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Which Polynomial Degree Is Better? I

Given a training set X= {(x(i),y(i))}N
i=1 i.i.d. sampled from of P(x,y)

Assume P(x,y) = P(y |x)P(x), where
P(x)∼ Uniform(−1,1)
y = sin(πx)+ ε, ε ∼N (0,σ2)
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Which Polynomial Degree Is Better? II
Consider 3 unregularized polynomial regressors of degrees P = 1, 3,
and 10

Which one would you pick?

Probably not P = 1 nor P = 10
Note that P = 10 has zero training error

Any N points can be perfectly fitted by a polynomial of degree N−1
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Empirical Error vs. Generalization Error
In ML, we usually “learn” a function by minimizing the empirical
error/risk defined over a training set of size N:

CN(w) or CN [f ] =
1
N

N

∑
i=1

loss
(

f (x(i);w),y(i)
)

E.g., CN(w) = 1
2 ∑

N
i=1

(
y(i)−w>x(i)

)2
in linear regression

But our goal is to have a low generalization error/risk defined over
the underlying data distribution:

C(w) or C[f ] =
∫

loss(f (x;w),y)dP(x,y)

Can be estimated by the testing error
CN′(w) = 1

N′ ∑
N′
i=1 loss

(
f (x′(i);w),y′(i)

)
defined over the testing set

X′ = {(x′(i),y′(i))}N′
i=1

Does a low CN [f ] implies low C[f ]? No, as P = 10 indicates
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No-Free-Lunch Theorem

Why C[f ] is defined over a particular data generating distribution P?

Theorem (No-Free-Lunch Theorem [4])

Averaged over all possible data generating distributions, every classification
algorithm has the same error rate when classifying unseen points.

No machine learning algorithm is better than any other universally
The goal of ML is not to seek a universally good learning algorithm
Instead, a good algorithm that performs well on data drawn from a
particular P we care about
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Learning Theory

Let f ∗ = argminf C[f ] be the best possible function we can get

Since we are seeking a prediction function in a model (hypothesis
space) F, this is what can have at best: f ∗F = argminf∈F C[f ]
But we only minimizes empirical errors on limited examples of size N,
this is what we actually have fN = argminf∈F CN [f ]

Ignoring numerical errors (due to, e.g., numerical optimization)

Learning theory: how to characterize

C[fN ] =
∫

loss(fN(x;w),y)dP(x,y)?

Not to confuse C[fN ] with CN [f ]

Bounding methods
Decomposition methods
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Bounding Methods I
minf C[f ] = C[f ∗] is called the Bayes error

Larger than 0 when there is randomness in P(y |x)
E.g., in our regression problem: y = f ∗(x;w)+ ε, ε ∼N (0,σ2)

Cannot be avoided even we know P(x,y) in the ground truth

So, our target is to make C[fN ] as close to C[f ∗] as possible
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Bounding Methods II

Let E = C[fN ]−C[f ∗] be the excess error
We have

E = C[f ∗F ]−C[f ∗]︸ ︷︷ ︸
Eapp

+C[fN ]−C[f ∗F ]︸ ︷︷ ︸
Eest

Eapp is called the approximation error
Eest is called the estimation error
How to reduce these errors?
We can reduce Eapp by choosing a more complex F

A complex F has a larger capacity
E.g., larger polynomial degree P in polynomial regression

How to reduce Eest?
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Bounding Methods III

Bounds of Eest for, e.g., binary classifiers [1, 2, 3]:

Eest =O
[(

Complexity(F) logN
N

)α]
,α ∈

[
1
2
,1
]
, with high probability

So, to reduce Eest, we should either have
Simpler model (e.g., smaller polynomial degree P), or
Larger training set
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Model Complexity, Overfit, and Underfit
Too simple a model leads to high Eapp

due to underfitting
fN fails to capture the shape of f ∗

High training error; high testing error (given a sufficiently large N)

Too complex a model leads to high Eest

due to overfitting
fN captures not only the shape of f ∗ but also some spurious patterns
(e.g., noise) local to a particular training set
Low training error; high testing error
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Sample Complexity and Learning Curves

How many training examples (N) are sufficient?

