the principle components
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Principal Components Analysis (PCA) I

o Let x's be i.i.d. samples of a random variable x

o Let f be linear, i.e., f(x) = W'x for some W € RP*K
o Principal Component Analysis (PCA) finds K orthonormal vectors
W= [w(l), e ,w(K)] such that the transformed variable z= W 'x has

the most “spread out” attributes, i.e., each attribute zj =w()Tx has
the maximum variance Var(z;)

o w) ... W& are called the principle components
o Why wl) ... .w&) need to be orthogonal with each other?

o Each w) keeps information that cannot be explained by others, so
together they preserve the most info

o Why ||w)|| =1 for all j?
o Only directions matter—we don’t want to maximize Var(z;) by finding

a long wt)
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Solving W |

o For simplicity, let's consider K =1 first
o How to evaluate Var(z;)?
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Solving W |

o For simplicity, let's consider K =1 first

o How to evaluate Var(z;)?

nT 2

x implies 0, = wTZw(D) [Homework]

o Recall that z; = w! -

o How to get X7
o An estimate: Xy = %XTX (assuming x()'s are centered first)

o Optimization problem to solve:

arg max wTXTXw() subject to |wV|| =1
w() eRP
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Solving W |

o For simplicity, let's consider K =1 first
o How to evaluate Var(z;)?

o Recall that z; =w()Tx implies Gz21 =wDTZw) [Homework]

o How to get X7

o An estimate: £y = %XTX (assuming x()'s are centered first)
o Optimization problem to solve:

arg max wTXTXw() subject to |wV|| =1
w()eRP

o X'X is symmetric thus can be eigendecomposed
o By Rayleigh's Quotient, the optimal w(!) is given by the eigenvector of

XTX corresponding to the largest eigenvalue
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Solving W 1I

o Optimization problem for w(2):

arg max w@TXTXw? subject to [w?| =1 and w®Tw) =0
w(eRP
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Solving W II

o Optimization problem for w(2):

arg max w@TXTXw? subject to [w?| =1 and w®Tw) =0
w(eRP

o By Rayleigh's Quotient again, w? is the eigenvector corresponding to
the 2-nd largest eigenvalue
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Solving W II

o Optimization problem for w(2):

arg max w@TXTXw? subject to [w?| =1 and w®Tw) =0
w(eRP

o By Rayleigh's Quotient again, w? is the eigenvector corresponding to
the 2-nd largest eigenvalue

o For general case where K > 1, the w(!) ... w()

X"X corresponding to the largest K eigenvalues

o Proof by induction [Proof]

are eigenvectors of
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Visualization
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Figure: PCA learns a linear projection that aligns the direction of greatest

variance with the axes of the new space. With these new axes, the estimated
covariance matrix £, = W £, W € RK*K is always diagonal.
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(8 Technical Details of Random Variables
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Sure and Almost Sure Events

o Given a continuous random variable x, we have Pr(x = x) =0 for any
value x

o Will the event x = x occur?
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Sure and Almost Sure Events

o Given a continuous random variable x, we have Pr(x =x) =0 for any
value x

Will the event x = x occur? Yes!

(]

©

An event A happens surely if always occurs
An event A happens almost surely if Pr(A) =1 (e.g., Pr(x #x) =1)

©
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Equality of Random Variables |

Definition (Equality in Distribution)

Two random variables x and y are equal in distribution iff
Pr(x <a)="Pr(y <a) for all a.

Definition (Almost Sure Equality)

Two random variables x and y are equal almost surely iff Pr(x =y) = 1.
V.

Definition (Equality)
Two random variables x and y are equal iff they maps the same events to
same values. )
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Equality of Random Variables |l

o What's the difference between the “equality in distribution” and
“almost sure equality?”
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o Almost sure equality implies equality in distribution, but converse not
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Equality of Random Variables |l

o What's the difference between the “equality in distribution” and
“almost sure equality?”
o Almost sure equality implies equality in distribution, but converse not
true
o E.g., let x and y be binary random variables and
Px(0) = Px(1) = Py(0) = Py(1) = 0.5
o They are equal in distribution
o But Pr(x=y)=0.5#1
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Convergence of Random Variables |

Definition (Convergence in Distribution)

A sequence of random variables {x"),x(?) ...} converges in distribution

to x iff lim, e P (x =x) =P(x =x)

Definition (Convergence in Probability)

A sequence of random variables {x"),x(?) ...} converges in probability
to x iff for any &€ > 0, lim, . Pr (]x —x| < &) = 1.

