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Outline

(@ Probabilistic Models

@ Maximum Likelihood Estimation
o Linear Regression
o Logistic Regression

(3 Maximum A Posteriori Estimation

(@ Bayesian Estimation and Inference*
o Gaussian Process
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Predictions based on Probability

o Supervised learning, we are given a training set X = {(x(?,y(?) N,

o Model F: a collection of functions parametrized by ®

o Goal: to train a function f such that, given a new data point x/, the
output value

a /
y=r"0)
is closest to the correct label y’

o Examples in X are usually assumed to be i.i.d. sampled from random
variables (x,y) following some data generating distribution P(x,y)

o In probabilistic models, we write f(x’;®) as P(y =y|x=x') and a
prediction is made by:

§=argmaxP(y =y|x =x";0)
y

o How to find ®7
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Function (®) as Point Estimate

o Regard O (f) as an estimate of the “true” ©* (f*)
o Mapped from the training set X
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Function (®) as Point Estimate

o Regard O (f) as an estimate of the “true” ©* (f*)
o Mapped from the training set X

o Maximum a posteriori (MAP) estimation:

P(X|©)P(0©)

Omap = arg max P(®|X)=arg max PX)

o O is regarded as a random variable

o Maximum likelihood (ML) estimation:

OmL = argm(gxP(X |®)

o Assumes a uniform P(®) (i.e., does not prefer a particular ®)
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Function (®) as Point Estimate

o Regard O (f) as an estimate of the “true” ©* (f*)
o Mapped from the training set X

o Maximum a posteriori (MAP) estimation:

P(X|©)P(0©)

Omap = arg max P(®|X)=arg max PX)

= argmgxP(X |®)P(®)
o O is regarded as a random variable
o Maximum likelihood (ML) estimation:
OmL = argm(gxP(X |®)

o Assumes a uniform P(®) (i.e., does not prefer a particular ®)

o After being solved, @y /map is treated as a constant when make a
prediction § = argmaxy P(y |x; O /map)
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Probability Interpretation

o Assumption: y =f*(x)+ €, where
° SN,/V(O,ﬁfl)

Shan-Hung Wu (CS, NTHU) Probabilistic Models Machine Learning 8/37



Probability Interpretation

o Assumption: y = f*(x) + €, where
0 En~ ,/V(O,ﬁfl)
o f*(x;w*) =w*Tx is a deterministic function
o All variables in x are z-normalized, so there's no bias term b in f*

Shan-Hung Wu (CS, NTHU) Probabilistic Models Machine Learning 8/37



Probability Interpretation

o Assumption: y = f*(x) + €, where
0 En~ t/V(O,ﬁfl)
o f*(x;w*) =w*Tx is a deterministic function
o All variables in x are z-normalized, so there's no bias term b in f*

o We have (y|x=x)~ A4 (w*'x,B71)

Shan-Hung Wu (CS, NTHU) Probabilistic Models Machine Learning

8/37



Probability Interpretation

o Assumption: y = f*(x) + €, where
0 En~ ,/V(O,ﬁfl)
o f*(x;w*) =w*Tx is a deterministic function
o All variables in x are z-normalized, so there's no bias term b in f*

o We have (y|x=x)~ A4 (w*'x,B71)

o So, out goal is to find w as close to w* as possible such that:

§ =argmaxP(y|x =x;w) =w'x
y

o Note that § is irrelevant to 8, so we don't need to solve 3
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Probability Interpretation

o Assumption: y = f*(x) + €, where
0 En~ ,/V(O,ﬁfl)
o f*(x;w*) =w*Tx is a deterministic function
o All variables in x are z-normalized, so there's no bias term b in f*

o We have (y|x=x)~ A4 (w*'x,B71)

o So, out goal is to find w as close to w* as possible such that:

§ =argmaxP(y|x =x;w) =w'x
y

o Note that § is irrelevant to 8, so we don't need to solve 3

o ML estimation for w*:

wyL = argmax P(X|w)
w
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ML Estimation |

o Problem:
wyL = argmax P(X|w)
w

o Since we assume i.i.d. samples, we have

P(X|w) = ITL, P(x 37 [w) =TT, PO [x, w)P(xD | w)
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o The optimal point does not change since log is monotone increasing

Shan-Hung Wu (CS, NTHU) Probabilistic Models Machine Learning 9/37



ML Estimation |

o Problem:
wyL = argmax P(X|w)
w

o Since we assume i.i.d. samples, we have

POE ) I PO )= T PO 30 0)PG )
:HN P(y i)|x(i),w) ( LA (yz T (),GZ)P(x(i))

)=
—Hl\/>e><p< B0 —wTx0)2) P(x)

o To make the problem tractable, we prefer “sums” over “products”
o We can instead maximize the log likelihood

argmax,, logP(X|w)
—argmaxylog [T/ Brexp (- 80/ - w7x0)2) st

o The optimal point does not change since log is monotone increasing

Shan-Hung Wu (CS, NTHU) Probabilistic Models Machine Learning 9/37



ML Estimation |

o Problem:
wyL = argmax P(X|w)
w

o Since we assume i.i.d. samples, we have

POE ) I PO )= T PO 30 0)PG )
:HN P(y i)|x(i),w) ( LA (yz T (),GZ)P(x(i))

)=
—Hl\/>e><p< B0 —wTx0)2) P(x)

o To make the problem tractable, we prefer “sums” over “products”
o We can instead maximize the log likelihood
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ML Estimation Il

argmaxN\/F [232( +ZP

o lgnoring terms irrelevant to w, we have

WML = argmin Z(y(i) —w'x)?
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o Effectively, we seek for w by minimizing the SSE (sum of square
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o Can solved analytically
o Or numerically by, e.g., the stochastic gradient descent algorithm

Shan-Hung Wu (CS, NTHU) Probabilistic Models Machine Learning 10/37



ML Estimation Il

B ﬁ T..(1)\2 i
argmaxN\/ 22,"()) —w'x®) +;P(x()

o lgnoring terms irrelevant to w, we have

WML = argmin Z(y(i) —w'x)?

o Effectively, we seek for w by minimizing the SSE (sum of square
errors), as we have done before

o Can solved analytically
o Or numerically by, e.g., the stochastic gradient descent algorithm

o This new perspective explains our ad hoc choice of SSE for empirical
risk minimization
o Checking assumptions helps understand when model works the best
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ML Estimation Il

B ﬁ T..(1)\2 i
argmaxN\/ 22,"()) —w'x®) +;P(x()

o lgnoring terms irrelevant to w, we have

WML = argmin Z(y(i) —w'x)?

o Effectively, we seek for w by minimizing the SSE (sum of square
errors), as we have done before

o Can solved analytically
o Or numerically by, e.g., the stochastic gradient descent algorithm

o This new perspective explains our ad hoc choice of SSE for empirical
risk minimization
o Checking assumptions helps understand when model works the best

o Also motivates new models. Probabilistic model for classification?
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Outline

@ Maximum Likelihood Estimation

o Logistic Regression
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Probabilistic Models for Binary Classification

o Probabilistic models:

9 =argmaxP(y|x;0)
y
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Probabilistic Models for Binary Classification

o Probabilistic models:

9 =argmaxP(y|x;0)
y

©

In regression, we assume (y|x) ~ .4 (based on y =f*(x)+¢)

However, Gaussian distribution is not applicable to binary
classification
o The values of y should concentrate in either 1 or —1

Which distribution to assume?
Coin flipping: (y|x) ~ Bernoulli(p), where

©

©

o

/ ! 1
P(s[x:p) = p” (1- )™, where y' =27 € (0,1}
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Probabilistic Models for Binary Classification

o Probabilistic models:

9 =argmaxP(y|x;0)
y

©

In regression, we assume (y|x) ~ .4 (based on y =f*(x)+¢)

However, Gaussian distribution is not applicable to binary
classification
o The values of y should concentrate in either 1 or —1

Which distribution to assume?

