
Numerical Optimization

Shan-Hung Wu
shwu@cs.nthu.edu.tw

Department of Computer Science,
National Tsing Hua University, Taiwan

Machine Learning

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 1 / 74

Outline
1 Numerical Computation
2 Optimization Problems
3 Unconstrained Optimization

Gradient Descent
Newton’s Method

4 Optimization in ML: Stochastic Gradient Descent
Perceptron
Adaline
Stochastic Gradient Descent

5 Constrained Optimization
6 Optimization in ML: Regularization

Linear Regression
Polynomial Regression
Generalizability & Regularization

7 Duality*

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 2 / 74

Outline
1 Numerical Computation
2 Optimization Problems
3 Unconstrained Optimization

Gradient Descent
Newton’s Method

4 Optimization in ML: Stochastic Gradient Descent
Perceptron
Adaline
Stochastic Gradient Descent

5 Constrained Optimization
6 Optimization in ML: Regularization

Linear Regression
Polynomial Regression
Generalizability & Regularization

7 Duality*

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 3 / 74

Numerical Computation

Machine learning algorithms usually require a high amount of
numerical computation in involving real numbers

However, real numbers cannot be represented precisely using a finite
amount of memory
Watch out the numeric errors when implementing machine learning
algorithms

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 4 / 74

Numerical Computation

Machine learning algorithms usually require a high amount of
numerical computation in involving real numbers
However, real numbers cannot be represented precisely using a finite
amount of memory

Watch out the numeric errors when implementing machine learning
algorithms

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 4 / 74

Numerical Computation

Machine learning algorithms usually require a high amount of
numerical computation in involving real numbers
However, real numbers cannot be represented precisely using a finite
amount of memory
Watch out the numeric errors when implementing machine learning
algorithms

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 4 / 74

Overflow and Underflow I

Consider the softmax function

softmax : Rd! Rd:

softmax(x)i =
exp(xi)

Âd
j=1

exp(xj)

Commonly used to transform a group of real
values to “probabilities”

Analytically, if xi = c for all i, then softmax(x)i = 1/d

Numerically, this may not occur when |c| is large
A positive c causes overflow
A negative c causes underflow and divide-by-zero error

How to avoid these errors?

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 5 / 74

Overflow and Underflow I

Consider the softmax function

softmax : Rd! Rd:

softmax(x)i =
exp(xi)

Âd
j=1

exp(xj)

Commonly used to transform a group of real
values to “probabilities”
Analytically, if xi = c for all i, then softmax(x)i = 1/d

Numerically, this may not occur when |c| is large
A positive c causes overflow
A negative c causes underflow and divide-by-zero error

How to avoid these errors?

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 5 / 74

Overflow and Underflow I

Consider the softmax function

softmax : Rd! Rd:

softmax(x)i =
exp(xi)

Âd
j=1

exp(xj)

Commonly used to transform a group of real
values to “probabilities”
Analytically, if xi = c for all i, then softmax(x)i = 1/d

Numerically, this may not occur when |c| is large
A positive c causes overflow
A negative c causes underflow and divide-by-zero error

How to avoid these errors?

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 5 / 74

Overflow and Underflow II

Instead of evaluating softmax(x) directly, we can transform x into

z = x�max

i
xi1

and then evaluate softmax(z)

softmax(z)i =
exp(xi�m)

Âexp(xj�m) =
exp(xi)/exp(m)

Âexp(xj)/exp(m) =
exp(xi)

Âexp(xj)
= softmax(x)i

No overflow, as exp(largest attribute of x) = 1

Denominator is at least 1, no divide-by-zero error
What are the numerical issues of logsoftmax(z)? How to stabilize it?
[Homework]

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 6 / 74

Overflow and Underflow II

Instead of evaluating softmax(x) directly, we can transform x into

z = x�max

i
xi1

and then evaluate softmax(z)
softmax(z)i =

exp(xi�m)
Âexp(xj�m) =

exp(xi)/exp(m)
Âexp(xj)/exp(m) =

exp(xi)
Âexp(xj)

= softmax(x)i

No overflow, as exp(largest attribute of x) = 1

Denominator is at least 1, no divide-by-zero error
What are the numerical issues of logsoftmax(z)? How to stabilize it?
[Homework]

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 6 / 74

Overflow and Underflow II

Instead of evaluating softmax(x) directly, we can transform x into

z = x�max

i
xi1

and then evaluate softmax(z)
softmax(z)i =

exp(xi�m)
Âexp(xj�m) =

exp(xi)/exp(m)
Âexp(xj)/exp(m) =

exp(xi)
Âexp(xj)

= softmax(x)i

No overflow, as exp(largest attribute of x) = 1

Denominator is at least 1, no divide-by-zero error

What are the numerical issues of logsoftmax(z)? How to stabilize it?
[Homework]

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 6 / 74

Overflow and Underflow II

Instead of evaluating softmax(x) directly, we can transform x into

z = x�max

i
xi1

and then evaluate softmax(z)
softmax(z)i =

exp(xi�m)
Âexp(xj�m) =

exp(xi)/exp(m)
Âexp(xj)/exp(m) =

exp(xi)
Âexp(xj)

= softmax(x)i

No overflow, as exp(largest attribute of x) = 1

Denominator is at least 1, no divide-by-zero error
What are the numerical issues of logsoftmax(z)? How to stabilize it?
[Homework]

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 6 / 74

Poor Conditioning I

The “conditioning” refer to how much the input of a function can
change given a small change in the output

Suppose we want to solve x in f (x) = Ax = y, where A�1 exists
The condition umber of A can be expressed by

k(A) = max

i,j

����
li

lj

����

We say the problem is poorly (or ill-) conditioned when k(A) is large
Hard to solve x = A�1y precisely given a rounded y

A�1 amplifies pre-existing numeric errors

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 7 / 74

Poor Conditioning I

The “conditioning” refer to how much the input of a function can
change given a small change in the output
Suppose we want to solve x in f (x) = Ax = y, where A�1 exists

The condition umber of A can be expressed by

k(A) = max

i,j

����
li

lj

����

We say the problem is poorly (or ill-) conditioned when k(A) is large
Hard to solve x = A�1y precisely given a rounded y

A�1 amplifies pre-existing numeric errors

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 7 / 74

Poor Conditioning I

The “conditioning” refer to how much the input of a function can
change given a small change in the output
Suppose we want to solve x in f (x) = Ax = y, where A�1 exists
The condition umber of A can be expressed by

k(A) = max

i,j

����
li

lj

����

We say the problem is poorly (or ill-) conditioned when k(A) is large
Hard to solve x = A�1y precisely given a rounded y

A�1 amplifies pre-existing numeric errors

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 7 / 74

Poor Conditioning I

The “conditioning” refer to how much the input of a function can
change given a small change in the output
Suppose we want to solve x in f (x) = Ax = y, where A�1 exists
The condition umber of A can be expressed by

k(A) = max

i,j

����
li

lj

����

We say the problem is poorly (or ill-) conditioned when k(A) is large

Hard to solve x = A�1y precisely given a rounded y
A�1 amplifies pre-existing numeric errors

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 7 / 74

Poor Conditioning I

The “conditioning” refer to how much the input of a function can
change given a small change in the output
Suppose we want to solve x in f (x) = Ax = y, where A�1 exists
The condition umber of A can be expressed by

k(A) = max

i,j

����
li

lj

����

We say the problem is poorly (or ill-) conditioned when k(A) is large
Hard to solve x = A�1y precisely given a rounded y

A�1 amplifies pre-existing numeric errors

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 7 / 74

Poor Conditioning II

The contours of f (x) = 1

2

x>Ax+b>x+ c, where A is symmetric:

When k(A) is large, f stretches space differently along different
attribute directions

Surface is flat in some directions but steep in others

Hard to solve f 0(x) = 0) x = A�1b

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 8 / 74

Poor Conditioning II

The contours of f (x) = 1

2

x>Ax+b>x+ c, where A is symmetric:

When k(A) is large, f stretches space differently along different
attribute directions

Surface is flat in some directions but steep in others

Hard to solve f 0(x) = 0) x = A�1b

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 8 / 74

Outline
1 Numerical Computation
2 Optimization Problems
3 Unconstrained Optimization

Gradient Descent
Newton’s Method

4 Optimization in ML: Stochastic Gradient Descent
Perceptron
Adaline
Stochastic Gradient Descent

5 Constrained Optimization
6 Optimization in ML: Regularization

Linear Regression
Polynomial Regression
Generalizability & Regularization

7 Duality*

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 9 / 74

Optimization Problems

An optimization problem is to minimize a cost function f : Rd!R:

minx f (x)
subject to x 2 C

where C✓ Rd is called the feasible set containing feasible points

Or, maximizing an objective function

Maximizing f equals to minimizing �f

If C= Rd, we say the optimization problem is unconstrained
C can be a set of function constrains, i.e., C= {x : g(i)(x) 0}i

Sometimes, we single out equality constrains
C= {x : g(i)(x) 0,h(j)(x) = 0}i,j

Each equality constrain can be written as two inequality constrains

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 10 / 74

Optimization Problems

An optimization problem is to minimize a cost function f : Rd!R:

minx f (x)
subject to x 2 C

where C✓ Rd is called the feasible set containing feasible points

Or, maximizing an objective function

Maximizing f equals to minimizing �f

If C= Rd, we say the optimization problem is unconstrained
C can be a set of function constrains, i.e., C= {x : g(i)(x) 0}i

Sometimes, we single out equality constrains
C= {x : g(i)(x) 0,h(j)(x) = 0}i,j

Each equality constrain can be written as two inequality constrains

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 10 / 74

Optimization Problems

An optimization problem is to minimize a cost function f : Rd!R:

minx f (x)
subject to x 2 C

where C✓ Rd is called the feasible set containing feasible points

Or, maximizing an objective function

Maximizing f equals to minimizing �f

If C= Rd, we say the optimization problem is unconstrained

C can be a set of function constrains, i.e., C= {x : g(i)(x) 0}i

Sometimes, we single out equality constrains
C= {x : g(i)(x) 0,h(j)(x) = 0}i,j

Each equality constrain can be written as two inequality constrains

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 10 / 74

Optimization Problems

An optimization problem is to minimize a cost function f : Rd!R:

minx f (x)
subject to x 2 C

where C✓ Rd is called the feasible set containing feasible points

Or, maximizing an objective function

Maximizing f equals to minimizing �f

If C= Rd, we say the optimization problem is unconstrained
C can be a set of function constrains, i.e., C= {x : g(i)(x) 0}i

Sometimes, we single out equality constrains
C= {x : g(i)(x) 0,h(j)(x) = 0}i,j

Each equality constrain can be written as two inequality constrains

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 10 / 74

Optimization Problems

An optimization problem is to minimize a cost function f : Rd!R:

minx f (x)
subject to x 2 C

where C✓ Rd is called the feasible set containing feasible points

Or, maximizing an objective function

Maximizing f equals to minimizing �f

If C= Rd, we say the optimization problem is unconstrained
C can be a set of function constrains, i.e., C= {x : g(i)(x) 0}i

Sometimes, we single out equality constrains
C= {x : g(i)(x) 0,h(j)(x) = 0}i,j

Each equality constrain can be written as two inequality constrains

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 10 / 74

Minimums and Optimal Points

Critical points: {x : f 0(x) = 0}

Minima: {x : f 0(x) = 0 and H(f)(x)� O}, where H(f)(x) is the Hessian
matrix (containing curvatures) of f at point x
Maxima: {x : f 0(x) = 0 and H(f)(x)� O}
Plateau or saddle points: {x : f 0(x) = 0 and H(f)(x) = O or indefinite}

y⇤ = minx2C f (x) 2 R is called the global minimum

Global minima vs. local minima
x⇤ = argminx2C f (x) is called the optimal point

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 11 / 74

Minimums and Optimal Points

Critical points: {x : f 0(x) = 0}
Minima: {x : f 0(x) = 0 and H(f)(x)� O}, where H(f)(x) is the Hessian
matrix (containing curvatures) of f at point x