Definition (Almost Sure Convergence)

A sequence of random variables {x(1),x®) ...} converges almost surely
to x iff Pr (limn_m x() = x) =1.
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Convergence of Random Variables Il

o What's the difference between the convergence “in probability” and
“almost surely?”
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Convergence of Random Variables Il

o What's the difference between the convergence “in probability” and
“almost surely?”

o Almost sure convergence implies convergence in probability, but
converse not true

o lim,HooPr(|x(”) —x| < S) =1 leaves open the possibility that
|x(") —x| > & happens an infinite number of times

o Pr(lim, .x" =x) = I guarantees that |x(") —x| > & almost surely
will not occur
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Distribution of Derived Variables |

o Consider a continuous scalar random variable x

o Suppose y =f(x) and f~! exists, does P(y=y) =P(x :f_l(y))
always hold?
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Distribution of Derived Variables |

(]

Consider a continuous scalar random variable x

Suppose y =f(x) and f~! exists, does P(y =y) =P(x =f"1(y))
always hold? No, when x and y are continuous

1D example: let x ~ Unifrom(0,1) and y = 2x ~ Unifrom(0,2)
If py(y) = px(3y), then

©

©

©

2 2 1
/y Opy(y)dy = / Opx(gy)dy =2#1

= y=

o Violates the unit measure axiom of probability

p(x) ()

Area: 1 : Area: 2
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Distribution of Derived Variables 1l
o Recall that Pr(y =y) = py(y)dy and Pr(x = x) = px(x)dx

o To preserve unit measure, we need to ensure that

py(f(x))dy = px(x)dx,Vx

JI=

2 =) 2| (or 2, ) =l

o We have

o ') )
dy

o Absolute values deal with the case where y = —cx

o In 1D example: py(y) = %px(%y) for all y

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Machine Learning
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Distribution of Derived Variables Ill

o In multivariate case where y =f(x), we need to ensure that
py(f(x))|det(A)| = px(x)dxidx - -+, Vx

o dxidxy---: volume of dx
o |det(A)|: volume of dy, where A captures the linear relationship
between dy and dx

x) »2
(0,dxy)

-
. (dx1,0) @b)

X1 1

o We have px(x) = py(f(x)) mdet(A)’ = py(f(x)) |det (J(F)(x))]
o J(f)(x) is the Jacobian matrix of f at input x

o Or equivalently, py(y) =px(f ' (v)) |det (J(f*l)(y))|
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Distribution of Derived Variables 1V

o Why Wdet(A) =det(J(f)(x))?

o 2D example:
a a
wio([ 5 4])=mimsa([ 2 7))

c b
d d
a b % gyz
_ dx d _
= det a E = det L)YC} LQ
dxs dx2a oxy dx,

Iy Iy
== det ( [ oo ] ) = det(J(f)(x))

Jdx;  Odxo
X2 ¥2
(0,dxy) (c,d)
‘ a,b
.(dxl,O) (@b)
X1 N
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38/78



Outline

(& Common Probability Distributions
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Random Experiments

o The value of a random variable x can be think of as the outcome of an
random experiment

o Helps us define P(x)
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Bernoulli Distribution (Discrete)

o Let x € {0,1} be the outcome of tossing a coin, we have:

Bernoulli(x = x;p) = { p: fr=1 or p*(1—p)i™

1—p, otherwise
o Properties: [Proof]

o E(x)=p
o Var(x) = p(1-p)
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Categorical Distribution (Discrete)

o Let x € {I,--- ,k} be the outcome of rolling a k-sided dice, we have:

k .
Categorical(x = x;p) = Hpil(x;x:l), where 17p =1

i=1
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Categorical Distribution (Discrete)

o Let x € {I,--- ,k} be the outcome of rolling a k-sided dice, we have:

k .
Categorical(x = x;p) = Hpil(x;x:l), where 17p =1

i=1

o An extension of the Bernoulli distribution for k states
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Multinomial Distribution (Discrete)

o Let x € R¥ be a random vector where x; the number of the outcome i
after rolling a k-sided dice n times:

Multinomial(x =x;n,p) = pr’ where 1"p=1and 1'x=n
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Multinomial Distribution (Discrete)

o Let x € R¥ be a random vector where x; the number of the outcome i

after rolling a k-sided dice n times:

Multinomial(x =x;n,p) = pr’ where 1"p=1and 1'x=n

o Properties: [Proof]

o E(x)=np
o Var(x) = n (diag(p) —pp ")

(i.e., Var(x;) = np;i(1 —p;) and Var(x;,x;) =

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory

—npip;)

Machine Learning

4378



Normal /Gaussian Distribution (Continuous)