Coin flipping: (y|x) ~ Bernoulli(p), where

©

©

o

/ ! 1
P(s[x:p) = p” (1- )™, where y' =27 € (0,1}
o ML estimate P(X|p)? How to relate x to p?
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Logistic Function

o Recall that the logistic function

exp(z 1
o(z) = pix) _
exp(z)+1 1+exp(—z) + S—
is commonly used as a parametrizing
function of the Bernoulli distribution 05
-6 -4 _‘2 UO 2‘ 4 6
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Logistic Function

o Recall that the logistic function

_exp(z) 1
o) = exp(z) +1  14exp(—2z)

is commonly used as a parametrizing
function of the Bernoulli distribution

o We have

0.5

P(y|x;2) = 6 (2)" (1-0(2)

o The larger z, the higher chance we get
a “positive flip”
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o Recall that the logistic function
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o(z) = pix) _
exp(z)+1 1+exp(—z)
is commonly used as a parametrizing
function of the Bernoulli distribution

o We have

P(y|x;2) = 6 (2)" (1-0(2)

0.5

o The larger z, the higher chance we get
a “positive flip”

o How to relate x to z?
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Logistic Regression

o In logistic regression, we let
=W X

o Basically, z is the projection of x along the direction w
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Logistic Regression

o In logistic regression, we let

z=w'x

o Basically, z is the projection of x along the direction w

o We have
P(y|x;w) = o(w x)"[1 —o(w x)] )
o Prediction:
$ = argmaxP(y|x;w) = sign(w ' x)
y
o How to learn w from X7

(]

ML estimation:
wyL = argmax P(X|w)
w
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ML Estimation
o Log-likelihood:

L \
= log[];P (y(i) |x(i),w) P (x(i) \w)
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ML Estimation
o Log-likelihood:

IOg P(X | W) IOgH (x(z y ‘ W)
=log[]; P( |x w) P (x(0) w)
o< log [T, (w )" [1 - G(wa( )]0

Shan-Hung Wu (CS, NTHU) Probabilistic Models Machine Learning 15 /37



ML Estimation
o Log-likelihood:

logP(X|w) = logH (x(’) ) |w)
= log;P (" [x7, w) P ( Dw)
logH G(W x( ) o [1—o(w x®)]0= @)
=Y,V Dw x® —log(1 +e* (') [Homework]

o Unlike in linear regression, we cannot solve w analytically in a closed
form via

N
VW IOgP(X ‘ W) = Z[y/(l) — G(WTx(i))]x(i) — 0
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ML Estimation
o Log-likelihood:

logP(X|w) = logH (x(’) ) |w)

= log;P (" [x7, w) P ( Dw)
logH G(W x! ) 0 [1— G(wa )] YD)
=¥ Owxld) — log(H—ewT (')) [Homework]

o Unlike in linear regression, we cannot solve w analytically in a closed
form via

N
VW IOgP(X ‘ W) = Z[y/(l) — G(WTx(i))]x(i) — 0

o But since logP(X|w) is differentiable w.r.t. w, we can solve wy,
numerically using stochastic gradient descent (SGD)

o It can be shown that logP(X|w) is concave in terms of w [1]
o SGD finds global optimal
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Outline

(3 Maximum A Posteriori Estimation
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MAP Estimation

o So far, we solve w by ML estimation:

wmL = argmax P(X|w)
w
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MAP Estimation
o So far, we solve w by ML estimation:
wmL = argmax P(X|w)

o In MAP estimation, we solve
wmap = argmax P(w | X)) = argmax P(X |w)P(w)
w w

o P(w) models our preference or prior knowledge about w
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MAP Estimation for Linear Regression

o MAP estimation in linear regression:

wmap = argmax log[P(X |w)P(w)]
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MAP Estimation for Linear Regression

o MAP estimation in linear regression:

wmap = argmax log[P(X |w)P(w)]

o If we assume that w ~ .4/ (0, 71)

log[P(X|w)P(w)] = logP(X|w) +logP(w)