Maxima: {x : f 0(x) = 0 and H(f)(x)� O}
Plateau or saddle points: {x : f 0(x) = 0 and H(f)(x) = O or indefinite}

y⇤ = minx2C f (x) 2 R is called the global minimum

Global minima vs. local minima
x⇤ = argminx2C f (x) is called the optimal point

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 11 / 74

Minimums and Optimal Points

Critical points: {x : f 0(x) = 0}
Minima: {x : f 0(x) = 0 and H(f)(x)� O}, where H(f)(x) is the Hessian
matrix (containing curvatures) of f at point x
Maxima: {x : f 0(x) = 0 and H(f)(x)� O}

Plateau or saddle points: {x : f 0(x) = 0 and H(f)(x) = O or indefinite}
y⇤ = minx2C f (x) 2 R is called the global minimum

Global minima vs. local minima
x⇤ = argminx2C f (x) is called the optimal point

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 11 / 74

Minimums and Optimal Points

Critical points: {x : f 0(x) = 0}
Minima: {x : f 0(x) = 0 and H(f)(x)� O}, where H(f)(x) is the Hessian
matrix (containing curvatures) of f at point x
Maxima: {x : f 0(x) = 0 and H(f)(x)� O}
Plateau or saddle points: {x : f 0(x) = 0 and H(f)(x) = O or indefinite}

y⇤ = minx2C f (x) 2 R is called the global minimum

Global minima vs. local minima
x⇤ = argminx2C f (x) is called the optimal point

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 11 / 74

Minimums and Optimal Points

Critical points: {x : f 0(x) = 0}
Minima: {x : f 0(x) = 0 and H(f)(x)� O}, where H(f)(x) is the Hessian
matrix (containing curvatures) of f at point x
Maxima: {x : f 0(x) = 0 and H(f)(x)� O}
Plateau or saddle points: {x : f 0(x) = 0 and H(f)(x) = O or indefinite}

y⇤ = minx2C f (x) 2 R is called the global minimum

Global minima vs. local minima

x⇤ = argminx2C f (x) is called the optimal point

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 11 / 74

Minimums and Optimal Points

Critical points: {x : f 0(x) = 0}
Minima: {x : f 0(x) = 0 and H(f)(x)� O}, where H(f)(x) is the Hessian
matrix (containing curvatures) of f at point x
Maxima: {x : f 0(x) = 0 and H(f)(x)� O}
Plateau or saddle points: {x : f 0(x) = 0 and H(f)(x) = O or indefinite}

y⇤ = minx2C f (x) 2 R is called the global minimum

Global minima vs. local minima
x⇤ = argminx2C f (x) is called the optimal point

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 11 / 74

Convex Optimization Problems

An optimization problem is convex iff
1 f is convex by having a “convex hull”

surface, i.e.,

H(f)(x)⌫ 0,8x

2 gi(x)’s are convex and hj(x)’s are affine
Convex problems are “easier” since

Local minima are necessarily global minima
No saddle point
We can get the global minimum by solving
f 0(x) = 0

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 12 / 74

Convex Optimization Problems

An optimization problem is convex iff
1 f is convex by having a “convex hull”

surface, i.e.,

H(f)(x)⌫ 0,8x

2 gi(x)’s are convex and hj(x)’s are affine

Convex problems are “easier” since
Local minima are necessarily global minima
No saddle point
We can get the global minimum by solving
f 0(x) = 0

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 12 / 74

Convex Optimization Problems

An optimization problem is convex iff
1 f is convex by having a “convex hull”

surface, i.e.,

H(f)(x)⌫ 0,8x

2 gi(x)’s are convex and hj(x)’s are affine
Convex problems are “easier” since

Local minima are necessarily global minima
No saddle point

We can get the global minimum by solving
f 0(x) = 0

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 12 / 74

Convex Optimization Problems

An optimization problem is convex iff
1 f is convex by having a “convex hull”

surface, i.e.,

H(f)(x)⌫ 0,8x

2 gi(x)’s are convex and hj(x)’s are affine
Convex problems are “easier” since

Local minima are necessarily global minima
No saddle point
We can get the global minimum by solving
f 0(x) = 0

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 12 / 74

Analytical Solutions vs. Numerical Solutions I

Consider the problem:

argmin

x

1

2

�
kAx�bk2 +lkxk2

�

Analytical solutions?

The cost function f (x) = 1

2

x>
�
A>A+l I

�
x�b>Ax+ 1

2

kbk2 is convex

Solving f 0(x) = x>
�
A>A+l I

�
�b>A = 0, we have

x⇤ =
⇣

A>A+l I
⌘�1

A>b

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 13 / 74

Analytical Solutions vs. Numerical Solutions I

Consider the problem:

argmin

x

1

2

�
kAx�bk2 +lkxk2

�

Analytical solutions?
The cost function f (x) = 1

2

x>
�
A>A+l I

�
x�b>Ax+ 1

2

kbk2 is convex

Solving f 0(x) = x>
�
A>A+l I

�
�b>A = 0, we have

x⇤ =
⇣

A>A+l I
⌘�1

A>b

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 13 / 74

Analytical Solutions vs. Numerical Solutions I

Consider the problem:

argmin

x

1

2

�
kAx�bk2 +lkxk2

�

Analytical solutions?
The cost function f (x) = 1

2

x>
�
A>A+l I

�
x�b>Ax+ 1

2

kbk2 is convex

Solving f 0(x) = x>
�
A>A+l I

�
�b>A = 0, we have

x⇤ =
⇣

A>A+l I
⌘�1

A>b

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 13 / 74

Analytical Solutions vs. Numerical Solutions II
Problem (A 2 Rn⇥d, b 2 Rn, l 2 R):

arg min

x2Rd

1

2

�
kAx�bk2 +lkxk2

�

Analytical solution: x⇤ =
�
A>A+l I

��1 A>b

In practice, we may not be able to solve f 0(x) = 0 analytically and get
x in a closed form

E.g., when l = 0 and n < d

Even if we can, the computation cost may be too hight
E.g, inverting A>A+l I 2 Rd⇥d takes O(d3) time

Numerical methods: since numerical errors are inevitable, why not
just obtain an approximation of x⇤?
Start from x(0), iteratively calculating x(1),x(2), · · · such that
f (x(1))� f (x(2))� · · ·

Usually require much less time to have a good enough x(t) ⇡ x⇤

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 14 / 74

Analytical Solutions vs. Numerical Solutions II
Problem (A 2 Rn⇥d, b 2 Rn, l 2 R):

arg min

x2Rd

1

2

�
kAx�bk2 +lkxk2

�

Analytical solution: x⇤ =
�
A>A+l I

��1 A>b
In practice, we may not be able to solve f 0(x) = 0 analytically and get
x in a closed form

E.g., when l = 0 and n < d

Even if we can, the computation cost may be too hight
E.g, inverting A>A+l I 2 Rd⇥d takes O(d3) time

Numerical methods: since numerical errors are inevitable, why not
just obtain an approximation of x⇤?
Start from x(0), iteratively calculating x(1),x(2), · · · such that
f (x(1))� f (x(2))� · · ·

Usually require much less time to have a good enough x(t) ⇡ x⇤

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 14 / 74

Analytical Solutions vs. Numerical Solutions II
Problem (A 2 Rn⇥d, b 2 Rn, l 2 R):

arg min

x2Rd

1

2

�
kAx�bk2 +lkxk2

�

Analytical solution: x⇤ =
�
A>A+l I

��1 A>b
In practice, we may not be able to solve f 0(x) = 0 analytically and get
x in a closed form

E.g., when l = 0 and n < d

Even if we can, the computation cost may be too hight
E.g, inverting A>A+l I 2 Rd⇥d takes O(d3) time

Numerical methods: since numerical errors are inevitable, why not
just obtain an approximation of x⇤?
Start from x(0), iteratively calculating x(1),x(2), · · · such that
f (x(1))� f (x(2))� · · ·

Usually require much less time to have a good enough x(t) ⇡ x⇤

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 14 / 74

Analytical Solutions vs. Numerical Solutions II
Problem (A 2 Rn⇥d, b 2 Rn, l 2 R):

arg min

x2Rd

1

2

�
kAx�bk2 +lkxk2

�

Analytical solution: x⇤ =
�
A>A+l I

��1 A>b
In practice, we may not be able to solve f 0(x) = 0 analytically and get
x in a closed form

E.g., when l = 0 and n < d

Even if we can, the computation cost may be too hight
E.g, inverting A>A+l I 2 Rd⇥d takes O(d3) time

Numerical methods: since numerical errors are inevitable, why not
just obtain an approximation of x⇤?

Start from x(0), iteratively calculating x(1),x(2), · · · such that
f (x(1))� f (x(2))� · · ·

Usually require much less time to have a good enough x(t) ⇡ x⇤

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 14 / 74

Analytical Solutions vs. Numerical Solutions II
Problem (A 2 Rn⇥d, b 2 Rn, l 2 R):

arg min

x2Rd

1

2

�
kAx�bk2 +lkxk2

�

Analytical solution: x⇤ =
�
A>A+l I

��1 A>b
In practice, we may not be able to solve f 0(x) = 0 analytically and get
x in a closed form

E.g., when l = 0 and n < d

Even if we can, the computation cost may be too hight
E.g, inverting A>A+l I 2 Rd⇥d takes O(d3) time

Numerical methods: since numerical errors are inevitable, why not
just obtain an approximation of x⇤?
Start from x(0), iteratively calculating x(1),x(2), · · · such that
f (x(1))� f (x(2))� · · ·

Usually require much less time to have a good enough x(t) ⇡ x⇤

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 14 / 74

Outline
1 Numerical Computation
2 Optimization Problems
3 Unconstrained Optimization

Gradient Descent
Newton’s Method

4 Optimization in ML: Stochastic Gradient Descent
Perceptron
Adaline
Stochastic Gradient Descent

5 Constrained Optimization
6 Optimization in ML: Regularization

Linear Regression
Polynomial Regression
Generalizability & Regularization

7 Duality*

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 15 / 74

Unconstrained Optimization

Problem:
min

x2Rd
f (x),

where f : Rd! R is not necessarily convex

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 16 / 74

General Descent Algorithm

Input: x(0) 2 Rd, an initial guess
repeat

Determine a descent direction d(t) 2 Rd ;
Line search: choose a step size or learning rate h(t) > 0 such
that f (x(t) +h(t)d(t)) is minimal along the ray x(t) +h(t)d(t) ;
Update rule: x(t+1) x(t) +h(t)d(t) ;

until convergence criterion is satisfied ;

Convergence criterion: kx(t+1)�x(t)k  e , k—f (x(t+1))k  e , etc.
Line search step could be skipped by letting h(t) be a small constant

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 17 / 74

General Descent Algorithm

Input: x(0) 2 Rd, an initial guess
repeat

Determine a descent direction d(t) 2 Rd ;
Line search: choose a step size or learning rate h(t) > 0 such
that f (x(t) +h(t)d(t)) is minimal along the ray x(t) +h(t)d(t) ;
Update rule: x(t+1) x(t) +h(t)d(t) ;

until convergence criterion is satisfied ;

Convergence criterion: kx(t+1)�x(t)k  e , k—f (x(t+1))k  e , etc.
Line search step could be skipped by letting h(t) be a small constant