Theorem (Central Limit Theorem)

The sum x of many independent random variables is approximately
normally/Gaussian distributed:

1 1
N (X =x1,06%) =4/ 37e2 CXP (—w(x—,u)z>.
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Normal /Gaussian Distribution (Continuous)

Theorem (Central Limit Theorem)

The sum x of many independent random variables is approximately
normally/Gaussian distributed:

1 1
N (X =x1,06%) =4/ 37e2 CXP (—w(x—,u)z>.

o Holds regardless of the original distributions of individual variables
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Normal /Gaussian Distribution (Continuous)

Theorem (Central Limit Theorem)

The sum x of many independent random variables is approximately
normally/Gaussian distributed:

1 1
N (X =x1,06%) =4/ 37e2 CXP (—w(x—,u)z>.

o Holds regardless of the original distributions of individual variables
o Uy =u and 62 = ¢
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Normal /Gaussian Distribution (Continuous)

Theorem (Central Limit Theorem)

The sum x of many independent random variables is approximately
normally/Gaussian distributed:

1 1
N (x=x;14,0%) =4 37e2 CXP (—w(x—,u)z>.

o Holds regardless of the original distributions of individual variables

o Uy =u and 62 = ¢

o To avoid inverting 62, we can parametrize the distribution using the
precision f3:

sy Boo i)
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Confidence Intervals

34.1% 34.1%

Figure: Graph of .4 (u,c?).
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Confidence Intervals

34.1% 34.1%

Figure: Graph of .4 (u,c?).

o We say the interval [u —20, 1+ 20] has about the 95% confidence
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Why Is Gaussian Distribution Common in ML?
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Why Is Gaussian Distribution Common in ML?

@ It can model noise in data (e.g., Gaussian white noise)

o Can be considered to be the accumulation of a large number of small
independent latent factors affecting data collection process
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o Can be considered to be the accumulation of a large number of small
independent latent factors affecting data collection process

@ Out of all possible probability distributions (over real numbers) with
the same variance, it encodes the maximum amount of uncertainty

o Assuming P(y|x) ~ ./, we insert the least amount of prior knowledge
into a model

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Machine Learning 46 /78



Why Is Gaussian Distribution Common in ML?

@ It can model noise in data (e.g., Gaussian white noise)
o Can be considered to be the accumulation of a large number of small
independent latent factors affecting data collection process
@ Out of all possible probability distributions (over real numbers) with
the same variance, it encodes the maximum amount of uncertainty
o Assuming P(y|x) ~ ./, we insert the least amount of prior knowledge
into a model
@ Convenient for many analytical manipulations

o Closed under affine transformation, summation, marginalization,
conditioning, etc.

o Many of the integrals involving Gaussian distributions that arise in
practice have simple closed form solutions
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Properties

o Closed under affine transformation: if x ~ .4 (u,c?), then
ax+b ~ N (ap+b,a*c?) for any deterministic a,b € R, a # 0 [Proof]
o z="E ~ #(0,1) the z-normalization or standardization of x
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Properties

o Closed under affine transformation: if x ~ .4 (u,c?), then
ax+b ~ N (ap+b,a*c?) for any deterministic a,b € R, a # 0 [Proof]

_x—p
0 Z= o

~ A(0,1) the z-normalization or standardization of x

o Closed under summation: if xX) ~ 4 (u() 621} is independent with
x® ~ A (u?, 62 )) then x() +x@ ~ 4 (u) + u®, 621 4 52(2))
[Homework: pX Hax@ (%) = [Py 1>(x ¥)Px (¥)dy the convolution]
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Properties

o Closed under affine transformation: if x ~ .4 (u,c?), then

ax+b ~ N (ap+b,a*c?) for any deterministic a,b € R, a # 0 [Proof]
x4t
(e}

0 z= ~ A (0,1) the z-normalization or standardization of x

o Closed under summation: if xX) ~ 4 (u() 621} is independent with
x® ~ A (u?, 62 )) then x() +x@ ~ 4 (u) + u®, 621 4 52(2))
[Homework: pX )+X(2 (x) = [Py 1>(x ¥)Px (¥)dy the convolution]

o Not true if x(!) and x(?) are dependent
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Multivariate Gaussian Distribution

o When x is sum of many random vectors:

N (x=xp,) = Mexp[—;x—ufz-%x—m

o Uy =M and Iy =X (must be nonsingular)
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Multivariate Gaussian Distribution

o When x is sum of many random vectors:

1 1
N (x=x;0,E) = | ————exp |-~ (x—p) = (x —
3 =005 = | G 9|50 )
o Uy =M and Iy =X (must be nonsingular)
o If x~ A4 (u,X), then each attribute x; is univariate normal
o Converse not true
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Multivariate Gaussian Distribution

o When x is sum of many random vectors:

N (x=xp,) = Mexp[—;x—ufz-%x—m

o Uy =M and Iy =X (must be nonsingular)
o If x~ A4 (u,X), then each attribute x; is univariate normal

o Converse not true
o However, if xq,---,x4 are Gaussian and independent with each other,
then x ~ 4 (u,X), where p = [u1,--+, 14" and £ = diag(c?,---,07)

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Machine Learning 48 /78



Multivariate Gaussian Distribution

o When x is sum of many random vectors:

N (x=xp,) = Mexp[—;x—ufz-%x—m

o Uy =M and Iy =X (must be nonsingular)

o If x~ A4 (u,X), then each attribute x; is univariate normal

o Converse not true
o However, if xq,---,x4 are Gaussian and independent with each other,
then x ~ 4 (u,X), where p = [u1,--+, 14" and £ = diag(c?,---,07)

o What does the graph of 4 (u,X) look like?
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Bivariate Example |
o Consider the Mahalanobis distance first

) )

1
N (,2) = (zn)ddet(z)exp[ 2
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Bivariate Example |
o Consider the Mahalanobis distance first

1 1
N L) =y ————exp|—=(x—u) T (x—
(1,X) ar)de) &P 5 —u) (x—p)
Cov(x‘ ,x2)=0, Var1x1)=Var(x2) Cov(x‘,x2)=0, Var(x1)>Var(x2)
o The level sets closer to the
< center U, are lower
X
Cov(x, x,)>0 Cov(x, x,)<0

O ©
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Bivariate Example |
o Consider the Mahalanobis distance first

A (1,X) =

Cov(x‘ ,x2)=0, Var1x1)=Var(x2)

e

%

Cov(x, x;)>0

@)

Shan-Hung Wu (CS, NTHU)

1 1 .
nyides) P [—2(x —w)'2 (x—p)

Cov(x‘,x2)=0, Var(x1)>Var(x2)

o The level sets closer to the
center U, are lower
o Increasing Cov|[xy,X2]

stretches the level sets along
the 45° axis

o Decreasing Cov[x,X3]

stretches the level sets along
@ the —45° axis

Cov(x, X,)<0
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Bivariate Example ||

o The hight of A (u,X) = Wexp[ Too—p) "= (> — )] in
its graph is inversely proportional to the Mahalanobis distance

'm“\\

g w )

o‘\\\‘}*\
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Bivariate Example ||

o The hight of A (u,X) = Wexp[ Too—p) "= (> — )] in
its graph is inversely proportional to the Mahalanobis distance

I'Q‘\\\\
"‘%W‘q}‘\\‘}\\\

o A multivariate Gaussian distribution is isotropic iff £ = oI
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Properties

o Closed under affine transformation: if x ~ .4 (u,X), then
wlix~ A (whu,w'Iw) for any deterministic w € R?
o More generally, given W € R¥** k < d, we have
W'x~ A (W' u, W IW) that is k-variate normal
o l.e., the projection of x onto a k-dimensional subspace is still normal
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Properties

o Closed under affine transformation: if x ~ .4 (u,X), then
wlix~ A (whu,w'Iw) for any deterministic w € R?
o More generally, given W € R¥** k < d, we have
W'x~ A (W' u, W IW) that is k-variate normal
o l.e., the projection of x onto a k-dimensional subspace is still normal

. [x N oy . 21,1 Z1,2 .
o Consider x = [ X } N (p= { 1, ] L= [ 201 Xop ])
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Properties

©

Closed under affine transformation: if x ~ .4"(u,X), then
wlix~ A (whu,w'Iw) for any deterministic w € R?
o More generally, given W € R¥** k < d, we have
W'~ A (W' u, W EW) that is k-variate normal
o l.e., the projection of x onto a k-dimensional subspace is still normal
, X _ | My | En Zin |
Consider x = [ % } ~ AN (L= { 0 ] X = [ 21 Ton ])
Closed under marginalization: x; ~ .4 (u;,X 1) [Proof:
P(x1) = [, P(x1,x2; 1, Z)dx;)]
Closed under conditioning:
(X1 |22) ~ A (1) + 212555 (X2 — 15), B11 — Z1255320.1) [Proof]

©

©

©

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Machine Learning 51/78



Exponential Distribution (Continuous)

o In deep learning, we often want to have a probability distribution with
a sharp point at x =0