Shan-Hung Wu (CS, NTHU) Probabilistic Models Machine Learning 18 /37



MAP Estimation for Linear Regression

o MAP estimation in linear regression:

wmap = argmax log[P(X |w)P(w)]
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MAP Estimation for Linear Regression

o MAP estimation in linear regression:

wmap = argmax log[P(X |w)P(w)]

o If we assume that w ~ .4/ (0, 71)

Log[P(X | w)P(w)] = logP(X ) +logP(w) e« — ¥, (y) — wTx0)?

+10g1 / m exp [—%<W — O)T(Bill)il (W — 0)]
oc =¥ (Y0 —wTx®)? BTy
o P(w) corresponds to the weight decay term in Ridge regression

o MAP estimation provides a way to design complicated yet
interpretable regularization terms

o E.g., we have LASSO by letting P(w) ~ Laplace(0,b) [Proof]
o We can also let P(w) be a mixture of Gaussians
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Remarks on ML and MAP Estimation

Theorem (Consistency)

. . . L P
The ML estimator @y is consistent, i.e., imy_,. @ — OF as long as
the “true” P(y|x;®*) lies within our model F.
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Theorem (Cramér-Rao Lower Bound [2])
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o That is, Oy has a low sample complexity (or is statistic efficient)
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Remarks on ML and MAP Estimation

Theorem (Consistency)

The ML estimator ®y,; is consistent, i.e., limy_.. Opgp o as long as
the “true” P(y|x;®*) lies within our model F.

Theorem (Cramér-Rao Lower Bound [2])

At a fixed (large) number N of examples, no consistent estimator of © has
a lower expected MSE (mean square error) than the ML estimator Oy .

o That is, Oy has a low sample complexity (or is statistic efficient)
o ML estimation is popular due to its consistency and efficiency

o When N is small that yields overfitting behavior, we can use MAP
estimation to introduce bias and reduce variance
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Outline

(@ Bayesian Estimation and Inference*
o Gaussian Process
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Bayesian Estimation

o In ML/MAP estimation, we use the estimated © as a constant to
make prediction:
y = argmaxP(y|x;0)
y

o O = argmaxe P(®|X)
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Bayesian Estimation

o In ML/MAP estimation, we use the estimated © as a constant to
make prediction:
y = argmaxP(y|x;0)
y

o O = argmaxe P(®|X)
o Bayesian inference threats ® as a random variable when making
prediction:

P(yyx,X):/@p@,@\x,X)d@:/P@|x,®)P(@|X)d®

o Entire distribution P(y|x,X) is calculated, so we get not only
§ = argmax, P(y|x,X) but the uncertainty of each prediction

o Bayesian estimation of ®: each prediction considers all ®'s
(weighted by their chances P(0]|X))
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Example: 1D Regression

o Lety=f*(x)+¢
o Green line: f*()
o Blue dots: noisy examples

y
1 1
0 0 /\S\L/
-1 -1
X
0 1 0 1
o O
1 1 °-d0
o
o
0 \\MQ 0
-1 -1

0 1 0 1
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Example: 1D Regression
o Lety=f*(x)+¢
o Green line: f*()
o Blue dots: noisy examples
o Red line: predictions by a Bayesian regressor (Gaussian Process)

o Shaded area: confidence intervals of predictions
y

1 1

)
|

0 1 0 1
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Bayesian vs. ML Estimation

o Recall the bias-variance trade-off an ML-base polynomial regressor:

Model Order=1 Model Order=3 Model Order=10

0.5

o Bayesian regressor usually generalizes better when the size N of
training set is small

o Avoids high variance Varx(®m)
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Bayesian vs. MAP Estimation

o MAP gains some benefit of Bayesian approach by incorporating prior
as bias(®wap)
o Reduces Varx(®map) when training set is small
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Bayesian vs. MAP Estimation

o MAP gains some benefit of Bayesian approach by incorporating prior
as bias(®wap)
o Reduces Varx(®map) when training set is small
o However, does not work if @yap is unrepresentative of the majority ®
in [P(y,®|x,X)d® = [P(y|x,0)P(0|X)dO
o E.g. when P(®|X) is a mixture of Gaussian

P(OIX) Omap
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Evaluating P(y|x,X)

P(y|x,X) :/(;)P(y,®|x,X)d®:/P(y]x,@)P(@]X)d@

o Integral computation make the evaluation challenging
o The solution may not be tractable in many applications
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Evaluating P(y|x,X)

P(y|x,X) :/(;)P(y,®|x,X)d®:/P(y]x,@)P(@]X)d@

o Integral computation make the evaluation challenging
o The solution may not be tractable in many applications

o Fortunately, in the context of Bayesian linear regression, P(y|x,X) can
have a simple, closed form [3]
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Bayesian Linear Regression

o Assuming that y =w ' x+¢, where € ~ 4(0,0;), we have
POIxX) = Jy POy wlx X)dw = [P(y|x, w)P(w|X)dw
)f (y!x w)P(X|w)P(w)dw

—“P D [P(y |, w)ITY P [x, w)P(w)dw
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o Assuming that y =w ' x+¢, where € ~ 4(0,0;), we have
POIxX) = Jy POy wlx X)dw = [P(y|x, w)P(w|X)dw
)f (y!x w)P(X|w)P(w)dw

—“P D [P(y |, w)ITY P [x, w)P(w)dw

o P(y|x,w) ~ A (w'x, 0¢) and P(YW |xD w) ~ 4 (wTx®) o,), Vi

o If we assume that w ~ .4/, then P(y|x,w)ILP(y®) |x() w)P(w) can be
described by an N + 2 dimensional Gaussian

o (y]x,w), (' |x,w), and w are (conditionally) independent with each
other
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o Assuming that y =w ' x+¢, where € ~ 4(0,0;), we have
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Bayesian Linear Regression

o Assuming that y =w ' x+¢, where € ~ 4(0,0;), we have

P(yx,X) f Py w|x,X)dw = [P(y|x,w)P(w|X)dw
)f (y!x w)P(X|w)P(w)dw

= p‘ 2 [P(y e, w) I PO x )P ()

o P(y|x,w) ~ A (w'x, 0¢) and P(YW |xD w) ~ 4 (wTx®) o,), Vi
o If we assume that w ~ .4/, then P(y|x,w)ILP(y®) |x() w)P(w) can be
described by an N + 2 dimensional Gaussian

o (y]x,w), (' |x,w), and w are (conditionally) independent with each
other

o lts marginalization, P(y|x,X) = [P(y,w|x,X)dw is also a Gaussian
o Gaussian distribution is closed under marginalization

o Why not model (y|x,X) ~ .4 in the first place?
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Outline

(@ Bayesian Estimation and Inference*
o Gaussian Process
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Gaussian Process
o Assume a model F where the domain of each f(-) € F consists of only
N inputs x(1) ... x®)
o Let y) =f(x( ) € R, Vi, we can compactly represent f(-) as a vector
y =0,y W7
o We can specify the probability of f(-) by assuming a distribution over
y, eg,y~ A (LX)

