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Numerical Computation

o Machine learning algorithms usually require a high amount of
numerical computation in involving real numbers
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Numerical Computation

o Machine learning algorithms usually require a high amount of
numerical computation in involving real numbers

o However, real numbers cannot be represented precisely using a finite
amount of memory

o Watch out the numeric errors when implementing machine learning
algorithms
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Overflow and Underflow |

o Consider the softmax function
softmax : R? — R<:

Input Output

exp(xi)

Y9 avn(v.) ]
j=1 exp(x]) K D|5 r!s 07 O.|46 07 0|28

softmax(x); =

o Commonly used to transform a group of real
values to “probabilities”
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Overflow and Underflow |

o Consider the softmax function
softmax : R? — R<:

Input Output

__expx)
Zjdzl CXP(X]’) 0.5 | L | L

K | 05 017 046 0.1 028

softmax (x);

o Commonly used to transform a group of real

values to “probabilities”
o Analytically, if x; = ¢ for all i, then softmax(x); = 1/a
o Numerically, this may not occur when |¢| is large

o A positive ¢ causes overflow
o A negative ¢ causes underflow and divide-by-zero error

o How to avoid these errors?
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Overflow and Underflow Il
o Instead of evaluating softmax(x) directly, we can transform x into

Z =x —maxux;1
1

and then evaluate softmax(z)
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Overflow and Underflow Il

o Instead of evaluating softmax(x) directly, we can transform x into
Z =x —maxux;1
1
and then evaluate softmax(z)

exp(xi—m) __ exp(x;)/exp(m) __ exp(x;)
Lexp(xj)/exp(m) — Yexp(x))

o softmax(z); =

i = Texplyg—m) = softmax(x);
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Overflow and Underflow Il

©

Instead of evaluating softmax(x) directly, we can transform x into
Z =x —maxux;1
1

and then evaluate softmax(z)

_ exp(xi—m) __ exp(xi)/exp(m) __ exp(x;)
! Xexplyj—m) T Yexp(xj)/exp(m) — Lexp(xj)

No overflow, as exp(largest attribute of x) =1

©

softmax(z) = softmax(x);

©

o Denominator is at least 1, no divide-by-zero error

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 6 /74



Overflow and Underflow Il

©

Instead of evaluating softmax(x) directly, we can transform x into
Z =x —maxux;1
1

and then evaluate softmax(z)

_ exp(xi—m) __ exp(xi)/exp(m) __ exp(x;)
! Xexplyj—m) T Yexp(xj)/exp(m) — Lexp(xj)

No overflow, as exp(largest attribute of x) =1

©

softmax(z) = softmax(x);

©

o Denominator is at least 1, no divide-by-zero error

©

What are the numerical issues of logsoftmax(z)? How to stabilize it?
[Homework]
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Poor Conditioning |

o The “conditioning” refer to how much the input of a function can
change given a small change in the output
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Poor Conditioning |

o The “conditioning” refer to how much the input of a function can
change given a small change in the output

Suppose we want to solve x in f(x) =Ax =y, where A~! exists

©

©

The condition umber of A can be expressed by

©

We say the problem is poorly (or ill-) conditioned when k(A) is large
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Poor Conditioning |

o The “conditioning” refer to how much the input of a function can
change given a small change in the output

o Suppose we want to solve x in f(x) =Ax =y, where A™! exists

o The condition umber of A can be expressed by

We say the problem is poorly (or ill-) conditioned when k(A) is large

©

Hard to solve x = A~y precisely given a rounded y
o A~ amplifies pre-existing numeric errors

()
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Poor Conditioning 11

o The contours of f(x) = 3x"Ax+b"x+c, where A is symmetric:

K(A}=100

o When k(A) is large, f stretches space differently along different
attribute directions

o Surface is flat in some directions but steep in others
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Poor Conditioning 11

o The contours of f(x) = 3x"Ax+b"x+c, where A is symmetric:

kAy=10 K(A}=100

o When k(A) is large, f stretches space differently along different
attribute directions

o Surface is flat in some directions but steep in others

o Hard to solve f/(x) =0=>x=A""b
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Outline

(@ Optimization Problems
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Optimization Problems

o An optimization problem is to minimize a cost function f : R? — R:

min,f(x)
subject tox € C

where C C R? is called the feasible set containing feasible points
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Optimization Problems

o An optimization problem is to minimize a cost function f : R? — R:

min,f(x)
subject tox € C

where C C R? is called the feasible set containing feasible points

o Or, maximizing an objective function
o Maximizing f equals to minimizing —f

o If C=RY, we say the optimization problem is unconstrained

o C can be a set of function constrains, i.e., C = {x:g"(x) <0};

o Sometimes, we single out equality constrains
€ = {x:40(x) < 0,40 (x) = 0},

o Each equality constrain can be written as two inequality constrains

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 10 / 74



Minimums and Optimal Points

Saddle Point

=7 \’
< f"zzzz“'l"%.’"‘\ \\\‘." by
0";2;’7111111
1 22

Global Minimum

o Critical points: {x:f'(x) =0}
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Minimums and Optimal Points

Saddle Point
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Global Minimum

o Critical points: {x:f'(x) =0}
o Minima: {x:f"(x) =0 and H(f)(x) = O}, where H(f)(x) is the Hessian
matrix (containing curvatures) of f at point x
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Minimums and Optimal Points

Saddle Point
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Local Minimum
Global Minimum

o Critical points: {x:f'(x) =0}
o Minima: {x:f"(x) =0 and H(f)(x) = O}, where H(f)(x) is the Hessian
matrix (containing curvatures) of f at point x
o Maxima: {x:f'(x) =0 and H(f)(x) < O}
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Minimums and Optimal Points

Saddle Point
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Local Minimum
Global Minimum

o Critical points: {x:f'(x) =0}
o Minima: {x:f"(x) =0 and H(f)(x) = O}, where H(f)(x) is the Hessian
matrix (containing curvatures) of f at point x
o Maxima: {x:f'(x) =0 and H(f)(x) < O}
o Plateau or saddle points: {x:f’(x) =0 and H(f)(x) = O or indefinite}
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Minimums and Optimal Points