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Machine Learning 52/78



Exponential Distribution (Continuous)

o In deep learning, we often want to have a probability distribution with
a sharp point at x =0

o To accomplish this, we can use the exponential distribution:

Exponential(x = x;41) = A1(x;x > 0) exp(—Ax)

1.6 : : :
14l A=05 |
1ol — =1
Lo A=15 |

X 0.8}

0.6

0.4}

0.2} \

0.0 1 2 3 4 5
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Laplace Distribution (Continuous)

o Laplace distribution can be think of as a “two-sided” exponential

distribution centered at u:

1 _
Laplace(x =x; u,b) = 2 <P <— x b“‘)

05

TT T
RTRNTANT]
aocco

ToTUTUT

04

A BN

[

b=
I
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Dirac Distribution (Continuous)

o In some cases, we wish to specify that all of the mass in a probability
distribution clusters around a single data point u
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Dirac Distribution (Continuous)

o In some cases, we wish to specify that all of the mass in a probability
distribution clusters around a single data point u

o This can be accomplished by using the Dirac distribution:
Dirac(x =x; ) =d(x — ),

where §(-) is the Dirac delta function that

@ Is zero-valued everywhere except at input 0
@ Integrals to 1
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Empirical Distribution (Continuous)

o Given a dataset X = {x()}¥ | where x()'s are i.i.d. samples of x

o What is the distribution P(6) that maximizes the likelihood P(6|X) of
X?

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Machine Learning 55 /78



Empirical Distribution (Continuous)

o Given a dataset X = {x()}¥ | where x()'s are i.i.d. samples of x
o What is the distribution P(6) that maximizes the likelihood P(6|X) of

X7
o If x is discrete, the distribution simply reflects the empirical frequency
of values:
1 ¥ ;
Empirical(x = x; X) = N 1(x;x =x1)

i=1
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Empirical Distribution (Continuous)

Given a dataset X = {x()}V  where x()'s are i.i.d. samples of x
What is the distribution P(6) that maximizes the likelihood P(6|X) of
X7

o If x is discrete, the distribution simply reflects the empirical frequency
of values:

©

©

1 ;
Empirical(x = x; X) = N Z 1(x;x =x1)

I
—_

o
=
w
=
(@]
[e]
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ot
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1 N

Empirical(x = x;X) = N

Il
—
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Mixtures of Distributions

o We may define a probability distribution by combining other simpler
probability distributions {P()(8())};
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Mixtures of Distributions

o We may define a probability distribution by combining other simpler
probability distributions {P()(8())};

o E.g., the mixture model-

Mixture(x =x;p,{67},) = ZP(i) (x = x|c = i;0"))Categorical (c = i; p)
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Mixtures of Distributions

o We may define a probability distribution by combining other simpler
probability distributions {P()(8())};
o E.g., the mixture model-

Mixture(x =x;p,{67},) = ZP(i) (x = x|c = i;0"))Categorical (c = i; p)

o The empirical distribution is a mixture distribution (where p; = 1/n)
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Mixtures of Distributions

o We may define a probability distribution by combining other simpler
probability distributions {P()(8())};

o E.g., the mixture model-

Mixture(x =x;p,{67},) = ZP(i) (x = x|c = i;0"))Categorical (c = i; p)

o The empirical distribution is a mixture distribution (where p; = 1/n)
o The component identity variable c is a latent variable
o Whose values are not observed
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Gaussian Mixture Model

o A mixture model is called the Gaussian mixture model iff
PO(x=xlc=i;0") =/ D(x=x|c=i;u® x0) vi

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Machine Learning 57/78



Gaussian Mixture Model

o A mixture model is called the Gaussian mixture model iff
PO(x=xlc=i;0") =/ D(x=x|c=i;u® x0) vi
o Variants: () =% or £() = diag(c) or £ = oI
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Gaussian Mixture Model

o A mixture model is called the Gaussian mixture model iff
PO(x=xlc=i;0") =/ D(x=x|c=i;u® x0) vi
o Variants: () =% or £() = diag(c) or £ = oI
o Any smooth density can be approximated by a Gaussian mixture
model with enough components

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Machine Learning 57/78



Outline

(@ Common Parametrizing Functions
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Parametrizing Functions

o A probability distribution P(0) is parametrized by 0
o In ML, 6 may be the output value of a deterministic function
o Called parametrizing function
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Logistic Function

o The logistic function (a special case of sigmoid functions) is

defined as: .
ol P
exp(x)+1  I+exp(—x)
0.5
L | o |
6 -4 -2 0 2 4 6

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Machine Learning 60 /78



Logistic Function

o The logistic function (a special case of sigmoid functions) is

defined as: .
ol P
exp(x)+1  I+exp(—x)
0.5
L | o |
6 -4 -2 0 2 4 6

o Always takes on values between (0, 1)