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 17 / 74

Outline
1 Numerical Computation
2 Optimization Problems
3 Unconstrained Optimization

Gradient Descent
Newton’s Method

4 Optimization in ML: Stochastic Gradient Descent
Perceptron
Adaline
Stochastic Gradient Descent

5 Constrained Optimization
6 Optimization in ML: Regularization

Linear Regression
Polynomial Regression
Generalizability & Regularization

7 Duality*

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 18 / 74

Gradient Descent I

By Taylor’s theorem, we can approximate f locally at point x(t) using a
linear function ˜f , i.e.,

f (x)⇡ ˜f (x;x(t)) = f (x(t))+—f (x(t))>(x�x(t))

for x close enough to x(t)

This implies that if we pick a close x(t+1) that decreases ˜f , we are
likely to decrease f as well
We can pick x(t+1) = x(t)�h—f (x(t)) for some small h > 0, since

˜f (x(t+1)) = f (x(t))�hk—f (x(t))k2  ˜f (x(t))

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 19 / 74

Gradient Descent I

By Taylor’s theorem, we can approximate f locally at point x(t) using a
linear function ˜f , i.e.,

f (x)⇡ ˜f (x;x(t)) = f (x(t))+—f (x(t))>(x�x(t))

for x close enough to x(t)

This implies that if we pick a close x(t+1) that decreases ˜f , we are
likely to decrease f as well

We can pick x(t+1) = x(t)�h—f (x(t)) for some small h > 0, since

˜f (x(t+1)) = f (x(t))�hk—f (x(t))k2  ˜f (x(t))

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 19 / 74

Gradient Descent I

By Taylor’s theorem, we can approximate f locally at point x(t) using a
linear function ˜f , i.e.,

f (x)⇡ ˜f (x;x(t)) = f (x(t))+—f (x(t))>(x�x(t))

for x close enough to x(t)

This implies that if we pick a close x(t+1) that decreases ˜f , we are
likely to decrease f as well
We can pick x(t+1) = x(t)�h—f (x(t)) for some small h > 0, since

˜f (x(t+1)) = f (x(t))�hk—f (x(t))k2  ˜f (x(t))

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 19 / 74

Gradient Descent II

Input: x(0) 2 Rd an initial guess, a small h > 0

repeat
x(t+1) x(t)�h—f (x(t)) ;

until convergence criterion is satisfied ;

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 20 / 74

Is Negative Gradient a Good Direction? I

Update rule:
x(t+1) x(t)�h—f (x(t))

Yes, as —f (x(t)) 2 Rd denotes
the steepest ascent direction of
f at point x(t)

�—f (x(t)) 2 Rd the steepest
descent direction
But why?

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 21 / 74

Is Negative Gradient a Good Direction? I

Update rule:
x(t+1) x(t)�h—f (x(t))
Yes, as —f (x(t)) 2 Rd denotes
the steepest ascent direction of
f at point x(t)

�—f (x(t)) 2 Rd the steepest
descent direction

But why?

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 21 / 74

Is Negative Gradient a Good Direction? I

Update rule:
x(t+1) x(t)�h—f (x(t))
Yes, as —f (x(t)) 2 Rd denotes
the steepest ascent direction of
f at point x(t)

�—f (x(t)) 2 Rd the steepest
descent direction
But why?

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 21 / 74

Is Negative Gradient a Good Direction? II

Consider the slope of f in a given direction u at point x(t)

This is the directional derivative of f , i.e., the derivative of function
f (x(t) + eu) with respect to e , evaluated at e = 0

By the chain rule, we have ∂
∂e f (x(t) + eu) = —f (x(t) + eu)>u, which

equals to —f (x(t))>u when e = 0

Theorem (Chain Rule)

Let g : R! Rd
and f : Rd! R, then

(f �g)0(x) = f 0(g(x))g0(x) = —f (g(x))>

2

64
g0

1

(x)
.

.

.

g0n(x)

3

75 .

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 22 / 74

Is Negative Gradient a Good Direction? II

Consider the slope of f in a given direction u at point x(t)

This is the directional derivative of f , i.e., the derivative of function
f (x(t) + eu) with respect to e , evaluated at e = 0

By the chain rule, we have ∂
∂e f (x(t) + eu) = —f (x(t) + eu)>u, which

equals to —f (x(t))>u when e = 0

Theorem (Chain Rule)

Let g : R! Rd
and f : Rd! R, then

(f �g)0(x) = f 0(g(x))g0(x) = —f (g(x))>

2

64
g0

1

(x)
.

.

.

g0n(x)

3

75 .

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 22 / 74

Is Negative Gradient a Good Direction? III

To find the direction that decreases f fastest at x(t), we solve the
problem:

arg min

u,kuk=1

—f (x(t))>u = arg min

u,kuk=1

k—f (x(t))kkukcosq

where q is the the angle between u and —f (x(t))

This amounts to solve
argmin

u
cosq

So, u⇤ =�—f (x(t)) is the steepest descent direction of f at point x(t)

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 23 / 74

Is Negative Gradient a Good Direction? III

To find the direction that decreases f fastest at x(t), we solve the
problem:

arg min

u,kuk=1

—f (x(t))>u = arg min

u,kuk=1

k—f (x(t))kkukcosq

where q is the the angle between u and —f (x(t))
This amounts to solve

argmin

u
cosq

So, u⇤ =�—f (x(t)) is the steepest descent direction of f at point x(t)

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 23 / 74

How to Set Learning Rate h? I

Too small an h results in slow descent speed and many iterations
Too large an h may overshoot the optimal point along the gradient
and goes uphill

One way to set a better h is to leverage the curvatures of f
The more curvy f at point x(t), the smaller the h

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 24 / 74

How to Set Learning Rate h? I

Too small an h results in slow descent speed and many iterations
Too large an h may overshoot the optimal point along the gradient
and goes uphill
One way to set a better h is to leverage the curvatures of f

The more curvy f at point x(t), the smaller the h

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 24 / 74

How to Set Learning Rate h? II
By Taylor’s theorem, we can approximate f locally at point x(t) using a
quadratic function ˜f :

f (x)⇡ ˜f (x;x(t)) = f (x(t))+—f (x(t))>(x�x(t))+
1

2

(x�x(t))>H(f)(x(t))(x�x(t))

for x close enough to x(t)
H(f)(x(t)) 2 Rd⇥d is the (symmetric) Hessian matrix of f at x(t)

Line search at step t:

argminh ˜f (x(t)�h—f (x(t))) =
argminh f (x(t))�h—f (x(t))>—f (x(t))+ h2

2

—f (x(t))>H(f)(x(t))—f (x(t))

If f (x(t))>H(f)(x(t))—f (x(t))> 0, we can solve
∂

∂h
˜f (x(t)�h—f (x(t))) = 0 and get:

h(t) =
—f (x(t))>—f (x(t))

—f (x(t))>H(f)(x(t))—f (x(t))

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 25 / 74

How to Set Learning Rate h? II
By Taylor’s theorem, we can approximate f locally at point x(t) using a
quadratic function ˜f :

f (x)⇡ ˜f (x;x(t)) = f (x(t))+—f (x(t))>(x�x(t))+
1

2

(x�x(t))>H(f)(x(t))(x�x(t))

for x close enough to x(t)
H(f)(x(t)) 2 Rd⇥d is the (symmetric) Hessian matrix of f at x(t)

Line search at step t:

argminh ˜f (x(t)�h—f (x(t))) =
argminh f (x(t))�h—f (x(t))>—f (x(t))+ h2

2

—f (x(t))>H(f)(x(t))—f (x(t))

If f (x(t))>H(f)(x(t))—f (x(t))> 0, we can solve
∂

∂h
˜f (x(t)�h—f (x(t))) = 0 and get:

h(t) =
—f (x(t))>—f (x(t))

—f (x(t))>H(f)(x(t))—f (x(t))

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 25 / 74

Problems of Gradient Descent

Gradient descent is designed to find the steepest descent direction at
step x(t)

Not aware of the conditioning of the Hessian matrix H(f)(x(t))

If H(f)(x(t)) has a large condition number, then f is curvy in some
directions but flat in others at x(t)

E.g., suppose f is a quadratic
function whose Hessian has a large
condition number
A step in gradient descent may
overshoot the optimal points along
flat attributes

“Zig-zags” around a narrow valley

Why not take conditioning into
account when picking descent
directions?

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 26 / 74

Problems of Gradient Descent

Gradient descent is designed to find the steepest descent direction at
step x(t)

Not aware of the conditioning of the Hessian matrix H(f)(x(t))
If H(f)(x(t)) has a large condition number, then f is curvy in some
directions but flat in others at x(t)

E.g., suppose f is a quadratic
function whose Hessian has a large
condition number
A step in gradient descent may
overshoot the optimal points along
flat attributes

“Zig-zags” around a narrow valley

Why not take conditioning into
account when picking descent
directions?

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 26 / 74

Problems of Gradient Descent

Gradient descent is designed to find the steepest descent direction at
step x(t)

Not aware of the conditioning of the Hessian matrix H(f)(x(t))
If H(f)(x(t)) has a large condition number, then f is curvy in some
directions but flat in others at x(t)

E.g., suppose f is a quadratic
function whose Hessian has a large
condition number
A step in gradient descent may
overshoot the optimal points along
flat attributes

“Zig-zags” around a narrow valley

Why not take conditioning into
account when picking descent
directions?

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 26 / 74

Problems of Gradient Descent

Gradient descent is designed to find the steepest descent direction at
step x(t)

Not aware of the conditioning of the Hessian matrix H(f)(x(t))
If H(f)(x(t)) has a large condition number, then f is curvy in some
directions but flat in others at x(t)

E.g., suppose f is a quadratic
function whose Hessian has a large
condition number
A step in gradient descent may
overshoot the optimal points along
flat attributes

“Zig-zags” around a narrow valley

Why not take conditioning into
account when picking descent
directions?

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 26 / 74

Outline
1 Numerical Computation
2 Optimization Problems
3 Unconstrained Optimization

Gradient Descent
Newton’s Method

4 Optimization in ML: Stochastic Gradient Descent
Perceptron
Adaline
Stochastic Gradient Descent

5 Constrained Optimization
6 Optimization in ML: Regularization

Linear Regression
Polynomial Regression
Generalizability & Regularization

7 Duality*

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 27 / 74

Newton’s Method I

By Taylor’s theorem, we can approximate f locally at point x(t) using a
quadratic function ˜f , i.e.,

f (x)⇡ ˜f (x;x(t)) = f (x(t))+—f (x(t))>(x�x(t))+
1

2

(x�x(t))>H(f)(x(t))(x�x(t))

for x close enough to x(t)

If f is strictly convex (i.e., H(f)(a)� O,8a), we can find x(t+1) that
minimizes ˜f in order to decrease f

Solving —˜f (x(t+1)
;x(t)) = 0, we have

x(t+1) = x(t)�H(f)(x(t))�1—f (x(t))

H(f)(x(t))�1 as a “corrector” to the negative gradient

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 28 / 74

Newton’s Method I

By Taylor’s theorem, we can approximate f locally at point x(t) using a
quadratic function ˜f , i.e.,

f (x)⇡ ˜f (x;x(t)) = f (x(t))+—f (x(t))>(x�x(t))+
1

2

(x�x(t))>H(f)(x(t))(x�x(t))

for x close enough to x(t)

If f is strictly convex (i.e., H(f)(a)� O,8a), we can find x(t+1) that
minimizes ˜f in order to decrease f

Solving —˜f (x(t+1)
;x(t)) = 0, we have

x(t+1) = x(t)�H(f)(x(t))�1—f (x(t))

H(f)(x(t))�1 as a “corrector” to the negative gradient

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 28 / 74

Newton’s Method II

Input: x(0) 2 Rd an initial guess, h > 0

repeat
x(t+1) x(t)�hH(f)(x(t))�1—f (x(t)) ;

until convergence criterion is satisfied ;

In practice, we multiply the shift by a small h > 0 to make sure that
x(t+1) is close to x(t)

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 29 / 74

Newton’s Method II

Input: x(0) 2 Rd an initial guess, h > 0

repeat
x(t+1) x(t)�hH(f)(x(t))�1—f (x(t)) ;

until convergence criterion is satisfied ;

In practice, we multiply the shift by a small h > 0 to make sure that
x(t+1) is close to x(t)

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 29 / 74

Newton’s Method III
If f is positive definite quadratic, then only one step is required

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 30 / 74

General Functions

Update rule: x(t+1) x(t)�hH(f)(x(t))�1—f (x(t))
What if f is not strictly convex?