Saddle Point
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Global Minimum

o Critical points: {x:f'(x) =0}
o Minima: {x:f"(x) =0 and H(f)(x) = O}, where H(f)(x) is the Hessian
matrix (containing curvatures) of f at point x
o Maxima: {x:f'(x) =0 and H(f)(x) < O}
o Plateau or saddle points: {x:f'(x) =0 and H(f)(x) = O or indefinite}
o y* = mingecf(x) € R is called the global minimum
o Global minima vs. local minima
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Minimums and Optimal Points
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Global Minimum

o Critical points: {x:f'(x) =0}

o Minima: {x:f"(x) =0 and H(f)(x) = O}, where H(f)(x) is the Hessian

matrix (containing curvatures) of f at point x

o Maxima: {x:f'(x) =0 and H(f)(x) < O}

o Plateau or saddle points: {x:f'(x) =0 and H(f)(x) = O or indefinite}
o y* = mingecf(x) € R is called the global minimum

o Global minima vs. local minima
o x* = argmineccf(x) is called the optimal point
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Convex Optimization Problems

o An optimization problem is convex iff

@ f is convex by having a “convex hull”
surface, i.e.,

H(f)(x) = 0,Vx
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Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 12 / 74



Convex Optimization Problems

o An optimization problem is convex iff

@ f is convex by having a “convex hull”
surface, i.e.,

S
SR
SNy,
VAR R
H(f)(x) = 0,vx N

@ gi(x)'s are convex and h;j(x)'s are affine
o Convex problems are “easier” since

o Local minima are necessarily global minima
o No saddle point
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Convex Optimization Problems

o An optimization problem is convex iff

@ f is convex by having a “convex hull”
surface, i.e.,

S
SR
SNy,
VAR R
H(f)(x) = 0,vx N

@ gi(x)'s are convex and h;j(x)'s are affine
o Convex problems are “easier” since

o Local minima are necessarily global minima
o No saddle point
o We can get the global minimum by solving

fx)=0
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Analytical Solutions vs. Numerical Solutions |
o Consider the problem:

o1
argmin > (4x —b|>+ 2 x )

o Analytical solutions?
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Analytical Solutions vs. Numerical Solutions |

o Consider the problem:
argmln (HAx b|*+Alx|?)

o Analytical solutions?
o The cost function f(x) = 4x" (ATA+AI)x —b"Ax+ 1||b||* is convex
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Analytical Solutions vs. Numerical Solutions |

©

Consider the problem:

argmln (HAx b|*+Alx|?)

©

Analytical solutions?
The cost function f(x) = 1x" (ATA +AI)x —b Ax+ 1||b||? is convex
Solving f'(x) =x" (ATA+AI) —b"A =0, we have

©

©

Xt = (ATA + M) T ATh
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Analytical Solutions vs. Numerical Solutions |l
o Problem (A € R™4 b cR", A € R):

1
are min — (||[Ax —b|* + A|jx||?
gmin > (JAx B[+ 2 x]P)

o Analytical solution: x* = (ATA—F?LI)flATb
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Analytical Solutions vs. Numerical Solutions |l
o Problem (A € R™4 b cR", A € R):

1
are min — (||[Ax —b|* + A|jx||?
gmin > (JAx B[+ 2 x]P)

o Analytical solution: x* = (ATA—F?LI)flATb
o In practice, we may not be able to solve f/(x) = 0 analytically and get
x in a closed form
o Eg.,whenA=0andn<d
o Even if we can, the computation cost may be too hight
o E.g, inverting ATA + AT € R takes O(d®) time
o Numerical methods: since numerical errors are inevitable, why not
just obtain an approximation of x*7

o Start from x(©, iteratively calculating x("),x®, ... such that
FM) > x> ...

o Usually require much less time to have a good enough x(*) ~ x*
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Outline

(3 Unconstrained Optimization
o Gradient Descent
o Newton's Method
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Unconstrained Optimization

o Problem:

min f(x
min (x),

where f: R? — R is not necessarily convex
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General Descent Algorithm

Input: x(©) € R?, an initial guess

repeat
Determine a descent direction d®) ¢ R? :
Line search: choose a step size or learning rate n¥) > 0 such
that £(x +n®d") is minimal along the ray x() + n(a® ;
Update rule: x(+D « x(0) 4 n(0g® .

until convergence criterion is satisfied;
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General Descent Algorithm

Input: x(©) € R?, an initial guess

repeat
Determine a descent direction d®) ¢ R? :
Line search: choose a step size or learning rate n¥) > 0 such
that £(x +n®d") is minimal along the ray x() + n(a® ;
Update rule: x(+D « x(0) 4 n(0g® .

until convergence criterion is satisfied;

o Convergence criterion: [x(1) — x| < g, ||[VF(x )| <&, etc.
o Line search step could be skipped by letting n(*) be a small constant
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Outline

(3 Unconstrained Optimization
o Gradient Descent
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Gradient Descent |

o By Taylor's theorem, we can approximate f locally at point x(*) using a
linear function f, i.e.,

) = Flex) =)+ V()T (e —x)

for x close enough to x(®)
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Gradient Descent |

o By Taylor's theorem, we can approximate f locally at point x(*) using a
linear function f, i.e.,

) = Flex) =)+ V()T (e —x)

for x close enough to x(®)

(r+1

o This implies that if we pick a close x"*!) that decreases f, we are

likely to decrease f as well
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Gradient Descent |

o By Taylor's theorem, we can approximate f locally at point x(*) using a
linear function f, i.e.,

) = Flex) =)+ V()T (e —x)

for x close enough to x(®)

(r+1

o This implies that if we pick a close x"*!) that decreases f, we are

likely to decrease f as well
o We can pick x("1) = x() —nVf(x®) for some small 1 > 0, since

FaD) =) —n Vi D)? < Fx®)
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Gradient Descent ||

Input: x(©) € R? an initial guess, a small >0
repeat

XD () — nvf(x") ;
until convergence criterion is satisfied;
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Is Negative Gradient a Good Direction? |

o Update rule:
x(H'l) — x(l) — an(x(t))
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Is Negative Gradient a Good Direction? |

o Update rule:

XD () an(x(t))

o Yes, as Vf(x() € RY denotes
the steepest ascent direction of
f at point x)

o —Vf(x®) € R? the steepest
descent direction
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Is Negative Gradient a Good Direction? |

o Update rule:

XD () an(x(t))

o Yes, as Vf(x() € RY denotes
the steepest ascent direction of
f at point x)

o —Vf(x®) € R? the steepest
descent direction

o But why?
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Is Negative Gradient a Good Direction? ||

o Consider the slope of f in a given direction u at point x()

o This is the directional derivative of f, i.e., the derivative of function
f(x® 4+ eu) with respect to &, evaluated at € =0
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Is Negative Gradient a Good Direction? ||

o Consider the slope of f in a given direction u at point x()

o This is the directional derivative of f, i.e., the derivative of function
f(x® 4+ eu) with respect to &, evaluated at € =0

o By the chain rule, we have %f(x(’) +eu) = VF(x") + eu) "u, which
equals to Vf(x())Tu when £ =0

Theorem (Chain Rule)
Letg:R— R4 and f : R? - R, then

(Fog) (x) =f(gx))g'(x) = Vf(g(x)) "
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Is Negative Gradient a Good Direction? Ill

o To find the direction that decreases f fastest at x(*), we solve the
problem:

arg min V(x") u=arg min ||[VF(x")||u|cos

u,Juf=1 w,|luf=1

where 6 is the the angle between u and Vf(x())
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Is Negative Gradient a Good Direction? Ill

o To find the direction that decreases f fastest at x(*), we solve the
problem:

arg min V(x") u=arg min ||[VF(x")||u|cos

u,Juf=1 w,|luf=1

where 6 is the the angle between u and Vf(x())

o This amounts to solve
argmincos 0
u

o So, u* = —Vf(x") is the steepest descent direction of f at point x(*)
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How to Set Learning Rate 17 |

f Initial Point f

\ /_— Gradient
’l
I
i Global Minimum

X X

o Too small an 1 results in slow descent speed and many iterations

o Too large an n may overshoot the optimal point along the gradient
and goes uphill
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How to Set Learning Rate 17 |

f Initial Point f

\ /_— Gradient
’l
I
i Global Minimum

X X

o Too small an 1 results in slow descent speed and many iterations
o Too large an n may overshoot the optimal point along the gradient
and goes uphill
o One way to set a better 1 is to leverage the curvatures of f
o The more curvy f at point x(), the smaller the n
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How to Set Learning Rate n? Il

o By Taylor's theorem, we can approximate f locally at point x(*) using a

quadratic function f:

Fx) ~Fx®) = £(x®) + VFED) T (x —x0)+
3 —xO)TH() ) (e —x)

for x close enough to x()
o H(f)(x\) € R¥* is the (symmetric) Hessian matrix of f at x(*)
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How to Set Learning Rate n? Il

o By Taylor's theorem, we can approximate f locally at point x(*) using a
quadratic function f:

Fx) ~Fx®) = £(x®) + VFED) T (x —x0)+
3 —xO)TH() ) (e —x)

for x close enough to x()
o H(f)(x\) € R¥* is the (symmetric) Hessian matrix of f at x(*)

o Line search at step r:
argminnﬂ W —nVf () =
argming f (<)) — nVf () TVf (x) + B VF () TH(F) (1) VF (x)
o If fFx)TH(f)(xD)VF(x®) > 0, we can solve
%f(x(’) —nVF(x")) =0 and get:
Vf( )TVf (x)
Vf(xW)TH(f) (xO)Vf (x )
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Problems of Gradient Descent
o Gradient descent is designed to find the steepest descent direction at

step x()
o Not aware of the conditioning of the Hessian matrix H(f)(x®)
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Problems of Gradient Descent

o Gradient descent is designed to find the steepest descent direction at
step x()
o Not aware of the conditioning of the Hessian matrix H(f)(x®))
o If H(f)(x\) has a large condition number, then f is curvy in some
directions but flat in others at x()
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Problems of Gradient Descent

o Gradient descent is designed to find the steepest descent direction at
step x
o Not aware of the conditioning of the Hessian matrix H(f)(x®)

o If H(f)(x\) has a large condition number, then f is curvy in some
directions but flat in others at x()

o E.g., suppose f is a quadratic

function whose Hessian has a large 20

condition number 10

o A step in gradient descent may a0
overshoot the optimal points along

flat attributes —10

o “Zig-zags" around a narrow valley —-20

—30
—30 —20 —10 0 10 20
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Problems of Gradient Descent

o Gradient descent is designed to find the steepest descent direction at
step x
o Not aware of the conditioning of the Hessian matrix H(f)(x®)

o If H(f)(x\) has a large condition number, then f is curvy in some
directions but flat in others at x()

o E.g., suppose f is a quadratic
function whose Hessian has a large 20
condition number 10

o A step in gradient descent may

. . 0
overshoot the optimal points along

T2

flat attributes —10

o “Zig-zags" around a narrow valley —-20

o Why not take conditioning into ~30
account when picking descent 780 =20 710001020

directions?
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Outline

(3 Unconstrained Optimization

o Newton's Method
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Newton’s Method |

o By Taylor's theorem, we can approximate f locally at point x(*) using a
quadratic function f, i.e.,

£0x) = Fix) = f(x
L= x ) TH() ) (- x0)

for x close enough to x(®)
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Newton’s Method |

o By Taylor's theorem, we can approximate f locally at point x(*) using a
quadratic function f, i.e.,

fx) = flex) = £(

I— &
—
=
8
=
_‘
=
)
CX
=
|
2

for x close enough to x(®)

o If f is strictly convex (i.e., H(f)(a) = O,Va), we can find x(*1) that
minimizes f in order to decrease f

o Solving VF(x(+1D:x() =0, we have

K7 = x0 — () () Vf ()

o H(f)(xD)~" as a “corrector” to the negative gradient
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Newton’s Method Il

Input: x© € R? an initial guess, 11 >0
repeat

X0 ) nH ()0
until convergence criterion is satisfied,
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Newton’s Method Il

Input: x© € R? an initial guess, 11 >0
repeat

X0 ) nH ()0
until convergence criterion is satisfied,

o In practice, we multiply the shift by a small 1 > 0 to make sure that
x*+1) s close to x(*)
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Newton’s Method Il

o If f is positive definite quadratic, then only one step is required

4.4

421 B
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General Functions
o Update rule: x(+) « x( —nH(f)(x)~Vf(x)

o What if f is not strictly convex?
o H(f)(x") < 0 or indefinite
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General Functions
o Update rule: x(+) « x( —nH(f)(x)~Vf(x)
o What if f is not strlctly convex?
o H(f)(x\) < 0 or indefinite

o The Levenberg—Marquardt extension:

XD = (H(f)( )+ozl) Vi(x®) for some o > 0

o With a large a, degenerates into gradient descent of learning rate 1/a
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General Functions

o Update rule: x(+) « x( —nH(f)(x)~Vf(x)
o What if f is not strlctly convex?
o H(f)(x\) < 0 or indefinite

o The Levenberg—Marquardt extension:

x(H) = (H(f)( )+ozl) v/ (x") for some & >0

o With a large a, degenerates into gradient descent of learning rate 1/a

Input: x(© € R an initial guess, 1 >0, & >0
repeat

XD x0 —n (H(F)xD) + ad) ' V(W) ;

until convergence criterion is satisfied;
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Gradient Descent vs. Newton’s Method

o Steps of Gradient descent when f is a Rosenbrock’s banana:

o

o Steps of Newton's method:

o Only 6 steps in total

Shan-Hung Wu (CS, NTHU)

Numerical Optimization

Machine Learning
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Problems of Newton’s Method

o Computing H(f)(x")~! is slow
o Takes O(d?) time at each step, which is much slower then O(d) of
gradient descent
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Problems of Newton’s Method

o Computing H(f)(x")~! is slow
o Takes O(d?) time at each step, which is much slower then O(d) of
gradient descent

o Imprecise x(*1) = x — nH(f)(x®)~'Vf(x")) due to numerical errors
o H(f)(x\) may have a large condition number
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Problems of Newton’s Method

o Computing H(f)(x")~! is slow
o Takes O(d®) time at each step, which is much slower then O(d) of
gradient descent

o Imprecise x(*1) = x — nH(f)(x®)~'Vf(x")) due to numerical errors
o H(f)(x\) may have a large condition number

o Attracted to saddle points (when f is not convex)
o The x("1) solved from VF(x(+1D;x()) = 0 is a critical point
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Outline

(@ Optimization in ML: Stochastic Gradient Descent
o Perceptron
o Adaline
o Stochastic Gradient Descent
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Who is Afraid of Non-convexity?

o In ML, the function to solve is usually the cost function C(w) of a
model IF = {f : f parametrized by w}
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Who is Afraid of Non-convexity?

o In ML, the function to solve is usually the cost function C(w) of a
model IF = {f : f parametrized by w}

o Many ML models have convex cost functions in order to take
advantages of convex optimization

o E.g., perceptron, linear regression, logistic regression, SVMs, etc.
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Who is Afraid of Non-convexity?

o In ML, the function to solve is usually the cost function C(w) of a
model IF = {f : f parametrized by w}
o Many ML models have convex cost functions in order to take
advantages of convex optimization
o E.g., perceptron, linear regression, logistic regression, SVMs, etc.
o However, in deep learning, the cost function of a neural network is
typically not convex
o We will discuss techniques that tackle non-convexity later
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Assumption on Cost Functions

o In ML, we usually assume that the (real-valued) cost function is
Lipschitz continuous and/or have Lipschitz continuous derivatives

o l.e., the rate of change of C if bounded by a Lipschitz constant K:

lIcowDy —c(w)| < K||wH) —w® ||, yw) w?

Wit
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Outline

(@ Optimization in ML: Stochastic Gradient Descent
o Perceptron
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Perceptron & Neurons

o Perceptron, proposed in 1950's by Rosenblatt, is one of the first ML
algorithms for binary classification
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Perceptron & Neurons

o Perceptron, proposed in 1950's by Rosenblatt, is one of the first ML
algorithms for binary classification

o Inspired by McCullock-Pitts (MCP) neuron, published in 1943

Axon
terminals

Myelin sheath /\

—_—
—_—
Input Output
: —_>
D
Signals endrites Signals
—_
—
—_ Cell nucleus
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Perceptron & Neurons

o Perceptron, proposed in 1950's by Rosenblatt, is one of the first ML
algorithms for binary classification
o Inspired by McCullock-Pitts (MCP) neuron, published in 1943

o Our brains consist of interconnected neurons
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Perceptron & Neurons

o Perceptron, proposed in 1950's by Rosenblatt, is one of the first ML
algorithms for binary classification
o Inspired by McCullock-Pitts (MCP) neuron, published in 1943

o Our brains consist of interconnected neurons
o Each neuron takes signals from other neurons as input
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Input Output
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Perceptron & Neurons

o Perceptron, proposed in 1950's by Rosenblatt, is one of the first ML
algorithms for binary classification

o Inspired by McCullock-Pitts (MCP) neuron, published in 1943
o Our brains consist of interconnected neurons
o Each neuron takes signals from other neurons as input

o If the accumulated signal exceeds a certain threshold, an output signal
is generated

Axon
terminals

Myelin sheath /\
—
—
Input Output
: —_>
Signals Dendrites Signals
—
—
—_ Cell nucleus
Shan-Hung Wu (CS, NTHU) Numerical Optimization
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Model

o Binary classification problem:
o Training dataset: X = {(x(),y())};, where x() € R? and y{) € {1,—1}
o Output: a function f(x) =9 such that 9 is close to the true label y
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Model

o Binary classification problem:

o Training dataset: X = {(x(),y())};, where x() € R? and y{) € {1,—1}

o Output: a function f(x) =9 such that 9 is close to the true label y

o Model: {f:f(x;w,b) =sign(w'x —b)}
o sign(a) =1 if a > 0; otherwise 0

Weight update | E I

— 1 rror I

Net input
function
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Model

o Binary classification problem:
o Training dataset: X = {(x(),y())};, where x() € R? and y{) € {1,—1}
o Output: a function f(x) =9 such that 9 is close to the true label y
o Model: {f:f(x;w,b) =sign(w'x —b)}
o sign(a) =1 if a > 0; otherwise 0
o For simplicity, we use shorthand f(x;w) = sign(w " x) where
w= [—b,wl,--- ,WD]T and x = [l,xl, e ,XD}T

Weight update | I
Error
— —

@ Output

Net input Activation
function function
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Iterative Training Algorithm |

@ Initiate w® and learning rate >0

@ Epoch: for each example (x),y(")), update w by

where $) = f(x(0;w()) = sign(w) Tx ()

@ Repeat epoch several times (or until converge)