Shan-Hung Wu (CS, NTHU) Probabilistic Models Machine Learning 28 /37



Gaussian Process

o Assume a model F where the domain of each f(-) € F consists of only
N inputs x(1) ... x®)

o Let y) =f(x( ) € R, Vi, we can compactly represent f(-) as a vector
y =0,y W7

o We can specify the probability of f(-) by assuming a distribution over
y eg.y~A(1X)

o A stochastic process is a random distribution over functions in F

o Alternatively, it can be a set of random random variables
{y) = f(xD)}; indexed by time or space i
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Gaussian Process (GP)

o A Gaussian process is a stochastic process of which the distribution is
defined by a mean function m(-) and covariance/kernel function k(-,-):

y(D m(x() k@ My o k() xWV)
L~ AHm= | K= | 3 |
y@) m(x(N)) k(x<N> ,x(l)) ... k(x(N) 7x(N))

o Intuition?
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defined by a mean function m(-) and covariance/kernel function k(-,-):

y(D m(x() k@ My o k() xWV)
L~ AHm= | K= | 3 |
y@) m(x(N)) k(x(N) 7x(1)) ... k(x(N) 7x(N))

o Intuition? If x) and x¥) are positively (or negatively) correlated, then
y® and y) should be positively (or negatively) correlated too
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Gaussian Process (GP)

o A Gaussian process is a stochastic process of which the distribution is
defined by a mean function m(-) and covariance/kernel function k(-,-):
y(D m(x() k@ My o k() xWV)
N : K= : g :
y@) m(x(N)) k(x(N) 7x(1)) ... k(x(N) 7x(N))

o Intuition? If x) and x¥) are positively (or negatively) correlated, then
y® and y) should be positively (or negatively) correlated too
o Common choices of mean and kernel functions:
om(-)=0
o k(x® x0)) = exp(f%) for some fixed 7 € R — {0}
o The kernel matrix K is usually made positive definite (when
x®) £ xU) Vi j) so it is invertible
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Bayesian Regression

o Given N examples X = {(x y)}¥  how to predict the labels of M
unlabeled instances X' = {x'()}¥ ?

o Gaussian process:

[0 o ] [ B B ]

Ym my Kyn Kuwm

o my =my =0 or yyl, where yy = %Zfily(")
o ¥y is unknown
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Bayesian Regression

o Given N examples X = {(x y)}¥  how to predict the labels of M
unlabeled instances X' = {x'()}¥ ?

o Gaussian process:

[YN]N(/V(["IN}’[KN,N KN,M:|’

Yu my Kun Kuwm
= = y v = LIV (0
o my =my =0 or yy1, where yy = 5 Zi* |y
o Yy, is unknown

o Bayesian inference:
P(yy | X', X) = A (Ky nKy v » Kntvt — Ky nKy K m)

o Gaussian distribution is closed under conditioning
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Bayesian Regression

o Given N examples X = {(x y)}¥  how to predict the labels of M
unlabeled instances X' = {x'()}¥ ?
Gaussian process:

[0 o ] [ B B ]

Ym my Kyn Kuwm

©

o my =my =0 or yyl, where yy = %Zfily(")
o ¥y is unknown

(]

Bayesian inference:
P(yy | X', X) = A (Ky nKy v » Kntvt — Ky nKy K m)

o Gaussian distribution is closed under conditioning

(]

There is no explicit training phase

©

Predictions: $,, = Ky xKy\yy (with uncertainty)
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Noisy Data

o What if the examples X = {(x(),y)}¥ | contain noise, i.e.,
y=fx)+e e~.40,07)7
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Noisy Data

o What if the examples X = {(x(),y)}¥ | contain noise, i.e.,
y=f*(x)+¢€, &~ .AN(0,062)?

o From the i.i.d. noise assumption where £() and €U are independent,
Vi,j, we have

YN } NJV(|: my } |:KN,N+(731N Ky ym
Yu ’ Kyn Ky m+021y
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Noisy Data

o What if the examples X = {(x(),y)}¥ | contain noise, i.e.,
y=f*(x)+¢e &~ A(0,08)

o From the i.i.d. noise assumption where £() and €U are independent,
Vi,j, we have

[yN } NJV(|: my } |:KN,N+(731N Ky ym
Yu ’ Kyn Ky m+021y

o Bayesian inference:

Pyy | X, X) =4 (Kun(Kyn+02IN) vy,
Ky + 020y — Ky n(Kyn+62IN) 'Ky .m)

o Predictions: §,, = Ky n(Knn + 62Iy) " lyy (with uncertainty)
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Predictions Given Clean and Noisy Data