H(f)(x(t))� O or indefinite

The Levenberg–Marquardt extension:

x(t+1) = x(t)�h
⇣

H(f)(x(t))+aI
⌘�1

—f (x(t)) for some a > 0

With a large a, degenerates into gradient descent of learning rate 1/a

Input: x(0) 2 Rd an initial guess, h > 0, a > 0

repeat
x(t+1) x(t)�h

�
H(f)(x(t))+aI

��1 —f (x(t)) ;
until convergence criterion is satisfied ;

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 31 / 74

General Functions

Update rule: x(t+1) x(t)�hH(f)(x(t))�1—f (x(t))
What if f is not strictly convex?

H(f)(x(t))� O or indefinite

The Levenberg–Marquardt extension:

x(t+1) = x(t)�h
⇣

H(f)(x(t))+aI
⌘�1

—f (x(t)) for some a > 0

With a large a, degenerates into gradient descent of learning rate 1/a

Input: x(0) 2 Rd an initial guess, h > 0, a > 0

repeat
x(t+1) x(t)�h

�
H(f)(x(t))+aI

��1 —f (x(t)) ;
until convergence criterion is satisfied ;

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 31 / 74

General Functions

Update rule: x(t+1) x(t)�hH(f)(x(t))�1—f (x(t))
What if f is not strictly convex?

H(f)(x(t))� O or indefinite

The Levenberg–Marquardt extension:

x(t+1) = x(t)�h
⇣

H(f)(x(t))+aI
⌘�1

—f (x(t)) for some a > 0

With a large a, degenerates into gradient descent of learning rate 1/a

Input: x(0) 2 Rd an initial guess, h > 0, a > 0

repeat
x(t+1) x(t)�h

�
H(f)(x(t))+aI

��1 —f (x(t)) ;
until convergence criterion is satisfied ;

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 31 / 74

Gradient Descent vs. Newton’s Method
Steps of Gradient descent when f is a Rosenbrock’s banana:

Steps of Newton’s method:
Only 6 steps in total

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 32 / 74

Problems of Newton’s Method

Computing H(f)(x(t))�1 is slow
Takes O(d3) time at each step, which is much slower then O(d) of
gradient descent

Imprecise x(t+1) = x(t)�hH(f)(x(t))�1—f (x(t)) due to numerical errors
H(f)(x(t)) may have a large condition number

Attracted to saddle points (when f is not convex)
The x(t+1) solved from —˜f (x(t+1)

;x(t)) = 0 is a critical point

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 33 / 74

Problems of Newton’s Method

Computing H(f)(x(t))�1 is slow
Takes O(d3) time at each step, which is much slower then O(d) of
gradient descent

Imprecise x(t+1) = x(t)�hH(f)(x(t))�1—f (x(t)) due to numerical errors
H(f)(x(t)) may have a large condition number

Attracted to saddle points (when f is not convex)
The x(t+1) solved from —˜f (x(t+1)

;x(t)) = 0 is a critical point

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 33 / 74

Problems of Newton’s Method

Computing H(f)(x(t))�1 is slow
Takes O(d3) time at each step, which is much slower then O(d) of
gradient descent

Imprecise x(t+1) = x(t)�hH(f)(x(t))�1—f (x(t)) due to numerical errors
H(f)(x(t)) may have a large condition number

Attracted to saddle points (when f is not convex)
The x(t+1) solved from —˜f (x(t+1)

;x(t)) = 0 is a critical point

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 33 / 74

Outline
1 Numerical Computation
2 Optimization Problems
3 Unconstrained Optimization

Gradient Descent
Newton’s Method

4 Optimization in ML: Stochastic Gradient Descent
Perceptron
Adaline
Stochastic Gradient Descent

5 Constrained Optimization
6 Optimization in ML: Regularization

Linear Regression
Polynomial Regression
Generalizability & Regularization

7 Duality*

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 34 / 74

Who is Afraid of Non-convexity?

In ML, the function to solve is usually the cost function C(w) of a
model F= {f : f parametrized by w}

Many ML models have convex cost functions in order to take
advantages of convex optimization

E.g., perceptron, linear regression, logistic regression, SVMs, etc.
However, in deep learning, the cost function of a neural network is
typically not convex

We will discuss techniques that tackle non-convexity later

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 35 / 74

Who is Afraid of Non-convexity?

In ML, the function to solve is usually the cost function C(w) of a
model F= {f : f parametrized by w}
Many ML models have convex cost functions in order to take
advantages of convex optimization

E.g., perceptron, linear regression, logistic regression, SVMs, etc.

However, in deep learning, the cost function of a neural network is
typically not convex

We will discuss techniques that tackle non-convexity later

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 35 / 74

Who is Afraid of Non-convexity?

In ML, the function to solve is usually the cost function C(w) of a
model F= {f : f parametrized by w}
Many ML models have convex cost functions in order to take
advantages of convex optimization

E.g., perceptron, linear regression, logistic regression, SVMs, etc.
However, in deep learning, the cost function of a neural network is
typically not convex

We will discuss techniques that tackle non-convexity later

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 35 / 74

Assumption on Cost Functions

In ML, we usually assume that the (real-valued) cost function is
Lipschitz continuous and/or have Lipschitz continuous derivatives
I.e., the rate of change of C if bounded by a Lipschitz constant K:

|C(w(1))�C(w(2))| Kkw(1)�w(2)k,8w(1),w(2)

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 36 / 74

Outline
1 Numerical Computation
2 Optimization Problems
3 Unconstrained Optimization

Gradient Descent
Newton’s Method

4 Optimization in ML: Stochastic Gradient Descent
Perceptron
Adaline
Stochastic Gradient Descent

5 Constrained Optimization
6 Optimization in ML: Regularization

Linear Regression
Polynomial Regression
Generalizability & Regularization

7 Duality*

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 37 / 74

Perceptron & Neurons
Perceptron, proposed in 1950’s by Rosenblatt, is one of the first ML
algorithms for binary classification

Inspired by McCullock-Pitts (MCP) neuron, published in 1943
Our brains consist of interconnected neurons

Each neuron takes signals from other neurons as input
If the accumulated signal exceeds a certain threshold, an output signal
is generated

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 38 / 74

Perceptron & Neurons
Perceptron, proposed in 1950’s by Rosenblatt, is one of the first ML
algorithms for binary classification
Inspired by McCullock-Pitts (MCP) neuron, published in 1943

Our brains consist of interconnected neurons

Each neuron takes signals from other neurons as input
If the accumulated signal exceeds a certain threshold, an output signal
is generated

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 38 / 74

Perceptron & Neurons
Perceptron, proposed in 1950’s by Rosenblatt, is one of the first ML
algorithms for binary classification
Inspired by McCullock-Pitts (MCP) neuron, published in 1943

Our brains consist of interconnected neurons

Each neuron takes signals from other neurons as input
If the accumulated signal exceeds a certain threshold, an output signal
is generated

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 38 / 74

Perceptron & Neurons
Perceptron, proposed in 1950’s by Rosenblatt, is one of the first ML
algorithms for binary classification
Inspired by McCullock-Pitts (MCP) neuron, published in 1943

Our brains consist of interconnected neurons

Each neuron takes signals from other neurons as input

If the accumulated signal exceeds a certain threshold, an output signal
is generated

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 38 / 74

Perceptron & Neurons
Perceptron, proposed in 1950’s by Rosenblatt, is one of the first ML
algorithms for binary classification
Inspired by McCullock-Pitts (MCP) neuron, published in 1943

Our brains consist of interconnected neurons

Each neuron takes signals from other neurons as input
If the accumulated signal exceeds a certain threshold, an output signal
is generated

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 38 / 74

Model
Binary classification problem:

Training dataset: X= {(x(i),y(i))}i, where x(i) 2 RD and y(i) 2 {1,�1}
Output: a function f (x) = ŷ such that ŷ is close to the true label y

Model: {f : f (x;w,b) = sign(w>x�b)}
sign(a) = 1 if a� 0; otherwise 0

For simplicity, we use shorthand f (x;w) = sign(w>x) where
w = [�b,w

1

, · · · ,wD]> and x = [1,x
1

, · · · ,xD]>

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 39 / 74

Model
Binary classification problem:

Training dataset: X= {(x(i),y(i))}i, where x(i) 2 RD and y(i) 2 {1,�1}
Output: a function f (x) = ŷ such that ŷ is close to the true label y

Model: {f : f (x;w,b) = sign(w>x�b)}
sign(a) = 1 if a� 0; otherwise 0

For simplicity, we use shorthand f (x;w) = sign(w>x) where
w = [�b,w

1

, · · · ,wD]> and x = [1,x
1

, · · · ,xD]>

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 39 / 74

Model
Binary classification problem:

Training dataset: X= {(x(i),y(i))}i, where x(i) 2 RD and y(i) 2 {1,�1}
Output: a function f (x) = ŷ such that ŷ is close to the true label y

Model: {f : f (x;w,b) = sign(w>x�b)}
sign(a) = 1 if a� 0; otherwise 0

For simplicity, we use shorthand f (x;w) = sign(w>x) where
w = [�b,w

1

, · · · ,wD]> and x = [1,x
1

, · · · ,xD]>

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 39 / 74

Iterative Training Algorithm I
1 Initiate w(0) and learning rate h > 0

2 Epoch: for each example (x(t),y(t)), update w by

w(t+1) = w(t) +h(y(t)� ŷ(t))x(t)

where ŷ(t) = f (x(t);w(t)) = sign(w(t)>x(t))
3 Repeat epoch several times (or until converge)

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 40 / 74

Iterative Training Algorithm II
Update rule:

w(t+1) = w(t) +h(y(t)� ŷ(t))x(t)

If ŷ(t) is correct, we have w(t+1) = w(t)

If ŷ(t) is incorrect, we have w(t+1) = w(t) +2hy(t)x(t)
If y(t) = 1, the updated prediction will more likely to be positive, as
sign(w(t+1)>x(t)) = sign(w(t)>x(t) + c) for some c > 0

If y(t) =�1, the updated prediction will more likely to be negative

Does not converge if the dataset cannot be separated by a hyperplane

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 41 / 74

Iterative Training Algorithm II
Update rule:

w(t+1) = w(t) +h(y(t)� ŷ(t))x(t)

If ŷ(t) is correct, we have w(t+1) = w(t)

If ŷ(t) is incorrect, we have w(t+1) = w(t) +2hy(t)x(t)

If y(t) = 1, the updated prediction will more likely to be positive, as
sign(w(t+1)>x(t)) = sign(w(t)>x(t) + c) for some c > 0

If y(t) =�1, the updated prediction will more likely to be negative

Does not converge if the dataset cannot be separated by a hyperplane

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 41 / 74

Iterative Training Algorithm II
Update rule:

w(t+1) = w(t) +h(y(t)� ŷ(t))x(t)