Shan-Hung Wu (CS, NTHU)
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Iterative Training Algorithm Il

o Update rule:

o If 3 is correct, we have w( 1) =y
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Iterative Training Algorithm Il

o Update rule:

o If 3 is correct, we have w( 1) =y

o If jz(’) is incorrect, we have w1 — (1) +2ny(’)x(t)
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Iterative Training Algorithm Il
o Update rule:

o If 3 is correct, we have w( 1) =y
o If ) is incorrect, we have w(+1) = w() 4+ 27y(0x(®)

o If y\) =1, the updated prediction will more likely to be positive, as
sign(w(+DTx(0) = sign(w) Tx(®) 4 ¢) for some ¢ >0
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Iterative Training Algorithm Il

o Update rule:
W(H—l) = w(t) + n(y(t) 75)(t))x(t)
o If ) is correct, we have w(*1) = ()
o If $ is incorrect, we have w(t1) = () +2ny(t)x(t)
o If y) =1, the updated prediction will more likely to be positive, as

sign(w(+DTx() = sign(w) Tx() 4 ¢) for some ¢ >0
o If y() = —1, the updated prediction will more likely to be negative
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Iterative Training Algorithm Il

o Update rule:
WD = ® (0 5050
o If ) is correct, we have w(*1) = ()
o If $ is incorrect, we have w(t1) = () +2ny(t)x(t)
o If y =1, the updated prediction will more likely to be positive, as

sign(w(+DTx() = sign(w) Tx() 4 ¢) for some ¢ >0
o If y = —1, the updated prediction will more likely to be negative

o Does not converge if the dataset cannot be separated by a hyperplane

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 41 / 74



Outline

(@ Optimization in ML: Stochastic Gradient Descent

o Adaline
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ADAptive Linear NEuron (Adaline)

o Proposed in 1960's by Widrow et al.
o Defines and minimizes a cost function for training:

13/ N
argn}vin Cw;X) = argn}vinil; <y(’) —wa(’))

o Links numerical optimization to ML

Output

Net input Activation Quantizer
function function
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ADAptive Linear NEuron (Adaline)

o Proposed in 1960's by Widrow et al.
o Defines and minimizes a cost function for training:

13/ N
argn}vin Cw;X) = argn}vinil; <y(’) —wa(’))

o Links numerical optimization to ML

o Sign function is only used for binary prediction after training

Net input Activation Quantizer
function function
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Training Using Gradient Descent

o Update rule:
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Training Using Gradient Descent

o Update rule:
w(tJfl) — w(t) _ nVC(w(t))
=w) 40y, —wOTx@)x®

o Since the cost function is convex, the training iterations will converge
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Outline

(@ Optimization in ML: Stochastic Gradient Descent

o Stochastic Gradient Descent
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Cost as an Expectation

o In ML, the cost function to minimize is usually a sum of losses over
training examples

o E.g., in Adaline: sum of square losses (functions)
argmin C(w;X) = argmin — Z (y(’) —w x(‘))
Y Vo2
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Cost as an Expectation

o In ML, the cost function to minimize is usually a sum of losses over

training examples

o E.g., in Adaline: sum of square losses (functions)
argmin C(w;X) = argmin — Z (y(’) —w x(‘))
Y Vo2

o Let examples be i.i.d. samples of random variables (x,y)

o We effectively minimize the estimate of E[C(w)| over the
distribution P(x,y):

argminEy y.p[C(w)]
w

o P(x,y) may be unknown
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Cost as an Expectation

o In ML, the cost function to minimize is usually a sum of losses over
training examples

o E.g., in Adaline: sum of square losses (functions)
argmin C(w;X) = argmin — Z (y(’) —w x(‘))
Y Vo2

o Let examples be i.i.d. samples of random variables (x,y)

o We effectively minimize the estimate of E[C(w)| over the
distribution P(x,y):

argminEy y.p[C(w)]
w

o P(x,y) may be unknown

o Since the problem is stochastic by nature, why not make the training
algorithm stochastic too?
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Stochastic Gradient Descent

Input: w(© € R? an initial guess, n >0, M > 1

repeat

epoch:

Randomly partition the training set X into the minibatches
{X0, (X0 = M;

foreach j do

end

until convergence criterion is satisfied;
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Stochastic Gradient Descent

Input: w(© € R? an initial guess, n >0, M > 1

repeat

epoch:

Randomly partition the training set X into the minibatches
{X0, (X0 = M;

foreach j do

end

until convergence criterion is satisfied;

o C(w;XU)) is still an estimate of Exyp[C(w)]
o XU) are samples of the same distribution P(x,y)
o It's common to set M =1 on a single machine

o E.g., update rule for Adaline: w(+1) = w(®) 4 n(yt) —wOTx)x(®),
which is similar to that of Perceptron
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Stochastic Gradient Descent

Input: w(© € R? an initial guess, n >0, M > 1

repeat

epoch:

Randomly partition the training set X into the minibatches
{X0, (X0 = M;

foreach j do

end

until convergence criterion is satisfied;

o C(w;XU)) is still an estimate of Exyp[C(w)]
o XU) are samples of the same distribution P(x,y)
o It's common to set M =1 on a single machine

o E.g., update rule for Adaline: w(+1) = w(®) 4 n(yt) —wOTx)x(®),
which is similar to that of Perceptron
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SGD vs. GD

o Each iteration can run much faster when M < N
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SGD vs. GD

o Each iteration can run much faster when M < N
o Converges faster (in both #epochs and time) with large datasets

cw

Epoch
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SGD vs. GD

o Each iteration can run much faster when M < N
o Converges faster (in both #epochs and time) with large datasets
o Supports online learning

cw

Epoch
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SGD vs. GD

Each iteration can run much faster when M < N
Converges faster (in both #epochs and time) with large datasets

Supports online learning
But may wander around the optimal points
o In practice, we set 1 = O(t™!)