Different models/algorithms may have different sample complexity
I.e., the N required to learn a target function with specified
generalizability

Can be visualized using the learning curves
Too small N results in overfit regardless of model complexity
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Decomposition Methods

Bounding methods analyze C[fN ] qualitatively
General, as no (or weak) assumption on data distribution is made

However, in practice, these bounds are too loose to quantify C[fN ]

In some particular situations, we can decompose C[fN ] into multiple
meaningful terms
Assume particular

Loss function loss(·), and
Data generating distribution P(x,y)

Require knowledge about the point estimation
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Sample Mean and Variance

Point estimation is the attempt to estimate some fixed but unknown
quantity θ of a random variable by using sample data

Let X= {x(1), · · · ,x(n)} be a set of n i.i.d. samples of a random
variable x, a point estimator or statistic is a function of the data:

θ̂n = g(x(1), · · · ,x(n))

The value θ̂n is called the estimate of θ

Sample mean: µ̂x =
1
n ∑i x(i)

Sample variance: σ̂x =
1
n ∑i(x(i)− µ̂x)

2

How good are these estimators?
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Bias & Variance

Bias of an estimator:

bias(θ̂n) = EX(θ̂n)−θ

Here, the expectation is defined over all possible X’s of size n, i.e.,
EX(θ̂n) =

∫
θ̂ndP(X)

We call a statistic unbiased estimator iff it has zero bias

Variance of an estimator:

VarX(θ̂n) = EX

[(
θ̂n−EX[θ̂n]

)2
]

Is µ̂x =
1
n ∑i x(i) an unbiased estimator of µx? Yes [Homework]

What much is VarX(µ̂x)?
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Variance of µ̂x

VarX(µ̂) = EX[(µ̂−EX[µ̂])
2] = E[µ̂2−2µ̂µ +µ2] = E[µ̂2]−µ2

= E[ 1
n2 ∑i,j x(i)x(j)]−µ2 = 1

n2 ∑i,j E[x(i)x(j)]−µ2

= 1
n2

(
∑i=j E[x(i)x(j)]+∑i 6=j E[x(i)x(j)]

)
−µ2

= 1
n2

(
∑i E[x(i)2]+n(n−1)E[x(i)]E[x(j)]

)
−µ2

= 1
n E[x2]+ (n−1)

n µ2−µ2 = 1
n

(
E[x2]−µ2

)
= 1

n σ2
x

The variance of µ̂x diminishes as n→ ∞
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Unbiased Estimator of σx

Is σ̂x =
1
n ∑i(x(i)− µ̂x)

2 and an unbiased estimator of σx?

No

EX[σ̂ ] = E[1
n ∑i(x(i)− µ̂)2] = E[1

n(∑i x(i)2−2∑i x(i)µ̂ +∑i µ̂2)]

= E[1
n(∑i x(i)2−nµ̂2)] = 1

n(∑i E[x(i)2]−nE[µ̂2])
= E[x2]−E[µ̂2] = E[(x−µ)2 +2xµ−µ2]−E[µ̂2]
= (σ2 +µ2)− (Var[µ̂]+E[µ̂]2)
= σ2 +µ2− 1

n σ2−µ2 = n−1
n σ2 6=σ2

What’s the unbiased estimator of σx?

σ̂x =
n

n−1
(
1
n ∑

i
(x(i)− µ̂x)

2) =
1

n−1 ∑
i
(x(i)− µ̂x)

2
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Mean Square Error

Mean square error of an estimator:

MSE(θ̂n) = EX
[
(θ̂n−θ)2]

Can be decomposed into the bias and variance:

EX
[
(θ̂n−θ)2

]
= E

[
(θ̂n−E[θ̂n]−E[θ̂n]+θ)2

]
= E

[
(θ̂n−E[θ̂n])

2 +(E[θ̂n]−θ)2 +2(θ̂n−E[θ̂n])(E[θ̂n]−θ)
]