If ŷ(t) is correct, we have w(t+1) = w(t)

If ŷ(t) is incorrect, we have w(t+1) = w(t) +2hy(t)x(t)
If y(t) = 1, the updated prediction will more likely to be positive, as
sign(w(t+1)>x(t)) = sign(w(t)>x(t) + c) for some c > 0

If y(t) =�1, the updated prediction will more likely to be negative

Does not converge if the dataset cannot be separated by a hyperplane

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 41 / 74

Iterative Training Algorithm II
Update rule:

w(t+1) = w(t) +h(y(t)� ŷ(t))x(t)

If ŷ(t) is correct, we have w(t+1) = w(t)

If ŷ(t) is incorrect, we have w(t+1) = w(t) +2hy(t)x(t)
If y(t) = 1, the updated prediction will more likely to be positive, as
sign(w(t+1)>x(t)) = sign(w(t)>x(t) + c) for some c > 0

If y(t) =�1, the updated prediction will more likely to be negative

Does not converge if the dataset cannot be separated by a hyperplane

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 41 / 74

Iterative Training Algorithm II
Update rule:

w(t+1) = w(t) +h(y(t)� ŷ(t))x(t)

If ŷ(t) is correct, we have w(t+1) = w(t)

If ŷ(t) is incorrect, we have w(t+1) = w(t) +2hy(t)x(t)
If y(t) = 1, the updated prediction will more likely to be positive, as
sign(w(t+1)>x(t)) = sign(w(t)>x(t) + c) for some c > 0

If y(t) =�1, the updated prediction will more likely to be negative

Does not converge if the dataset cannot be separated by a hyperplane

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 41 / 74

Outline
1 Numerical Computation
2 Optimization Problems
3 Unconstrained Optimization

Gradient Descent
Newton’s Method

4 Optimization in ML: Stochastic Gradient Descent
Perceptron
Adaline
Stochastic Gradient Descent

5 Constrained Optimization
6 Optimization in ML: Regularization

Linear Regression
Polynomial Regression
Generalizability & Regularization

7 Duality*

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 42 / 74

ADAptive LInear NEuron (Adaline)
Proposed in 1960’s by Widrow et al.
Defines and minimizes a cost function for training:

argmin

w
C(w;X) = argmin

w

1

2

N

Â
i=1

⇣
y(i)�w>x(i)

⌘
2

Links numerical optimization to ML

Sign function is only used for binary prediction after training

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 43 / 74

ADAptive LInear NEuron (Adaline)
Proposed in 1960’s by Widrow et al.
Defines and minimizes a cost function for training:

argmin

w
C(w;X) = argmin

w

1

2

N

Â
i=1

⇣
y(i)�w>x(i)

⌘
2

Links numerical optimization to ML

Sign function is only used for binary prediction after training

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 43 / 74

Training Using Gradient Descent

Update rule:

w(t+1) = w(t)�h—C(w(t))
= w(t) +h Âi(y(i)�w(t)>x(i))x(i)

Since the cost function is convex, the training iterations will converge

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 44 / 74

Training Using Gradient Descent

Update rule:

w(t+1) = w(t)�h—C(w(t))
= w(t) +h Âi(y(i)�w(t)>x(i))x(i)

Since the cost function is convex, the training iterations will converge

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 44 / 74

Outline
1 Numerical Computation
2 Optimization Problems
3 Unconstrained Optimization

Gradient Descent
Newton’s Method

4 Optimization in ML: Stochastic Gradient Descent
Perceptron
Adaline
Stochastic Gradient Descent

5 Constrained Optimization
6 Optimization in ML: Regularization

Linear Regression
Polynomial Regression
Generalizability & Regularization

7 Duality*

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 45 / 74

Cost as an Expectation
In ML, the cost function to minimize is usually a sum of losses over
training examples
E.g., in Adaline: sum of square losses (functions)

argmin

w
C(w;X) = argmin

w

1

2

N

Â
i=1

⇣
y(i)�w>x(i)

⌘
2

Let examples be i.i.d. samples of random variables (x,y)

We effectively minimize the estimate of E[C(w)] over the

distribution P(x,y):

argmin

w
E

x,y⇠P

[C(w)]

P(x,y) may be unknown

Since the problem is stochastic by nature, why not make the training
algorithm stochastic too?

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 46 / 74

Cost as an Expectation
In ML, the cost function to minimize is usually a sum of losses over
training examples
E.g., in Adaline: sum of square losses (functions)

argmin

w
C(w;X) = argmin

w

1

2

N

Â
i=1

⇣
y(i)�w>x(i)

⌘
2

Let examples be i.i.d. samples of random variables (x,y)

We effectively minimize the estimate of E[C(w)] over the

distribution P(x,y):

argmin

w
E

x,y⇠P

[C(w)]

P(x,y) may be unknown

Since the problem is stochastic by nature, why not make the training
algorithm stochastic too?

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 46 / 74

Cost as an Expectation
In ML, the cost function to minimize is usually a sum of losses over
training examples
E.g., in Adaline: sum of square losses (functions)

argmin

w
C(w;X) = argmin

w

1

2

N

Â
i=1

⇣
y(i)�w>x(i)

⌘
2

Let examples be i.i.d. samples of random variables (x,y)

We effectively minimize the estimate of E[C(w)] over the

distribution P(x,y):

argmin

w
E

x,y⇠P

[C(w)]

P(x,y) may be unknown

Since the problem is stochastic by nature, why not make the training
algorithm stochastic too?

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 46 / 74

Stochastic Gradient Descent

Input: w(0) 2 Rd an initial guess, h > 0, M � 1

repeat
epoch:
Randomly partition the training set X into the minibatches

{X(j)}j, |X(j)|= M;
foreach j do

w(t+1) w(t)�h—C(w(t)
;X(j)) ;

end
until convergence criterion is satisfied ;

C(w;X(j)) is still an estimate of E

x,y⇠P

[C(w)]
X(j) are samples of the same distribution P(x,y)

It’s common to set M = 1 on a single machine
E.g., update rule for Adaline: w(t+1) = w(t) +h(y(t)�w(t)>x(t))x(t),
which is similar to that of Perceptron

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 47 / 74

Stochastic Gradient Descent

Input: w(0) 2 Rd an initial guess, h > 0, M � 1

repeat
epoch:
Randomly partition the training set X into the minibatches

{X(j)}j, |X(j)|= M;
foreach j do

w(t+1) w(t)�h—C(w(t)
;X(j)) ;

end
until convergence criterion is satisfied ;

C(w;X(j)) is still an estimate of E

x,y⇠P

[C(w)]
X(j) are samples of the same distribution P(x,y)

It’s common to set M = 1 on a single machine
E.g., update rule for Adaline: w(t+1) = w(t) +h(y(t)�w(t)>x(t))x(t),
which is similar to that of Perceptron

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 47 / 74

Stochastic Gradient Descent

Input: w(0) 2 Rd an initial guess, h > 0, M � 1

repeat
epoch:
Randomly partition the training set X into the minibatches

{X(j)}j, |X(j)|= M;
foreach j do

w(t+1) w(t)�h—C(w(t)
;X(j)) ;

end
until convergence criterion is satisfied ;

C(w;X(j)) is still an estimate of E

x,y⇠P

[C(w)]
X(j) are samples of the same distribution P(x,y)

It’s common to set M = 1 on a single machine
E.g., update rule for Adaline: w(t+1) = w(t) +h(y(t)�w(t)>x(t))x(t),
which is similar to that of Perceptron

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 47 / 74

SGD vs. GD
Each iteration can run much faster when M⌧ N

Converges faster (in both #epochs and time) with large datasets
Supports online learning
But may wander around the optimal points

In practice, we set h = O(t�1)

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 48 / 74

SGD vs. GD
Each iteration can run much faster when M⌧ N
Converges faster (in both #epochs and time) with large datasets

Supports online learning
But may wander around the optimal points

In practice, we set h = O(t�1)

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 48 / 74

SGD vs. GD
Each iteration can run much faster when M⌧ N
Converges faster (in both #epochs and time) with large datasets
Supports online learning

But may wander around the optimal points
In practice, we set h = O(t�1)

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 48 / 74

SGD vs. GD
Each iteration can run much faster when M⌧ N
Converges faster (in both #epochs and time) with large datasets
Supports online learning
But may wander around the optimal points

In practice, we set h = O(t�1)

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 48 / 74

Outline
1 Numerical Computation
2 Optimization Problems
3 Unconstrained Optimization

Gradient Descent
Newton’s Method

4 Optimization in ML: Stochastic Gradient Descent
Perceptron
Adaline
Stochastic Gradient Descent

5 Constrained Optimization
6 Optimization in ML: Regularization

Linear Regression
Polynomial Regression
Generalizability & Regularization

7 Duality*

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 49 / 74

Constrained Optimization

Problem:
minx f (x)

subject to x 2 C

f : Rd! R is not necessarily convex
C= {x : g(i)(x) 0,h(j)(x) = 0}i,j

Iterative descent algorithm?

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 50 / 74

Constrained Optimization

Problem:
minx f (x)

subject to x 2 C

f : Rd! R is not necessarily convex
C= {x : g(i)(x) 0,h(j)(x) = 0}i,j

Iterative descent algorithm?

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 50 / 74

Common Methods

Projective gradient descent: if x(t) falls outside C at step t, we
“project” back the point to the tangent space (edge) of C

Penalty/barrier methods: convert the constrained problem into one
or more unconstrained ones
And more...

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 51 / 74

Common Methods

Projective gradient descent: if x(t) falls outside C at step t, we
“project” back the point to the tangent space (edge) of C
Penalty/barrier methods: convert the constrained problem into one
or more unconstrained ones
And more...

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 51 / 74

Karush-Kuhn-Tucker (KKT) Methods I

Converts the problem

minx f (x)
subject to x 2 {x : g(i)(x) 0,h(j)(x) = 0}i,j

into
minx maxa,b ,a�0

L(x,a,b) =
minx maxa,b ,a�0

f (x)+Âi aig(i)(x)+Âj bjh(j)(x)

minx maxa,b L means “minimize L with respect to x, at which L is
maximized with respect to a and b ”
The function L(x,a,b) is called the (generalized) Lagrangian

a and b are called KKT multipliers

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 52 / 74

Karush-Kuhn-Tucker (KKT) Methods I

Converts the problem

minx f (x)
subject to x 2 {x : g(i)(x) 0,h(j)(x) = 0}i,j

into
minx maxa,b ,a�0

L(x,a,b) =
minx maxa,b ,a�0

f (x)+Âi aig(i)(x)+Âj bjh(j)(x)

minx maxa,b L means “minimize L with respect to x, at which L is
maximized with respect to a and b ”

The function L(x,a,b) is called the (generalized) Lagrangian

a and b are called KKT multipliers

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 52 / 74

Karush-Kuhn-Tucker (KKT) Methods I

Converts the problem

minx f (x)
subject to x 2 {x : g(i)(x) 0,h(j)(x) = 0}i,j

into
minx maxa,b ,a�0

L(x,a,b) =
minx maxa,b ,a�0

f (x)+Âi aig(i)(x)+Âj bjh(j)(x)

minx maxa,b L means “minimize L with respect to x, at which L is
maximized with respect to a and b ”
The function L(x,a,b) is called the (generalized) Lagrangian

a and b are called KKT multipliers

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 52 / 74

Karush-Kuhn-Tucker (KKT) Methods I

Converts the problem

minx f (x)
subject to x 2 {x : g(i)(x) 0,h(j)(x) = 0}i,j

into
minx maxa,b ,a�0

L(x,a,b) =
minx maxa,b ,a�0

f (x)+Âi aig(i)(x)+Âj bjh(j)(x)

minx maxa,b L means “minimize L with respect to x, at which L is
maximized with respect to a and b ”
The function L(x,a,b) is called the (generalized) Lagrangian

a and b are called KKT multipliers

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 52 / 74

Karush-Kuhn-Tucker (KKT) Methods II
Converts the problem

minx f (x)
subject to x 2 {x : g(i)(x) 0,h(j)(x) = 0}i,j

into
minx maxa,b ,a�0

L(x,a,b) =
minx maxa,b ,a�0

f (x)+Âi aig(i)(x)+Âj bjh(j)(x)