© 06 0 o

C(w) 0.5

1000 500 0 500 1000 1500 2000
Epoch w
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Outline

(8 Constrained Optimization
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Constrained Optimization

o Problem:
min,f(x)

subject tox € C

o f:RY = R is not necessarily convex
o C={x:g"(x)<0,h)(x) =0}
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Constrained Optimization

o Problem:
min,f(x)

subject tox € C

o f:RY = R is not necessarily convex
o C={x:g"(x)<0,h)(x) =0}
o lterative descent algorithm?
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Common Methods

o Projective gradient descent: if x\¥) falls outside C at step 7, we
“project” back the point to the tangent space (edge) of C

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 51 /74



Common Methods

o Projective gradient descent: if x\¥) falls outside C at step 7, we
“project” back the point to the tangent space (edge) of C

o Penalty/barrier methods: convert the constrained problem into one
or more unconstrained ones

o And more...
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Karush-Kuhn-Tucker (KKT) Methods |

o Converts the problem

minxf( )
subject to x € {x: g (x) <0,A0) (x) = 0},;

into

ming maxy g o> L(X, &, ) =
min, maxa737a20f(x) +Y aig(l) (x) + Y, th(]) (x)
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Karush-Kuhn-Tucker (KKT) Methods |

o Converts the problem

min, f(x)
subject to x € {x: g (x) <0,A0) (x) = 0},;

into

ming maxy g o> L(X, &, ) =
min, maxa737a20f(x) +Y aig(l) (x) + Y, th(]) (x)

© min, maxy g L means “minimize L with respect to x, at which L is
maximized with respect to a and 8"
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Karush-Kuhn-Tucker (KKT) Methods |

o Converts the problem

min, f(x)
subject to x € {x: g (x) <0,A0) (x) = 0},;

into _
ming maxy g o> L(X, &, ) =

miny maxe, g g>0f (¥) + X g (x¥) + L, Bk (x)
© min, maxy g L means “minimize L with respect to x, at which L is

maximized with respect to a and 8"
o The function L(x,a, ) is called the (generalized) Lagrangian
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Karush-Kuhn-Tucker (KKT) Methods |

o Converts the problem

min, f(x)
subject to x € {x: g (x) <0,A0) (x) = 0},;

into

ming maxy g o> L(X, &, ) =
min, maxa737a20f(x) +Y (Xig(l) (x) + Y, th(]) (x)

© min, maxy g L means “minimize L with respect to x, at which L is
maximized with respect to a and 8"

o The function L(x,a, ) is called the (generalized) Lagrangian
o o and B are called KKT multipliers
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Karush-Kuhn-Tucker (KKT) Methods I

o Converts the problem

minxf( )
subject to x € {x: g (x) <0,h0) (x) = 0};;

into .
mingy maxe g o>0 L(X, &, ) =

min, max g g0/ (¥) + ;0! (x) + L, Bih) (x)
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Karush-Kuhn-Tucker (KKT) Methods I

o Converts the problem

min,f(x)
subject to x € {x: g (x) <0,h0) (x) = 0};;

into .
mingy maxe g o>0 L(X, &, ) =

min, max g g0/ (¥) + ;0! (x) + L, Bih) (x)
o Observe that for any feasible point x, we have

max L(x,a,pB)=f(x)

o,f,a>0

o The optimal feasible point is unchanged
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Karush-Kuhn-Tucker (KKT) Methods I

o Converts the problem

min,f(x)
subject to x € {x: g (x) <0,h0) (x) = 0};;

into .
mingy maxe g o>0 L(X, &, ) =

min, maxy g g0/ (%) + ¥; g (x) + ¥; BihY) (x)
o Observe that for any feasible point x, we have

max L(x,a,pB)=f(x)

o,f,a>0

o The optimal feasible point is unchanged

o And for any infeasible point x, we have

max L(x,a,p)=o0
amzo( B)

o Infeasible points will never be optimal (if there are feasible points)
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Alternate lterative Algorithm

min_ max /() + ¥ o) (x) + ¥ B0 x)
i j

X o,B,0>0
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Alternate lterative Algorithm

min max f(x)+ Z Oélg (x)+ Z th(i) (x)
J

X o,B,0>0

o “Large” o and B create a “barrier” for feasible solutions

Input: x(© an initial guess, a(® =0, [3

repeat

Solve x(1) = argminxL(x;Oc(’),B(’)) using some iterative

algorithm starting at x(9;

if x(*1) ¢ C then
Increase ¥ to get altD;
Get [3<t+1) by increasing the magnitude of B(t) and set
sign(B"!)) = sign(h0) (x(+)));

end

until x(+1) e C;
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KKT Conditions

Theorem (KKT Conditions)

If x* is an optimal point, then there exists KKT multipliers a* and B* such
that the Karush-Kuhn-Tucker (KKT) conditions are satisfied:
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KKT Conditions

Theorem (KKT Conditions)

If x* is an optimal point, then there exists KKT multipliers a* and B* such
that the Karush-Kuhn-Tucker (KKT) conditions are satisfied:
Lagrangian stationarity: VL(x*,o*,f") =0

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 55 / 74



KKT Conditions

Theorem (KKT Conditions)
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KKT Conditions

Theorem (KKT Conditions)

If x* is an optimal point, then there exists KKT multipliers a* and B* such
that the Karush-Kuhn-Tucker (KKT) conditions are satisfied:
Lagrangian stationarity: VL(x*,o*,f") =0

Primal feasibility: g\)(x*) <0 and hY)(x*) = 0 for all i and j

Dual feasibility: o* > 0

Complementary slackness: a;g"(x*) =0 for all i.

o Only a necessary condition for x* being optimal

o Sufficient if the original problem is convex
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Complementary Slackness

o Why o;g"(x*) =07
o For x* being feasible, we have g (x*) <0
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Complementary Slackness

o Why ;g (x*) =07

o For x* being feasible, we have g (x*) <0

If g is active (i.e., g¥)(x*) = 0) then og (x*) =0
If ¢ is inactive (i.e., g¥)(x*) < 0), then

o To maximize the a;g!)(x*) term in the Lagrangian in terms of q;
subject to o; > 0, we have o =0

©

©

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 56 / 74



Complementary Slackness

o Why o;g"(x*) =07
o For x* being feasible, we have g (x*) <0
If g is active (i.e., g¥)(x*) = 0) then og (x*) =0
If ¢ is inactive (i.e., g¥)(x*) < 0), then
o To maximize the a;g!)(x*) term in the Lagrangian in terms of q;
subject to o; > 0, we have o =0
o Again agl)(x*) =0

©

©

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 56 / 74



Complementary Slackness

o Why o;g"(x*) =07
o For x* being feasible, we have g (x*) <0
If g is active (i.e., g¥)(x*) = 0) then og (x*) =0
If ¢ is inactive (i.e., g¥)(x*) < 0), then
o To maximize the a;g!)(x*) term in the Lagrangian in terms of q;
subject to o; > 0, we have o =0
o Again agl)(x*) =0
So what?
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Complementary Slackness

o Why og(x*) =07
o For x* being feasible, we have g (x*) <0
If g is active (i.e., g¥)(x*) = 0) then og (x*) =0
If ¢ is inactive (i.e., g¥)(x*) < 0), then
o To maximize the a;g!)(x*) term in the Lagrangian in terms of q;
subject to o; > 0, we have o =0
o Again agl)(x*) =0
So what?
o o >0 implies g (x*) =0
o Once x* is solved, we can quickly find out the active inequality
constrains by checking ¢ >0