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Machine Learning 60 /78



Logistic Function

o The logistic function (a special case of sigmoid functions) is

defined as: .
ol P
exp(x)+1  I+exp(—x)
0.5
L | o |
6 -4 -2 0 2 4 6

o Always takes on values between (0, 1)

o Commonly used to produce the p parameter of Bernoulli distribution

Shan-Hung Wu (CS, NTHU) Prob. & Info. Theory Machine Learning 60 /78



Softplus Function

o The softplus function :

£ (x) = log(1 +exp(x))

10+

10 5
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Softplus Function

o The softplus function :

£ (x) = log(1 +exp(x))

10+

10 5

o A “softened” version of x* = max(0,x)
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Softplus Function

o The softplus function :

¢ (x) = log(1 +exp(x))

10+

10 5

o A “softened” version of x* = max(0,x)
o Range: (0,)

o Useful for producing the B or ¢ parameter of Gaussian distribution
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Properties [Homework]

o l—-0o(x)=0(—x)
o logo(x) = —¢(—x)
o Fo(x) =0 (1-0(x)

°o £ (x)=0

o Vx€(0,1),67!(x) =log (1%)
o Vx>0, !(x) =log(exp(x) — 1)
o {(x) = [, o(y)dy

0 L(x)—C(—x)=x

o §(—x) is the softened x~ = max(0, —x)
o x=xt—x"
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Outline

Information Theory
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What'’s Information Theory

o Probability theory allows us to make uncertain statements and reason
in the presence of uncertainty
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What'’s Information Theory

o Probability theory allows us to make uncertain statements and reason
in the presence of uncertainty

o Information theory allows us to quantify the amount of uncertainty
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Self-Information

o Given a random variable X, how much information you receive when
seeing an event X = x?
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Self-Information

o Given a random variable X, how much information you receive when
seeing an event X = x?

@ Likely events should have low information
o E.g., we are less surprised when tossing a biased coins
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Self-Information

o Given a random variable X, how much information you receive when
seeing an event X = x?

@ Likely events should have low information
o E.g., we are less surprised when tossing a biased coins
@ Independent events should have additive information
o E.g, “two heads” should have twice as much info as “one head”
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Self-Information

o Given a random variable X, how much information you receive when

seeing an event X = x?

@ Likely events should have low information
o E.g., we are less surprised when tossing a biased coins

@ Independent events should have additive information
o E.g, “two heads” should have twice as much info as “one head”

o The self-information:

I(x =x) = —logP(x =x)
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Self-Information

o Given a random variable x, how much information you receive when

seeing an event X = x?

@ Likely events should have low information
o E.g., we are less surprised when tossing a biased coins

@ Independent events should have additive information
o E.g, “two heads” should have twice as much info as “one head"”

o The self-information:

I(x =x) = —logP(x =x)

o Called bit if base-2 logarithm is used
o Called nat if base-e
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Entropy

o Self-information deals with a particular outcome
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Entropy

o Self-information deals with a particular outcome
o We can quantify the amount of uncertainty in an entire probability
distribution using the entropy:

H(x ~ P) = Bxepll(x)] = = L) logP(x) or — [ p(x)logp(x)dx

o Let Olog0 = lim,_,gxlogx =0
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Entropy

o Self-information deals with a particular outcome
o We can quantify the amount of uncertainty in an entire probability
distribution using the entropy:

H(x ~P) = Exp[I(x)] = —ZP(x) logP(x) or — /p(x) logp(x)dx
o Let 0log0 = lim,_,gxlogx =0

o Called Shannon entropy when x is discrete; differential entropy
when x is continuous
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Entropy

o Self-information deals with a particular outcome
o We can quantify the amount of uncertainty in an entire probability
distribution using the entropy:

H(x ~ P) = Bxepll(x)] = = L) logP(x) or — [ p(x)logp(x)dx

o Let 0log0 = lim,_,gxlogx =0
o Called Shannon entropy when x is discrete; differential entropy
when x is continuous