Observe that for any feasible point x, we have

max

a,b ,a�0

L(x,a,b) = f (x)

The optimal feasible point is unchanged

And for any infeasible point x, we have

max

a,b ,a�0

L(x,a,b) = •

Infeasible points will never be optimal (if there are feasible points)

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 53 / 74

Karush-Kuhn-Tucker (KKT) Methods II
Converts the problem

minx f (x)
subject to x 2 {x : g(i)(x) 0,h(j)(x) = 0}i,j

into
minx maxa,b ,a�0

L(x,a,b) =
minx maxa,b ,a�0

f (x)+Âi aig(i)(x)+Âj bjh(j)(x)

Observe that for any feasible point x, we have

max

a,b ,a�0

L(x,a,b) = f (x)

The optimal feasible point is unchanged

And for any infeasible point x, we have

max

a,b ,a�0

L(x,a,b) = •

Infeasible points will never be optimal (if there are feasible points)

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 53 / 74

Karush-Kuhn-Tucker (KKT) Methods II
Converts the problem

minx f (x)
subject to x 2 {x : g(i)(x) 0,h(j)(x) = 0}i,j

into
minx maxa,b ,a�0

L(x,a,b) =
minx maxa,b ,a�0

f (x)+Âi aig(i)(x)+Âj bjh(j)(x)

Observe that for any feasible point x, we have

max

a,b ,a�0

L(x,a,b) = f (x)

The optimal feasible point is unchanged

And for any infeasible point x, we have

max

a,b ,a�0

L(x,a,b) = •

Infeasible points will never be optimal (if there are feasible points)
Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 53 / 74

Alternate Iterative Algorithm

min

x
max

a,b ,a�0

f (x)+Â
i

aig(i)(x)+Â
j

bjh(j)(x)

“Large” a and b create a “barrier” for feasible solutions

Input: x(0) an initial guess, a(0) = 0, b (0) = 0

repeat
Solve x(t+1) = argminx L(x;a(t),b (t)) using some iterative
algorithm starting at x(t);
if x(t+1) /2 C then

Increase a(t) to get a(t+1);
Get b (t+1) by increasing the magnitude of b (t) and set
sign(b (t+1)

j) = sign(h(j)(x(t+1)));
end

until x(t+1) 2 C;

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 54 / 74

Alternate Iterative Algorithm

min

x
max

a,b ,a�0

f (x)+Â
i

aig(i)(x)+Â
j

bjh(j)(x)

“Large” a and b create a “barrier” for feasible solutions

Input: x(0) an initial guess, a(0) = 0, b (0) = 0

repeat
Solve x(t+1) = argminx L(x;a(t),b (t)) using some iterative
algorithm starting at x(t);
if x(t+1) /2 C then

Increase a(t) to get a(t+1);
Get b (t+1) by increasing the magnitude of b (t) and set
sign(b (t+1)

j) = sign(h(j)(x(t+1)));
end

until x(t+1) 2 C;

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 54 / 74

KKT Conditions

Theorem (KKT Conditions)

If x⇤ is an optimal point, then there exists KKT multipliers a⇤ and b ⇤ such

that the Karush-Kuhn-Tucker (KKT) conditions are satisfied:

Lagrangian stationarity: —L(x⇤,a⇤,b ⇤) = 0

Primal feasibility: g(i)(x⇤) 0 and h(j)(x⇤) = 0 for all i and j
Dual feasibility: a⇤ � 0

Complementary slackness: a⇤i g(i)(x⇤) = 0 for all i.

Only a necessary condition for x⇤ being optimal
Sufficient if the original problem is convex

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 55 / 74

KKT Conditions

Theorem (KKT Conditions)

If x⇤ is an optimal point, then there exists KKT multipliers a⇤ and b ⇤ such

that the Karush-Kuhn-Tucker (KKT) conditions are satisfied:

Lagrangian stationarity: —L(x⇤,a⇤,b ⇤) = 0

Primal feasibility: g(i)(x⇤) 0 and h(j)(x⇤) = 0 for all i and j
Dual feasibility: a⇤ � 0

Complementary slackness: a⇤i g(i)(x⇤) = 0 for all i.

Only a necessary condition for x⇤ being optimal
Sufficient if the original problem is convex

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 55 / 74

KKT Conditions

Theorem (KKT Conditions)

If x⇤ is an optimal point, then there exists KKT multipliers a⇤ and b ⇤ such

that the Karush-Kuhn-Tucker (KKT) conditions are satisfied:

Lagrangian stationarity: —L(x⇤,a⇤,b ⇤) = 0

Primal feasibility: g(i)(x⇤) 0 and h(j)(x⇤) = 0 for all i and j
Dual feasibility: a⇤ � 0

Complementary slackness: a⇤i g(i)(x⇤) = 0 for all i.

Only a necessary condition for x⇤ being optimal
Sufficient if the original problem is convex

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 55 / 74

KKT Conditions

Theorem (KKT Conditions)

If x⇤ is an optimal point, then there exists KKT multipliers a⇤ and b ⇤ such

that the Karush-Kuhn-Tucker (KKT) conditions are satisfied:

Lagrangian stationarity: —L(x⇤,a⇤,b ⇤) = 0

Primal feasibility: g(i)(x⇤) 0 and h(j)(x⇤) = 0 for all i and j
Dual feasibility: a⇤ � 0

Complementary slackness: a⇤i g(i)(x⇤) = 0 for all i.

Only a necessary condition for x⇤ being optimal
Sufficient if the original problem is convex

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 55 / 74

KKT Conditions

Theorem (KKT Conditions)

If x⇤ is an optimal point, then there exists KKT multipliers a⇤ and b ⇤ such

that the Karush-Kuhn-Tucker (KKT) conditions are satisfied:

Lagrangian stationarity: —L(x⇤,a⇤,b ⇤) = 0

Primal feasibility: g(i)(x⇤) 0 and h(j)(x⇤) = 0 for all i and j
Dual feasibility: a⇤ � 0

Complementary slackness: a⇤i g(i)(x⇤) = 0 for all i.

Only a necessary condition for x⇤ being optimal

Sufficient if the original problem is convex

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 55 / 74

KKT Conditions

Theorem (KKT Conditions)

If x⇤ is an optimal point, then there exists KKT multipliers a⇤ and b ⇤ such

that the Karush-Kuhn-Tucker (KKT) conditions are satisfied:

Lagrangian stationarity: —L(x⇤,a⇤,b ⇤) = 0

Primal feasibility: g(i)(x⇤) 0 and h(j)(x⇤) = 0 for all i and j
Dual feasibility: a⇤ � 0

Complementary slackness: a⇤i g(i)(x⇤) = 0 for all i.

Only a necessary condition for x⇤ being optimal
Sufficient if the original problem is convex

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 55 / 74

Complementary Slackness

Why a⇤i g(i)(x⇤) = 0?
For x⇤ being feasible, we have g(i)(x⇤) 0

If g(i) is active (i.e., g(i)(x⇤) = 0) then a⇤i g(i)(x⇤) = 0

If g(i) is inactive (i.e., g(i)(x⇤)< 0), then
To maximize the aig(i)(x⇤) term in the Lagrangian in terms of ai
subject to ai � 0, we have a⇤i = 0

Again a⇤i g(i)(x⇤) = 0

So what?
a⇤i > 0 implies g(i)(x⇤) = 0

Once x⇤ is solved, we can quickly find out the active inequality
constrains by checking a⇤i > 0

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 56 / 74

Complementary Slackness

Why a⇤i g(i)(x⇤) = 0?
For x⇤ being feasible, we have g(i)(x⇤) 0

If g(i) is active (i.e., g(i)(x⇤) = 0) then a⇤i g(i)(x⇤) = 0

If g(i) is inactive (i.e., g(i)(x⇤)< 0), then
To maximize the aig(i)(x⇤) term in the Lagrangian in terms of ai
subject to ai � 0, we have a⇤i = 0

Again a⇤i g(i)(x⇤) = 0

So what?
a⇤i > 0 implies g(i)(x⇤) = 0

Once x⇤ is solved, we can quickly find out the active inequality
constrains by checking a⇤i > 0

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 56 / 74

Complementary Slackness

Why a⇤i g(i)(x⇤) = 0?
For x⇤ being feasible, we have g(i)(x⇤) 0

If g(i) is active (i.e., g(i)(x⇤) = 0) then a⇤i g(i)(x⇤) = 0

If g(i) is inactive (i.e., g(i)(x⇤)< 0), then
To maximize the aig(i)(x⇤) term in the Lagrangian in terms of ai
subject to ai � 0, we have a⇤i = 0

Again a⇤i g(i)(x⇤) = 0

So what?
a⇤i > 0 implies g(i)(x⇤) = 0

Once x⇤ is solved, we can quickly find out the active inequality
constrains by checking a⇤i > 0

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 56 / 74

Complementary Slackness

Why a⇤i g(i)(x⇤) = 0?
For x⇤ being feasible, we have g(i)(x⇤) 0

If g(i) is active (i.e., g(i)(x⇤) = 0) then a⇤i g(i)(x⇤) = 0

If g(i) is inactive (i.e., g(i)(x⇤)< 0), then
To maximize the aig(i)(x⇤) term in the Lagrangian in terms of ai
subject to ai � 0, we have a⇤i = 0

Again a⇤i g(i)(x⇤) = 0

So what?
a⇤i > 0 implies g(i)(x⇤) = 0

Once x⇤ is solved, we can quickly find out the active inequality
constrains by checking a⇤i > 0

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 56 / 74

Complementary Slackness

Why a⇤i g(i)(x⇤) = 0?
For x⇤ being feasible, we have g(i)(x⇤) 0

If g(i) is active (i.e., g(i)(x⇤) = 0) then a⇤i g(i)(x⇤) = 0

If g(i) is inactive (i.e., g(i)(x⇤)< 0), then
To maximize the aig(i)(x⇤) term in the Lagrangian in terms of ai
subject to ai � 0, we have a⇤i = 0

Again a⇤i g(i)(x⇤) = 0

So what?

a⇤i > 0 implies g(i)(x⇤) = 0

Once x⇤ is solved, we can quickly find out the active inequality
constrains by checking a⇤i > 0

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 56 / 74

Complementary Slackness

Why a⇤i g(i)(x⇤) = 0?
For x⇤ being feasible, we have g(i)(x⇤) 0

If g(i) is active (i.e., g(i)(x⇤) = 0) then a⇤i g(i)(x⇤) = 0

If g(i) is inactive (i.e., g(i)(x⇤)< 0), then
To maximize the aig(i)(x⇤) term in the Lagrangian in terms of ai
subject to ai � 0, we have a⇤i = 0

Again a⇤i g(i)(x⇤) = 0

So what?
a⇤i > 0 implies g(i)(x⇤) = 0

Once x⇤ is solved, we can quickly find out the active inequality
constrains by checking a⇤i > 0

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 56 / 74

Outline
1 Numerical Computation
2 Optimization Problems
3 Unconstrained Optimization

Gradient Descent
Newton’s Method

4 Optimization in ML: Stochastic Gradient Descent
Perceptron
Adaline
Stochastic Gradient Descent

5 Constrained Optimization
6 Optimization in ML: Regularization

Linear Regression
Polynomial Regression
Generalizability & Regularization

7 Duality*

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 57 / 74

Outline
1 Numerical Computation
2 Optimization Problems
3 Unconstrained Optimization

Gradient Descent
Newton’s Method

4 Optimization in ML: Stochastic Gradient Descent
Perceptron
Adaline
Stochastic Gradient Descent

5 Constrained Optimization
6 Optimization in ML: Regularization

Linear Regression
Polynomial Regression
Generalizability & Regularization

7 Duality*

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 58 / 74

The Regression Problem

Given a training dataset: X= {(x(i),y(i))}N
i=1

x(i) 2 RD, called explanatory variables (attributes/features)
y(i) 2 R, called response/target variables (labels)

Goal: to find a function f (x) = ŷ such that ŷ is close to the true label y

Example: to predict the price of a stock tomorrow
Could you define a model F= {f} and cost function C[f]?
How about “relaxing” the Adaline by removing the sign function when
making the final prediction?