©

©

()
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Outline

(6 Optimization in ML: Regularization
o Linear Regression
o Polynomial Regression
o Generalizability & Regularization
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(6 Optimization in ML: Regularization
o Linear Regression
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The Regression Problem

o Given a training dataset: X = {(x(0 y)}¥

o x( € RP, called explanatory variables (attributes/features)
o y) € R, called response/target variables (labels)

o Goal: to find a function f(x) = such that 3 is close to the true label y
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The Regression Problem

©

. . . . o 7 7 N
Given a training dataset: X = {(x(),y)}¥
o x( € RP, called explanatory variables (attributes/features)
o y) € R, called response/target variables (labels)

o Goal: to find a function f(x) = such that 3 is close to the true label y

©

Example: to predict the price of a stock tomorrow
Could you define a model F = {f} and cost function C[f]?

©
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The Regression Problem

©

Given a training dataset: X = {(x(),y)}¥

o x( € RP, called explanatory variables (attributes/features)
o y) € R, called response/target variables (labels)

o Goal: to find a function f(x) = such that 3 is close to the true label y

©

Example: to predict the price of a stock tomorrow

Could you define a model F = {f} and cost function C[f]?
How about “relaxing” the Adaline by removing the sign function when
making the final prediction?

o Adaline: $ =sign(w'x —b)

o Regressor: §=w'x—b

©

©
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Linear Regression |

o Model: F={f:f(x;w,b) =w'x—b}
o Shorthand: f(x;w) =w'"x, where w = [—b,wy,--- ,wp]
x=[l,x, - ,xp]"
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Linear Regression |

o Model: F={f:f(x;w,b) =w'x—b}
o Shorthand: f(x;w) =w'"x, where w = [~b,wy,--- ,wp
X = [1,)61,"' 7xD]T

" and

o Cost function and optimization problem:

1
. 2_ o Ty 2
argmin © Zuy w7502 = argmin 1 ly - Xw]
1 x(l)T
o X= : € RVX(P+D) the design matrix
1 x(N)T
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Linear Regression Il

1y . . 1
s T (1) 4y T4-(0) 2 _ iy 2
argn}vlnzi:ZlHy w!x0|* = argmin S ly — Xw|

o Basically, we fit a hyperplane to training data
o Each f(x) =w'x —b cF is a hyperplane in the graph

y

30
25
20
15

10
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Training Using Gradient Descent

1y . 1
o (1) _ 4, T+(0) 2 _ e [T 2
argn}vlnziglly w!xV|* = argmin 2 [ly — Xw|

o Batch:

o Stochastic (with minibatch size |M| = 1):
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Evaluation Metrics of Regression Models

o Given a training/testing set X = {(x(), y()}¥ |

o How to evaluate the predictions $) made by a function f?
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Evaluation Metrics of Regression Models

o Given a training/testing set X = {(x(), y()}¥ |

o How to evaluate the predictions $) made by a function f?
o Sum of Square Errors (SSE): Y, (y\) —$(1))2
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Evaluation Metrics of Regression Models

N
i=1

How to evaluate the predictions $() made by a function f?
Sum of Square Errors (SSE): YV | (y() —3(1)?
Mean Square Error (MSE): %Zf'v:](y(i) — 502

©

Given a training/testing set X = {(x(),y(?))

©

©

©
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Evaluation Metrics of Regression Models

N
i=1

o How to evaluate the predictions $) made by a function f?
Sum of Square Errors (SSE): YV | (y() —3(1)?

Mean Square Error (MSE): %Zﬁvzl(y(") — 502

Relative Square Error (RSE):

o Given a training/testing set X = {(x(,y()

©

©

©

where y = %Ziy(")
o What does it mean?
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Evaluation Metrics of Regression Models

N

i=1

How to evaluate the predictions $() made by a function f?
Sum of Square Errors (SSE): YV | (y() —3(1)?

Mean Square Error (MSE): % N LW —50)2

Relative Square Error (RSE):

©

Given a training/testing set X = {(x(),y(?))

©

©

©

©

where y = %Ziy(")
o What does it mean? Compares f with a dummy prediction y
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Evaluation Metrics of Regression Models

N
i=1

How to evaluate the predictions $() made by a function f?
Sum of Square Errors (SSE): YV | (y() —3(1)?

Mean Square Error (MSE): % N LW —50)2

Relative Square Error (RSE):

Given a training/testing set X = {(x(),y(?))

©

©

©

©

©

where y = %Ziy(")
o What does it mean? Compares f with a dummy prediction y
o Coefficient of Determination: R?> =1—RSE € [0,1]
o Higher the better
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Outline

(6 Optimization in ML: Regularization

o Polynomial Regression
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Polynomial Regression

o In practice, the relationship between explanatory variables and target
variables may not be linear

o Polynomial regression fits a high-order polynomial to the training
data

Polynomial Regression

5 . .

— X~1
—_— X"2
X"3

4
X
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Polynomial Regression

o In practice, the relationship between explanatory variables and target
variables may not be linear

o Polynomial regression fits a high-order polynomial to the training
data

o How?

Polynomial Regression

5 . .