= E
[
(θ̂n−E[θ̂n])

2
]
+E

[
(E[θ̂n]−θ)2

]
+2E

(
θ̂n−E[θ̂n]

)
(E[θ̂n]−θ)

= E
[
(θ̂n−E[θ̂n])

2
]
+
(
E[θ̂n]−θ

)2
+2 ·0 · (E[θ̂n]−θ)

= VarX(θ̂n)+bias(θ̂n)
2

MSE of an unbiased estimator is its variance
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Consistency

So far, we discussed the “goodness” of an estimator based on samples
of fixed size

If we have more samples, will the estimate become more accurate?
An estimator is (weak) consistent iff:

lim
n→∞

θ̂n
Pr−→ θ ,

where Pr−→ means “converge in probability”
Strong consistent iff “converge almost surely”
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Law of Large Numbers

Theorem (Weak Law of Large Numbers)

The sample mean µ̂x =
1
n ∑i x(i) is a consistent estimator of µx, i.e.,

limn→∞ Pr(|µ̂x,n−µx|< ε) = 1 for any ε > 0.

Theorem (Strong Law of Large Numbers)

In addition, µ̂x is a strong consistent estimator: Pr(limn→∞ µ̂x,n = µx) = 1.
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Expected Generalization Error

In ML, we get fN = argminf∈F CN [f ] by minimizing the empirical error
over a training set of size N

How to decompose the generalization error C[fN ]?

Regard fN(x) as an estimate of true label y given x
fN an estimator mapped from i.i.d. samples in the training set X

To evaluate the estimator fN , we consider the expected generalization
error:

EX (C[fN ]) = EX [
∫

loss(fN(x)− y)dP(x,y)]
= EX,x,y [loss(fN(x)−y)]
= Ex

(
EX,y [loss(fN(x)−y)|x = x]

)
There’s a simple decomposition of EX,y [loss(fN(x)−y)|x] for
linear/polynomial regression
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Example: Linear/Polynomial Regression

In linear/polynomial regression, we have
loss(·) = (·)2 a squared loss
y = f ∗(x)+ ε, ε ∼N (0,σ2), thus Ey[y|x] = f ∗(x) and Vary[y|x] = σ2

We can decompose the mean square error:

EX,y [loss(fN(x)−y)|x] = EX,y[(fN(x)−y)2|x]
= EX,y[y2 + fN(x)2−2fN(x)y|x]
= Ey[y2|x]+EX[fN(x)2|x]−2EX,y[fN(x)y|x]
= (Vary[y|x]+Ey[y|x]2)+(VarX[fN(x)|x]+EX[fN(x)|x]2)
−2Ey[y|x]EX[fN(x)|x]

= Vary[y|x]+VarX[fN(x)|x]+ (EX[fN(x)|x]−Ey[y|x])2

= Vary[y|x]+VarX[fN(x)|x]+EX[fN(x)− f ∗(x)|x]2
= σ2 +VarX[fN(x)|x]+bias[fN(x)|x]2
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Bias-Variance Tradeoff I

EX (C[fN ]) = Ex
(
EX,y [loss(fN(x)−y)|x]

)
= Ex

(
σ2 +VarX[fN(x)|x]+bias[fN(x)|x]2

)

The first term cannot be avoided when P(y|x) is stochastic
Model complexity controls the tradeoff between variance and bias
E.g., polynomial regressors (dotted line = average training error):
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Bias-Variance Tradeoff II
Provides another way to understand the generalization/testing error

Too simple a model leads to high bias or underfitting
High training error; high testing error (given a sufficiently large N)

Too complex a model leads to high variance or overfitting
Low training error; high testing error
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Outline

1 Learning Theory

2 Point Estimation: Bias and Variance
Consistency*

3 Decomposing Generalization Error

4 Regularization
Weight Decay
Validation
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Regularization

We get fN = argminf∈F CN [f ] by minimizing the empirical error

But what we really care about is the generalization error C[fN ]

Regularization refers to any technique designed to improve the
generalizability of fN
Any idea inspired by the learning theory?
Regularization in the cost function: weight decay
Regularization during the training process: validation
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Panelizing Complex Functions
Occam’s razor: among equal-performing models, the simplest one
should be selected

Idea: to add a term in the cost function that panelizes complex
functions
So, with sufficiently complex F:

Minimizing the empirical error term reduces bias
Minimizing the penalty term reduces variance
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What to Panelize?