Adaline: ŷ = sign(w>x�b)
Regressor: ŷ = w>x�b

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 59 / 74

The Regression Problem

Given a training dataset: X= {(x(i),y(i))}N
i=1

x(i) 2 RD, called explanatory variables (attributes/features)
y(i) 2 R, called response/target variables (labels)

Goal: to find a function f (x) = ŷ such that ŷ is close to the true label y

Example: to predict the price of a stock tomorrow

Could you define a model F= {f} and cost function C[f]?
How about “relaxing” the Adaline by removing the sign function when
making the final prediction?

Adaline: ŷ = sign(w>x�b)
Regressor: ŷ = w>x�b

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 59 / 74

The Regression Problem

Given a training dataset: X= {(x(i),y(i))}N
i=1

x(i) 2 RD, called explanatory variables (attributes/features)
y(i) 2 R, called response/target variables (labels)

Goal: to find a function f (x) = ŷ such that ŷ is close to the true label y

Example: to predict the price of a stock tomorrow
Could you define a model F= {f} and cost function C[f]?

How about “relaxing” the Adaline by removing the sign function when
making the final prediction?

Adaline: ŷ = sign(w>x�b)
Regressor: ŷ = w>x�b

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 59 / 74

The Regression Problem

Given a training dataset: X= {(x(i),y(i))}N
i=1

x(i) 2 RD, called explanatory variables (attributes/features)
y(i) 2 R, called response/target variables (labels)

Goal: to find a function f (x) = ŷ such that ŷ is close to the true label y

Example: to predict the price of a stock tomorrow
Could you define a model F= {f} and cost function C[f]?
How about “relaxing” the Adaline by removing the sign function when
making the final prediction?

Adaline: ŷ = sign(w>x�b)
Regressor: ŷ = w>x�b

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 59 / 74

Linear Regression I

Model: F= {f : f (x;w,b) = w>x�b}
Shorthand: f (x;w) = w>x, where w = [�b,w

1

, · · · ,wD]> and
x = [1,x

1

, · · · ,xD]>

Cost function and optimization problem:

argmin

w

1

2

N

Â
i=1

ky(i)�w>x(i)k2 = argmin

w

1

2

ky�Xwk2

X =

2

64
1 x(1)>
...

...
1 x(N)>

3

75 2 RN⇥(D+1) the design matrix

y = [y(1), · · · ,y(N)]> the label vector

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 60 / 74

Linear Regression I

Model: F= {f : f (x;w,b) = w>x�b}
Shorthand: f (x;w) = w>x, where w = [�b,w

1

, · · · ,wD]> and
x = [1,x

1

, · · · ,xD]>

Cost function and optimization problem:

argmin

w

1

2

N

Â
i=1

ky(i)�w>x(i)k2 = argmin

w

1

2

ky�Xwk2

X =

2

64
1 x(1)>
...

...
1 x(N)>

3

75 2 RN⇥(D+1) the design matrix

y = [y(1), · · · ,y(N)]> the label vector

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 60 / 74

Linear Regression II

argmin

w

1

2

N

Â
i=1

ky(i)�w>x(i)k2 = argmin

w

1

2

ky�Xwk2

Basically, we fit a hyperplane to training data
Each f (x) = w>x�b 2 F is a hyperplane in the graph

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 61 / 74

Training Using Gradient Descent

argmin

w

1

2

N

Â
i=1

ky(i)�w>x(i)k2 = argmin

w

1

2

ky�Xwk2

Batch:

w(t+1) = w(t) +h
N

Â
i=1

(y(i)�w(t)>x(i))x(i) = w(t) +hX>(y�Xw)

Stochastic (with minibatch size |M|= 1):

w(t+1) = w(t) +h(y(t)�w(t)>x(t))x(t)

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 62 / 74

Evaluation Metrics of Regression Models

Given a training/testing set X= {(x(i),y(i))}N
i=1

How to evaluate the predictions ŷ(i) made by a function f ?

Sum of Square Errors (SSE): ÂN
i=1

(y(i)� ŷ(i))2

Mean Square Error (MSE): 1

N ÂN
i=1

(y(i)� ŷ(i))2

Relative Square Error (RSE):

ÂN
i=1

(y(i)� ŷ(i))2

ÂN
i=1

(y(i)� ȳ(i))2

,

where ȳ = 1

N Âi y(i)

What does it mean? Compares f with a dummy prediction ȳ

Coefficient of Determination: R2 = 1�RSE 2 [0,1]
Higher the better

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 63 / 74

Evaluation Metrics of Regression Models

Given a training/testing set X= {(x(i),y(i))}N
i=1

How to evaluate the predictions ŷ(i) made by a function f ?
Sum of Square Errors (SSE): ÂN

i=1

(y(i)� ŷ(i))2

Mean Square Error (MSE): 1

N ÂN
i=1

(y(i)� ŷ(i))2

Relative Square Error (RSE):

ÂN
i=1

(y(i)� ŷ(i))2

ÂN
i=1

(y(i)� ȳ(i))2

,

where ȳ = 1

N Âi y(i)

What does it mean? Compares f with a dummy prediction ȳ

Coefficient of Determination: R2 = 1�RSE 2 [0,1]
Higher the better

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 63 / 74

Evaluation Metrics of Regression Models

Given a training/testing set X= {(x(i),y(i))}N
i=1

How to evaluate the predictions ŷ(i) made by a function f ?
Sum of Square Errors (SSE): ÂN

i=1

(y(i)� ŷ(i))2

Mean Square Error (MSE): 1

N ÂN
i=1

(y(i)� ŷ(i))2

Relative Square Error (RSE):

ÂN
i=1

(y(i)� ŷ(i))2

ÂN
i=1

(y(i)� ȳ(i))2

,

where ȳ = 1

N Âi y(i)

What does it mean? Compares f with a dummy prediction ȳ

Coefficient of Determination: R2 = 1�RSE 2 [0,1]
Higher the better

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 63 / 74

Evaluation Metrics of Regression Models

Given a training/testing set X= {(x(i),y(i))}N
i=1

How to evaluate the predictions ŷ(i) made by a function f ?
Sum of Square Errors (SSE): ÂN

i=1

(y(i)� ŷ(i))2

Mean Square Error (MSE): 1

N ÂN
i=1

(y(i)� ŷ(i))2

Relative Square Error (RSE):

ÂN
i=1

(y(i)� ŷ(i))2

ÂN
i=1

(y(i)� ȳ(i))2

,

where ȳ = 1

N Âi y(i)

What does it mean?

Compares f with a dummy prediction ȳ

Coefficient of Determination: R2 = 1�RSE 2 [0,1]
Higher the better

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 63 / 74

Evaluation Metrics of Regression Models

Given a training/testing set X= {(x(i),y(i))}N
i=1

How to evaluate the predictions ŷ(i) made by a function f ?
Sum of Square Errors (SSE): ÂN

i=1

(y(i)� ŷ(i))2

Mean Square Error (MSE): 1

N ÂN
i=1

(y(i)� ŷ(i))2

Relative Square Error (RSE):

ÂN
i=1

(y(i)� ŷ(i))2

ÂN
i=1

(y(i)� ȳ(i))2

,

where ȳ = 1

N Âi y(i)

What does it mean? Compares f with a dummy prediction ȳ

Coefficient of Determination: R2 = 1�RSE 2 [0,1]
Higher the better

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 63 / 74

Evaluation Metrics of Regression Models

Given a training/testing set X= {(x(i),y(i))}N
i=1

How to evaluate the predictions ŷ(i) made by a function f ?
Sum of Square Errors (SSE): ÂN

i=1

(y(i)� ŷ(i))2

Mean Square Error (MSE): 1

N ÂN
i=1

(y(i)� ŷ(i))2

Relative Square Error (RSE):

ÂN
i=1

(y(i)� ŷ(i))2

ÂN
i=1

(y(i)� ȳ(i))2

,

where ȳ = 1

N Âi y(i)

What does it mean? Compares f with a dummy prediction ȳ

Coefficient of Determination: R2 = 1�RSE 2 [0,1]
Higher the better

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 63 / 74

Outline
1 Numerical Computation
2 Optimization Problems
3 Unconstrained Optimization

Gradient Descent
Newton’s Method

4 Optimization in ML: Stochastic Gradient Descent
Perceptron
Adaline
Stochastic Gradient Descent

5 Constrained Optimization
6 Optimization in ML: Regularization

Linear Regression
Polynomial Regression
Generalizability & Regularization

7 Duality*

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 64 / 74

Polynomial Regression
In practice, the relationship between explanatory variables and target
variables may not be linear
Polynomial regression fits a high-order polynomial to the training
data

How?

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 65 / 74

Polynomial Regression
In practice, the relationship between explanatory variables and target
variables may not be linear
Polynomial regression fits a high-order polynomial to the training
data
How?

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 65 / 74

Data Augmentation

Suppose D = 2, i.e., x = [x
1

,x
2

]>

Linear model:

F= {f : f (x;w) = w>x+w
0

= w
0

+w
1

x
1

+w
2

x
2

}

Quadratic model:

F= {f : f (x;w) = w
0

+w
1

x
1

+w
2

x
2

+w
3

x2

1

+w
4

x
1

x
2

+w
5

x2

2

}

We can simply augment the data dimension to reduce a quadratic
model to a linear one

A general technique in ML to “transform” a linear model into a
nonlinear one

How many variables to solve in w for a polynomial regression problem
of degree P? [Homework]

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 66 / 74

Data Augmentation

Suppose D = 2, i.e., x = [x
1

,x
2

]>

Linear model:

F= {f : f (x;w) = w>x+w
0

= w
0

+w
1

x
1

+w
2

x
2

}

Quadratic model:

F= {f : f (x;w) = w
0

+w
1

x
1

+w
2

x
2

+w
3

x2

1

+w
4

x
1

x
2

+w
5

x2

2

}

We can simply augment the data dimension to reduce a quadratic
model to a linear one

A general technique in ML to “transform” a linear model into a
nonlinear one

How many variables to solve in w for a polynomial regression problem
of degree P? [Homework]

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 66 / 74

Data Augmentation

Suppose D = 2, i.e., x = [x
1

,x
2

]>

Linear model:

F= {f : f (x;w) = w>x+w
0

= w
0

+w
1

x
1

+w
2

x
2

}

Quadratic model:

F= {f : f (x;w) = w
0

+w
1

x
1

+w
2

x
2

+w
3

x2

1

+w
4

x
1

x
2

+w
5

x2

2

}

We can simply augment the data dimension to reduce a quadratic
model to a linear one