20— Mean
2 15 sample 1 x
---- Sample 2 %
104 sample3
b B 05
00
o
-0.5
— Mean -10 2
- Sample 1
ample -15
-- Sample 2
o -- Sample 3 -z0
3 2 D 2 4 - ) ) 3 4
Clean Data Noisy Data
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Other Choices of Kernels
o Radial basis function (RBF) or exponentiated quadratic kernel:
9 —x0)?

k(xD xU)) = exp( o

)

for some fixed T € R—{0}
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Other Choices of Kernels

o Radial basis function (RBF) or exponentiated quadratic kernel:

N (D) — x0)|2
K 00 — e (P =X
(610,20 = exp(— 30
for some fixed T € R—{0}
o Periodic kernel:
i) 2 o [ x|
k(x® xW)) :exp(—? sin (fn))

for some fixed 7,p € R—{0}
o Suitable for sequential data with periodic patterns
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Other Choices of Kernels

o Radial basis function (RBF) or exponentiated quadratic kernel:

) e —x0]2
k(x()vx(l)) :eXP(—T)
for some fixed T € R—{0}
o Periodic kernel:
i) 2 o [ x|
k(xD xU)) :exp(—? sin (fn))

for some fixed 7,p € R—{0}
o Suitable for sequential data with periodic patterns

o Combined kernel:
k(x(i),x(’)) _ k(l)(x(i),x(/)) k) (x(i),x(i)) ..

o Has a high value only if all source covariances have a high value (AND
operation)
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Hyperparameter Tuning
x|

o The 7 in the RBF kernel k(x(),x\)) = eXp(—%

) controls the
“smoothness” of the prediction functions

zzzzzzzzzzz

o How to decide the best 7 for a given X?
o More generally, how to decide the hyperparameters of chosen kernels?
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Hyperparameter Tuning

o The 7 in the RBF kernel k(x(),x\)) = exp(
“smoothness” of the prediction functions

_lx—x02
212

) controls the

‘‘‘‘‘‘‘‘‘‘‘

o How to decide the best 7 for a given X?
o More generally, how to decide the hyperparameters of chosen kernels?

o We can solve T using the ML estimation we already familiar with:

TvL = argming —logP(X| 1) = argmin; —logP(yy | Xn, 7)
= argming(yy — mN)TKX,’IN(yN —my) +logdet(Ky )

o Derivable w.r.t. 7, so can be solved using a gradient-based approach
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Parametric vs. Non-Parametric Models

o Probabilistic linear regression and logistic regression are special cases
of parametric models, whose #parameters is fixed with respect to

#data seen

T T

o y=w'x ory=sign(w x)
o Model complexity grows with data dimension D
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Parametric vs. Non-Parametric Models

o Probabilistic linear regression and logistic regression are special cases
of parametric models, whose #parameters is fixed with respect to

#data seen

T T

o y=w'x ory=sign(w x)
o Model complexity grows with data dimension D
o Gaussian process, on the other hand, is a non-parametric model

° Yy :KM,NK;,'NyN, where each predicted label § is a linear combination
of the labels in training set
o Model complexity grows with N
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Remarks
o Bayesian estimation:

y =argmaxP(y|x,X) = argmax/P(y,@ |x,X)d®
y y

o Usually generalizes better given a small training set
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y y

o Usually generalizes better given a small training set

o Unfortunately, solution may not be tractable in many applications
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Remarks

(%]

Bayesian estimation:

y =argmaxP(y|x,X) = argmax/P(y,@ |x,X)d®
y y

©

Usually generalizes better given a small training set

©

Unfortunately, solution may not be tractable in many applications

(]

Even tractable, incurs high computation cost
o In GP, each batch of predictions §,, = Ky yKy \yy may take O(N3)
time
o Not suitable for large-scale learning tasks
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