What impacts Complexity(F) in a model?

Some constants in the model F
E.g., degree P in polynomial regression

Restricts the capacity of F
However, cannot be penalized in a cost fucntion since fixed
Alternatively, function parameters

E.g., the parameter w of a function f (·;w) ∈ F
Also restricts the capacity of F
Can be penalized
But which w implies a complex model?
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Weight Decay
In practice, w = 0 is usually the “simplest” function

E.g, in binary classification for labels {−1,1}, a perceptron with w = 0
means random guessing

Weight decay: to penalize the norm of w, which is nonnegative and
equals to 0 when w = 0
E.g., the Ridge regression:

argmin
w,b

1
2
‖y− (Xw−b1)‖2 subject to ‖w‖2 ≤ T

for some constant T > 0
In practice, we usually solve a simpler problem:

argmin
w,b

1
2N
‖y− (Xw−b1)‖2 +

α

2
‖w‖2

where α > 0 is a constant representing both T and the KKT multiplier
What does a larger α means? We prefer a more simple function
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Flat Regressors

argmin
w,b

1
2
(
‖y− (Xw−b1)‖2 +α‖w‖2)

The bias b is not regularized, why?

We want the simplest function with w = 0 means “a dummy regressor
by averaging”

Remember R2 (coefficient of determination)?

However, the label y’s may not be standardized to have zero mean
This explains why we prefer a “flat” hyperplane in the previous lecture
We have discussed how to solve the Ridge regression problem
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Sparse Weight Decay

Alternatively we can minimizes the L1-norm in weight decay
E.g., LASSO (least absolute shrinkage and selection operator):

argmin
w,b

1
2N
‖y− (Xw−b1)‖2 +α‖w‖1

for some constant α > 0

Usually results in sparse w that has many zero attributes
Why?
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Sparsity

argmin
w,b

1
2N
‖y− (Xw−b1)‖2 +α‖w‖1

The surface of the cost function is the sum of SSE (blue contours)
and 1-norm (red contours)
Optimal point locates on some axes
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Elastic Net**

LASSO can be used as a feature selection technique
The sparse w selects explanatory variables that are most correlated to
the target variable

Limitations:
1 Selects at most N variables if D > N
2 No group selection

Important in some applications, e.g., gene selection problems

Elastic net combines Ridge and LASSO:

argmin
w,b

1
2N
‖y− (Xw−b1)‖2 +α

(
β‖w‖1 +

1−β

2
‖w‖2

)
for some constant β ∈ (0,1)

Still gives a sparse w
Highly correlated variables will have similar values in w
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Outline

1 Learning Theory

2 Point Estimation: Bias and Variance
Consistency*

3 Decomposing Generalization Error

4 Regularization
Weight Decay
Validation
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Tuning Hyperparameters

In ML, we call the constants that are fixed in a model the
hyperparameters

Degree P in polynomial regression
Coefficient α of the weight decay term in the cost function of Ridge
and LASSO, etc.

Usually reflect some assumptions about the model
Changing their values changes model complexity

And therefore generalization performance

How to set appropriate values?
Train a model many times with different hyperparameters, and choose
the function with best generalizability
Very time consuming, can we have heuristics to speed up the process?
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Structured Risk Minimization

Consider again the Occam’s razor
Structured risk minimization: start from the simplest model,
gradually increase its complexity, and stop when overfitting
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Validation Set
Pitfall:

we peep the testing set during the training process
The final function will overfit the testing set
Optimistic testing error

Fix? Split a validation set from the training set and use it for
hyperparameter selection
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