. Shannon entropy of a binary random variable
)7 . T

0.6

0.5

0.4

Shannon entropy in nats

L
0.0 .2 0.4 0.6 0.8 1.0

Figure: Shannon entropy H(x) over Bernoulli distributions with different p.
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Average Code Length

o Shannon entropy gives a lower bound on the number of “bits” needed
on average to encode values drawn from a distribution P
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Average Code Length

o Shannon entropy gives a lower bound on the number of “bits” needed
on average to encode values drawn from a distribution P
o Consider a random variable x ~ Uniform having 8 equally likely states

o To send a value x to receiver, we would encode it into 3 bits
o Shannon entropy: H(x ~ Uniform) = —8 x %logzé =3
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Average Code Length

o Shannon entropy gives a lower bound on the number of “bits” needed
on average to encode values drawn from a distribution P
o Consider a random variable x ~ Uniform having 8 equally likely states
o To send a value x to receiver, we would encode it into 3 bits
o Shannon entropy: H(x ~ Uniform) = —8 x %logzé =3

o If the probabilities of the 8 states are (%,%,é,f—wé,épé,é) instead
o H(x)=2

o The encoding 0,10,110,1110,111100,111101,111110,111111 gives the
average code length 2
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Kullback-Leibler (KL) Divergence

o How many extra “bits’ needed in average to transmit a value drawn
from distribution P when we use a code that was designed for another
distribution Q?
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Kullback-Leibler (KL) Divergence

o How many extra “bits’ needed in average to transmit a value drawn
from distribution P when we use a code that was designed for another
distribution Q?

o Kullback-Leibler (KL) Divergence or (relative entropy) from
distribution Q to P:

Dyt (PI|Q) = Exp [1ogg<(’;)>]= Eyp [logQ(x)] — H(x ~ P)

o The term —Exp [logQ(x)] is called the cross entropy
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Kullback-Leibler (KL) Divergence

o How many extra “bits’ needed in average to transmit a value drawn
from distribution P when we use a code that was designed for another
distribution Q?

o Kullback-Leibler (KL) Divergence or (relative entropy) from
distribution Q to P:

P(x)

DKL(PHQ) = EXNP [log @

] = —Ex-p[logQ(x)] —H(x ~ P)

o The term —Exp [logQ(x)] is called the cross entropy

o If P and Q are independent, we can solve
arnginDKL(PHQ)

by
arg mén —Ex~p [logQ(x)]
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Properties

o Dki(P||Q) >0, VP,Q
o Dki(P||Q) =0 iff P and Q are equal almost surely
o KL divergence is asymmetric, i.e., Dgy(P||Q) # Dkr(Q||P)

V1

Figure: KL divergence for two normal distributions.
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Minimizer of KL Divergence

o Given P, we want to find Q* that minimizes the KL divergence
o Q(from) — argming Dkp. (P|Q) or Q*(to) — argming Dkp. (Q||P)?
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Minimizer of KL Divergence

Given P, we want to find Q* that minimizes the KL divergence
Q*(frem) — arg ming Diy.(P||Q) or Q*(*®) = arg ming Dxy.(Q||P)?
Q*(from) places high probability where P has high probability

© © o o

Q*(*°) places low probability where P has low probability

q = argmin Dk, (pllq) = argmin Dk (¢(|p)

— p(x)
- q(z)

Probability Density

Probability Density

Figure: Approximating a mixture P of two Gaussians using a single Gaussian Q.
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Outline

(@ Application: Decision Trees & Random Forest
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Decision Trees

o Given a supervised dataset X = {(x(?),y()

o Can we find out a tree-like function f (i.e, a set of rules) such that

Fx@)y =y07?

N
i=1

- T

e \
| temp>70°F
L /

ves w

e ~ ~ N
[ wind > 2 mph | wind>45mph )
'\\. _ e N . 7-’,/
Y‘ES/ T \No YES/ T \no

- o~
| pres>26inHg )

Yves / \ NO

/ \
Rain No rain
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Norain  Rain e ™~
[ pres>31inHg )
S =/

-

YES / '\ NO
/ N

Hain No rain
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Training a Decision Tree

o Start from root which corresponds to all data points
{(x,yD) : Rules = 0)}

o Recursively split leaf nodes until data corresponding to children are
“pure” in labels
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Training a Decision Tree

o Start from root which corresponds to all data points
{(x,yD) : Rules = 0)}

o Recursively split leaf nodes until data corresponding to children are
“pure” in labels

o How to split?
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Training a Decision Tree

o Start from root which corresponds to all data points
{(x,yD) : Rules = 0)}

o Recursively split leaf nodes until data corresponding to children are
“pure” in labels

o How to split? Find a cutting point (j,v) among all unseen attributes
such that after partitioning the corresponding data points
xparent — £(x() y() : Rules)} into two groups

xleft = £(x(® (0 ; RulesU{x]@ <v}}, and
SHEE i

S/ % xright — {(x@ (). RulesU{x]@ >,
P Ny the “impurity” of labels drops the most
"\\Weak/\‘ %