A general technique in ML to “transform” a linear model into a
nonlinear one

How many variables to solve in w for a polynomial regression problem
of degree P? [Homework]

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 66 / 74

Data Augmentation

Suppose D = 2, i.e., x = [x
1

,x
2

]>

Linear model:

F= {f : f (x;w) = w>x+w
0

= w
0

+w
1

x
1

+w
2

x
2

}

Quadratic model:

F= {f : f (x;w) = w
0

+w
1

x
1

+w
2

x
2

+w
3

x2

1

+w
4

x
1

x
2

+w
5

x2

2

}

We can simply augment the data dimension to reduce a quadratic
model to a linear one

A general technique in ML to “transform” a linear model into a
nonlinear one

How many variables to solve in w for a polynomial regression problem
of degree P? [Homework]

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 66 / 74

Outline
1 Numerical Computation
2 Optimization Problems
3 Unconstrained Optimization

Gradient Descent
Newton’s Method

4 Optimization in ML: Stochastic Gradient Descent
Perceptron
Adaline
Stochastic Gradient Descent

5 Constrained Optimization
6 Optimization in ML: Regularization

Linear Regression
Polynomial Regression
Generalizability & Regularization

7 Duality*

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 67 / 74

Regularization

There’s another major difference between the ML algorithms and
optimization techniques:

We usually care about the testing performance rather than the
training performance

E.g., in classification, we report the testing accuracy

Goal: to learn a function that generalizes to unseen data well
Regularization: techniques that improve the generalizability of the
learned function
How to regularize the linear regression?

argmin

w

1

2

ky�Xwk2

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 68 / 74

Regularization

There’s another major difference between the ML algorithms and
optimization techniques:
We usually care about the testing performance rather than the
training performance

E.g., in classification, we report the testing accuracy

Goal: to learn a function that generalizes to unseen data well
Regularization: techniques that improve the generalizability of the
learned function
How to regularize the linear regression?

argmin

w

1

2

ky�Xwk2

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 68 / 74

Regularization

There’s another major difference between the ML algorithms and
optimization techniques:
We usually care about the testing performance rather than the
training performance

E.g., in classification, we report the testing accuracy

Goal: to learn a function that generalizes to unseen data well

Regularization: techniques that improve the generalizability of the
learned function
How to regularize the linear regression?

argmin

w

1

2

ky�Xwk2

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 68 / 74

Regularization

There’s another major difference between the ML algorithms and
optimization techniques:
We usually care about the testing performance rather than the
training performance

E.g., in classification, we report the testing accuracy

Goal: to learn a function that generalizes to unseen data well
Regularization: techniques that improve the generalizability of the
learned function

How to regularize the linear regression?

argmin

w

1

2

ky�Xwk2

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 68 / 74

Regularization

There’s another major difference between the ML algorithms and
optimization techniques:
We usually care about the testing performance rather than the
training performance

E.g., in classification, we report the testing accuracy

Goal: to learn a function that generalizes to unseen data well
Regularization: techniques that improve the generalizability of the
learned function
How to regularize the linear regression?

argmin

w

1

2

ky�Xwk2

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 68 / 74

Regularized Linear Regression

One way to improve the generalizability of f is to make it “flat:”

argminw2RD,b
1

2

ky� (Xw�b)k2

subject to kwk2  T
=

argminw2RD+1

1

2

ky� (Xw)k2

subject to w>Sw T

S = diag([0,1, · · · ,1]>) 2 R(D+1)⇥(D+1) (b is not regularized)

We will explain why this works later
How to solve this problem?
Using the KKT method, we have

argmin

w
max

a,a�0

L(w,a) = argmin

w
max

a,a�0

1

2

⇣
ky�Xwk2 +a(w>Sw�T)

⌘

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 69 / 74

Regularized Linear Regression

One way to improve the generalizability of f is to make it “flat:”

argminw2RD,b
1

2

ky� (Xw�b)k2

subject to kwk2  T
=

argminw2RD+1

1

2

ky� (Xw)k2

subject to w>Sw T

S = diag([0,1, · · · ,1]>) 2 R(D+1)⇥(D+1) (b is not regularized)

We will explain why this works later

How to solve this problem?
Using the KKT method, we have

argmin

w
max

a,a�0

L(w,a) = argmin

w
max

a,a�0

1

2

⇣
ky�Xwk2 +a(w>Sw�T)

⌘

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 69 / 74

Regularized Linear Regression

One way to improve the generalizability of f is to make it “flat:”

argminw2RD,b
1

2

ky� (Xw�b)k2

subject to kwk2  T
=

argminw2RD+1

1

2

ky� (Xw)k2

subject to w>Sw T

S = diag([0,1, · · · ,1]>) 2 R(D+1)⇥(D+1) (b is not regularized)

We will explain why this works later
How to solve this problem?

Using the KKT method, we have

argmin

w
max

a,a�0

L(w,a) = argmin

w
max

a,a�0

1

2

⇣
ky�Xwk2 +a(w>Sw�T)

⌘

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 69 / 74

Regularized Linear Regression

One way to improve the generalizability of f is to make it “flat:”

argminw2RD,b
1

2

ky� (Xw�b)k2

subject to kwk2  T
=

argminw2RD+1

1

2

ky� (Xw)k2

subject to w>Sw T

S = diag([0,1, · · · ,1]>) 2 R(D+1)⇥(D+1) (b is not regularized)

We will explain why this works later
How to solve this problem?
Using the KKT method, we have

argmin

w
max

a,a�0

L(w,a) = argmin

w
max

a,a�0

1

2

⇣
ky�Xwk2 +a(w>Sw�T)

⌘

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 69 / 74

Alternate Iterative Algorithm

argmin

w
max

a,a�0

L(w,a) = argmin

w
max

a,a�0

1

2

⇣
ky�Xwk2 +a(w>Sw�T)

⌘

Input: w(0) 2 Rd an initial guess, a(0) = 0, d > 0

repeat
Solve w(t+1) = argminw L(w;a(t)) using some iterative algorithm
starting at w(t);
if w(t+1)>w(t+1) > T then

a(t+1) = a(t) +d in order to increase L(a;w(t+1));
end

until w(t+1)>w(t+1)  T;

We could also solve w(t+1) analytically from ∂
∂x L(w;a(t)) = 0:

w(t+1) =
⇣

X>X+a(t)S
⌘�1

X>y

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 70 / 74

Alternate Iterative Algorithm

argmin

w
max

a,a�0

L(w,a) = argmin

w
max

a,a�0

1

2

⇣
ky�Xwk2 +a(w>Sw�T)

⌘

Input: w(0) 2 Rd an initial guess, a(0) = 0, d > 0

repeat
Solve w(t+1) = argminw L(w;a(t)) using some iterative algorithm
starting at w(t);
if w(t+1)>w(t+1) > T then

a(t+1) = a(t) +d in order to increase L(a;w(t+1));
end

until w(t+1)>w(t+1)  T;

We could also solve w(t+1) analytically from ∂
∂x L(w;a(t)) = 0:

w(t+1) =
⇣

X>X+a(t)S
⌘�1

X>y

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 70 / 74

Outline
1 Numerical Computation
2 Optimization Problems
3 Unconstrained Optimization

Gradient Descent
Newton’s Method

4 Optimization in ML: Stochastic Gradient Descent
Perceptron
Adaline
Stochastic Gradient Descent

5 Constrained Optimization
6 Optimization in ML: Regularization

Linear Regression
Polynomial Regression
Generalizability & Regularization

7 Duality*

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 71 / 74

Dual Problem

Given a problem (called primal problem):

p⇤ = min

x
max

a,b ,a�0

L(x,a,b)

We define its dual problem as:

d⇤ = max

a,b ,a�0

min

x
L(x,a,b)

By the max-min inequality, we have d⇤  p⇤ [Homework]
(p⇤ �d⇤) is called the duality gap

p⇤ and d⇤ are called the primal and dual values, respectively

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 72 / 74

Dual Problem

Given a problem (called primal problem):

p⇤ = min

x
max

a,b ,a�0

L(x,a,b)

We define its dual problem as:

d⇤ = max

a,b ,a�0

min

x
L(x,a,b)

By the max-min inequality, we have d⇤  p⇤ [Homework]
(p⇤ �d⇤) is called the duality gap

p⇤ and d⇤ are called the primal and dual values, respectively

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 72 / 74

Dual Problem

Given a problem (called primal problem):

p⇤ = min

x
max

a,b ,a�0

L(x,a,b)

We define its dual problem as:

d⇤ = max

a,b ,a�0

min

x
L(x,a,b)

By the max-min inequality, we have d⇤  p⇤ [Homework]

(p⇤ �d⇤) is called the duality gap

p⇤ and d⇤ are called the primal and dual values, respectively

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 72 / 74

Dual Problem

Given a problem (called primal problem):

p⇤ = min

x
max

a,b ,a�0

L(x,a,b)

We define its dual problem as:

d⇤ = max

a,b ,a�0

min

x
L(x,a,b)

By the max-min inequality, we have d⇤  p⇤ [Homework]
(p⇤ �d⇤) is called the duality gap

p⇤ and d⇤ are called the primal and dual values, respectively

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 72 / 74

Strong Duality

Strong duality holds if d⇤ = p⇤

When will it happen?

If the primal problem has solution and convex

Why considering dual problem?

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 73 / 74

Strong Duality

Strong duality holds if d⇤ = p⇤

When will it happen?
If the primal problem has solution and convex

Why considering dual problem?

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 73 / 74

Example
Consider a primal problem:

argminx2Rd
1

2

kxk2

subject to Ax� b, A 2 Rn⇥d = argmin

x
max

a,a�0

1

2

kxk2�a>(Ax�b)

Convex, so strong duality holds

We can get the same solution via the dual problem:

arg max

a,a�0

min

x

1

2

kxk2�a>(Ax�b)

Solving minx L(x,a) analytically, we have x⇤ = A>a
Substituting this into the dual, we get

arg max

a,a�0

�1

2

kA>ak2 +b>a

We now solve n variables instead of d (beneficial when n⌧ d)

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 74 / 74

Example
Consider a primal problem:

argminx2Rd
1

2

kxk2

subject to Ax� b, A 2 Rn⇥d = argmin

x
max

a,a�0

1

2

kxk2�a>(Ax�b)

Convex, so strong duality holds

We can get the same solution via the dual problem:

arg max

a,a�0

min

x

1

2

kxk2�a>(Ax�b)

Solving minx L(x,a) analytically, we have x⇤ = A>a

Substituting this into the dual, we get

arg max

a,a�0

�1

2

kA>ak2 +b>a

We now solve n variables instead of d (beneficial when n⌧ d)

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 74 / 74

Example
Consider a primal problem:

argminx2Rd
1

2

kxk2

subject to Ax� b, A 2 Rn⇥d = argmin

x
max

a,a�0

1

2

kxk2�a>(Ax�b)

Convex, so strong duality holds

We can get the same solution via the dual problem:

arg max

a,a�0

min

x

1

2

kxk2�a>(Ax�b)

Solving minx L(x,a) analytically, we have x⇤ = A>a
Substituting this into the dual, we get

arg max

a,a�0

�1

2

kA>ak2 +b>a

We now solve n variables instead of d (beneficial when n⌧ d)

Shan-Hung Wu (CS, NTHU) Numerical Optimization Machine Learning 74 / 74

	Numerical Computation
	Optimization Problems
	Unconstrained Optimization
	Gradient Descent
	Newton's Method

	Optimization in ML: Stochastic Gradient Descent
	Perceptron
	Adaline
	Stochastic Gradient Descent

	Constrained Optimization
	Optimization in ML: Regularization
	Linear Regression
	Polynomial Regression
	Generalizability & Regularization

	Duality*