— X~1
—_— X"2
X"3

4
X
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Data Augmentation

o Suppose D=2, i.e., x = [x;,x]
o Linear model:

F={f:f(x;w) =w' x4+ wy=wo+wix +waxa }
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Data Augmentation
o Suppose D=2, i.e., x = [x;,x]
o Linear model:
F={f:f(x;w)= w x4+ wo=wo+wix +waxa }

o Quadratic model:

F= {f :f(x;w) = wo + Wix1 +waxp +W3X%—|—W4X1X2+W5X%}
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Data Augmentation

o Suppose D=2, i.e., x = [x;,x]
o Linear model:
F={f:f(x;w) =w' x4+ wy=wo+wix +waxa }

Quadratic model:

©

F= {f :f(x;w) = wo + Wix1 +waxp +W3X%—|—W4X1X2+W5X%}

o We can simply augment the data dimension to reduce a quadratic
model to a linear one

o A general technique in ML to “transform” a linear model into a
nonlinear one
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Data Augmentation

o Suppose D=2, i.e., x = [x;,x]

o Linear model:
F={f:f(x;w) =w' x4+ wy=wo+wix +waxa }

Quadratic model:

©

F= {f :f(x;w) = wo + Wix1 +waxp +W3X%—|—W4X1X2+W5X%}

o We can simply augment the data dimension to reduce a quadratic
model to a linear one

o A general technique in ML to “transform” a linear model into a
nonlinear one

o How many variables to solve in w for a polynomial regression problem
of degree P? [Homework]
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Outline

(6 Optimization in ML: Regularization

o Generalizability & Regularization
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Regularization

o There's another major difference between the ML algorithms and
optimization techniques:
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Regularization

o There's another major difference between the ML algorithms and
optimization techniques:

©

We usually care about the testing performance rather than the
training performance

o E.g., in classification, we report the testing accuracy

©

Goal: to learn a function that generalizes to unseen data well

©

Regularization: techniques that improve the generalizability of the
learned function
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Regularization

o There's another major difference between the ML algorithms and
optimization techniques:

o We usually care about the testing performance rather than the
training performance

o E.g., in classification, we report the testing accuracy
o Goal: to learn a function that generalizes to unseen data well
o Regularization: techniques that improve the generalizability of the
learned function
o How to regularize the linear regression?

1
argmin = [|y — Xw||>
w 2
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Regularized Linear Regression

o One way to improve the generalizability of f is to make it “flat:”
arg miny,cgo p, 3|y — (Xw — b) arg miny,cgo+i 5 [[y — (Xw)||?

[
subject to [[w[|> < T N subject tow ' Sw < T

o § =diag([0,1,---,1]T) € RP+DXD+D) (p is not regularized)
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arg miny,cgo p, 3|y — (Xw — b) arg miny,cgo+i 5 [[y — (Xw)||?

[
subject to [[w[|> < T N subject tow ' Sw < T

o § =diag([0,1,---,1]T) € RP+DXD+D) (p is not regularized)

o We will explain why this works later
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Regularized Linear Regression

o One way to improve the generalizability of f is to make it “flat:”
arg miny,cgo p, 3|y — (Xw — b) arg miny,cgo+i 5 [[y — (Xw)||?

[
subject to [[w[|> < T N subject tow ' Sw < T

o § =diag([0,1,---,1]T) € RP+DXD+D) (p is not regularized)
o We will explain why this works later

o How to solve this problem?
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Regularized Linear Regression

o One way to improve the generalizability of f is to make it “flat:”
argming.czo , 3y — (Xw B2 _ argmingcmont 3y — (Xw)]2
subject to ||w|[> < T subject tow ' Sw < T

o § =diag([0,1,---,1]T) € RP+DXD+D) (p is not regularized)

©

We will explain why this works later

©

How to solve this problem?
Using the KKT method, we have

©

1
argmin max L(w, o) = argmln max — (Hy Xwl|> +o(w'Sw— T))
wooo,00>0 a>072
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Alternate lterative Algorithm

1
argmin maxOL(w o) = argmln maxof (”J’ XwHZ—i- o(w TSw— T))
wooa,o>

Input: w® e R? an initial guess, a® =0, § >0
repeat
Solve (1) = argmin,, L(w; ")) using some iterative algorithm
starting at w0
if w DT+ > T then
| o) =) +§ in order to increase L(ot;w!*1));

end
until wl DT+ < 7
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Alternate lterative Algorithm

1
argmin max L(w, o) = argmln max 5 (”J’ Xw|*+a(w'Sw— T))

w a,a>0

Input: w® e R? an initial guess, a® =0, § >0
repeat
Solve (1) = argmin,, L(w; ")) using some iterative algorithm
starting at w0
if w DT+ > T then
| o) =) +§ in order to increase L(ot;w!*1));
end
until wl DT+ < 7

d

1) analytically from EL(w;a(f)) =0

o We could also solve w!
W) (XTx+a()S>’1XTy
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(@ Duality*
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Dual Problem

o Given a problem (called primal problem):

p*=min max L(x,a,p)
X o,B,0>0
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Dual Problem

o Given a problem (called primal problem):

p*=min max L(x,a,p)
X a,f,a>0

o We define its dual problem as:

d*= max minL(x,o,f)
a,f,a>0 x
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Dual Problem

o Given a problem (called primal problem):

p*=min max L(x,a,p)
X o,B,0>0
o We define its dual problem as:
d*= max minL(x,o,f)

a,f,a>0 x

o By the max-min inequality, we have d* < p* [Homework]
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Dual Problem

©

Given a problem (called primal problem):

p*=min max L(x,a,p)
X a,f,a>0

©

We define its dual problem as:

d*= max minL(x,o,f)
a,f,a>0 x

©

By the max-min inequality, we have d* < p* [Homework]
o (p*—d*) is called the duality gap
o p* and d* are called the primal and dual values, respectively
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Strong Duality

o Strong duality holds if d* = p*
o When will it happen?
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Strong Duality

Strong duality holds if d* = p*
When will it happen?

()

()

If the primal problem has solution and convex

©

Why considering dual problem?

©
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Example

o Consider a primal problem:

argmin g 5 [lx|>

. Lo 7
subject to Ax > b, A € R —argn}cln;lagc EHxH —a (Ax—b)

o Convex, so strong duality holds
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Example

o Consider a primal problem:

argminycpa 5 [lx|*
subject to Ax > b, A € R

o Convex, so strong duality holds

o We can get the same solution via the dual problem:

arg max mlantz o' (Ax —b)
o,0>0 x

o Solving min, L(x, &) analytically, we have x* =A" «

. L, 0
= argmin max EHxH —

T(Ax —b)
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Example

o Consider a primal problem:

argminycpa 5 [lx|*
subject to Ax > b, A € R

o Convex, so strong duality holds

o We can get the same solution via the dual problem:

arg max mlantz o' (Ax —b)
o,0>0 x

o Solving min, L(x, &) analytically, we have x* =A" «

o Substituting this into the dual, we get

LA o2 o pT
arg max _EHA all*+b o

YA

. L, 0
= argmin max EHxH —

T(Ax —b)

o We now solve n variables instead of d (beneficial when n < d)
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