6yes/2no 3yes/3no
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Training a Decision Tree

o Start from root which corresponds to all data points
{(x,yD) : Rules = 0)}

o Recursively split leaf nodes until data corresponding to children are
“pure” in labels

o How to split? Find a cutting point (j,v) among all unseen attributes
such that after partitioning the corresponding data points
xparent — £(x() y() : Rules)} into two groups

xleft = £(x(® (0 ; RulesU{x]@ <v}}, and
SHEE i

’ igh ) yli '

xright _ {(x(l),y(’)) : RulesU{x]@ > V}},
- E \ B >\ _ the “impurity” of labels drops the most, i.e., solve
(\Weak/\‘ %

6yes/2no 3yes/3no argmax (Impurity(Xparent) — Impurity(Xleft, Xright))
IV

)
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Impurity Measure

arg max (Impurity(Xpare"t) — Impurity(X'f, Xright))
JV

o What's Impurity(-)?
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Impurity Measure

arg max (Impurity(Xpare"t) — Impurity(X'f, Xright))
JV

o What's Impurity(-)?

o Entropy is a common choice:
Impurity (XP2"*"") = H[y ~ Empirical (XP2""")]

x0)

WH[y ~ Empirical (X()]

Impurity(X'eﬁ ’ Xright) _

i=left,right
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Impurity Measure

arg max (Impurity(Xpare"t) — Impurity(X'f, Xright))
JV

o What's Impurity(-)?

o Entropy is a common choice:
Impurity (XP2"*"") = H[y ~ Empirical (XP2""")]

X0

Impurity(Xleﬁ, Xright) _ W

i=left,right

H[y ~ Empirical(X!)]

o In this case, Impurity (XP2re"t) — Impurity (X'¢t, X"&ht) is called the
information gain
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Random Forests

o A decision tree can be very deep
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Random Forests

o A decision tree can be very deep
o Deeper nodes give more specific rules

o Backed by less training data
o May not be applicable to testing data

o How to ensure the generalizability of a decision tree?
o l.e., to have high prediction accuracy on testing data
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Random Forests

o A decision tree can be very deep
o Deeper nodes give more specific rules

o Backed by less training data
o May not be applicable to testing data

o How to ensure the generalizability of a decision tree?
o l.e., to have high prediction accuracy on testing data

@ Pruning (e.g., limit the depth of the tree)
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Random Forests

o A decision tree can be very deep
o Deeper nodes give more specific rules

o Backed by less training data
o May not be applicable to testing data

o How to ensure the generalizability of a decision tree?
o l.e., to have high prediction accuracy on testing data

@ Pruning (e.g., limit the depth of the tree)

@ Random forest: an ensemble of many (deep) trees
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Training a Random Forest

@ Randomly pick M samples from the training set with replacement
o Called the bootstrap samples
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Training a Random Forest

@ Randomly pick M samples from the training set with replacement
o Called the bootstrap samples
@ Grow a decision tree from the bootstrap samples. At each node:

@ Randomly select K features without replacement
@ Find the best cutting point (j,v) and split the node
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Training a Random Forest

@ Randomly pick M samples from the training set with replacement
o Called the bootstrap samples

@ Grow a decision tree from the bootstrap samples. At each node:
@ Randomly select K features without replacement
@ Find the best cutting point (j,v) and split the node

® Repeat the steps 1 and 2 for T times to get T trees
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Training a Random Forest

@ Randomly pick M samples from the training set with replacement
o Called the bootstrap samples

@ Grow a decision tree from the bootstrap samples. At each node:
@ Randomly select K features without replacement
@ Find the best cutting point (j,v) and split the node

® Repeat the steps 1 and 2 for T times to get T trees

@ Aggregate the predictions made by different trees via the majority
vote
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Training a Random Forest

@ Randomly pick M samples from the training set with replacement
o Called the bootstrap samples
@ Grow a decision tree from the bootstrap samples. At each node:

@ Randomly select K features without replacement
@ Find the best cutting point (j,v) and split the node

® Repeat the steps 1 and 2 for T times to get T trees

@ Aggregate the predictions made by different trees via the majority
vote

o Each tree is trained slightly differently because of Step 1 and 2(a)

o Provides different “perspectives’ when voting
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Decision Boundaries
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Decision Trees vs. Random Forests

o Cons of random forests:
o Less interpretable model
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Decision Trees vs. Random Forests

o Cons of random forests:
o Less interpretable model
o Pros:
o Less sensitive to the depth of trees
o The majority voting can “absorb” the noise from individual trees
o Can be parallelized
o Each tree can grow independently
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