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Predictions based on Probability

Supervised learning, we are given a training set X= {(x(i),y(i))}N
i=1

Model F: a collection of functions parametrized by Θ

Goal: to train a function f such that, given a new data point x′, the
output value

ŷ = f (x′;Θ)

is closest to the correct label y′

Examples in X are usually assumed to be i.i.d. sampled from random
variables (x,y) following some data generating distribution P(x,y)
In probabilistic models, we write f (x′;Θ) as P(y = y |x = x′) and a
prediction is made by:

ŷ = argmax
y

P(y = y |x = x′;Θ)

How to find Θ?
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ŷ = f (x′;Θ)

is closest to the correct label y′

Examples in X are usually assumed to be i.i.d. sampled from random
variables (x,y) following some data generating distribution P(x,y)
In probabilistic models, we write f (x′;Θ) as P(y = y |x = x′) and a
prediction is made by:
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Function (Θ) as Point Estimate

Regard Θ (f ) as an estimate of the “true” Θ∗ (f ∗)
Mapped from the training set X

Maximum a posteriori (MAP) estimation:

ΘMAP = argmax
Θ

P(Θ |X)= argmax
Θ

P(X |Θ)P(Θ)

P(X)
= argmax

Θ

P(X |Θ)P(Θ)

Θ is regarded as a random variable

Maximum likelihood (ML) estimation:

ΘML = argmax
Θ

P(X |Θ)

Assumes a uniform P(Θ) (i.e., does not prefer a particular Θ)

After being solved, ΘML/MAP is treated as a constant when make a
prediction ŷ = argmaxy P(y |x;ΘML/MAP)
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prediction ŷ = argmaxy P(y |x;ΘML/MAP)

Shan-Hung Wu (CS, NTHU) Probabilistic Models Machine Learning 5 / 37



Function (Θ) as Point Estimate

Regard Θ (f ) as an estimate of the “true” Θ∗ (f ∗)
Mapped from the training set X

Maximum a posteriori (MAP) estimation:

ΘMAP = argmax
Θ

P(Θ |X)= argmax
Θ

P(X |Θ)P(Θ)

P(X)
= argmax

Θ

P(X |Θ)P(Θ)

Θ is regarded as a random variable

Maximum likelihood (ML) estimation:

ΘML = argmax
Θ

P(X |Θ)

Assumes a uniform P(Θ) (i.e., does not prefer a particular Θ)

After being solved, ΘML/MAP is treated as a constant when make a
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Probability Interpretation

Assumption: y = f ∗(x)+ ε , where
ε ∼N (0,β−1)

f ∗(x;w∗) = w∗>x is a deterministic function
All variables in x are z-normalized, so there’s no bias term b in f ∗

We have (y |x = x)∼N (w∗>x,β−1)

So, out goal is to find w as close to w∗ as possible such that:

ŷ = argmax
y

P(y |x = x;w) = w>x

Note that ŷ is irrelevant to β , so we don’t need to solve β

ML estimation for w∗:

wML = argmax
w

P(X |w)
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Note that ŷ is irrelevant to β , so we don’t need to solve β

ML estimation for w∗:

wML = argmax
w

P(X |w)

Shan-Hung Wu (CS, NTHU) Probabilistic Models Machine Learning 8 / 37



ML Estimation I
Problem:

wML = argmax
w

P(X |w)

Since we assume i.i.d. samples, we have

P(X |w) = ∏
N
i=1 P(x(i),y(i) |w) = ∏

N
i=1 P(y(i) |x(i),w)P(x(i) |w)

= ∏
N
i=1 P(y(i) |x(i),w)P(x(i)) = ∏i N (y(i);w>x(i),σ2)P(x(i))

= ∏i

√
β

2π
exp
(
−β

2 (y
(i)−w>x(i))2

)
P(x(i))

To make the problem tractable, we prefer “sums” over “products”
We can instead maximize the log likelihood

argmaxw logP(X |w)

= argmaxw log
[

∏i

√
β

2π
exp
(
−β

2 (y
(i)−w>x(i))2

)
P(x(i))

]
= argmaxw N

√
β

2π
− β

2 ∑i(y(i)−w>x(i))2 +∑i P(x(i))

The optimal point does not change since log is monotone increasing

Shan-Hung Wu (CS, NTHU) Probabilistic Models Machine Learning 9 / 37



ML Estimation I
Problem:

wML = argmax
w

P(X |w)

Since we assume i.i.d. samples, we have

P(X |w) = ∏
N
i=1 P(x(i),y(i) |w) = ∏

N
i=1 P(y(i) |x(i),w)P(x(i) |w)

= ∏
N
i=1 P(y(i) |x(i),w)P(x(i)) = ∏i N (y(i);w>x(i),σ2)P(x(i))

= ∏i

√
β

2π
exp
(
−β

2 (y
(i)−w>x(i))2

)
P(x(i))

To make the problem tractable, we prefer “sums” over “products”
We can instead maximize the log likelihood

argmaxw logP(X |w)

= argmaxw log
[

∏i

√
β

2π
exp
(
−β

2 (y
(i)−w>x(i))2

)
P(x(i))

]
= argmaxw N

√
β

2π
− β

2 ∑i(y(i)−w>x(i))2 +∑i P(x(i))

The optimal point does not change since log is monotone increasing

Shan-Hung Wu (CS, NTHU) Probabilistic Models Machine Learning 9 / 37



ML Estimation I
Problem:

wML = argmax
w

P(X |w)

Since we assume i.i.d. samples, we have

P(X |w) = ∏
N
i=1 P(x(i),y(i) |w) = ∏

N
i=1 P(y(i) |x(i),w)P(x(i) |w)

= ∏
N
i=1 P(y(i) |x(i),w)P(x(i)) = ∏i N (y(i);w>x(i),σ2)P(x(i))

= ∏i

√
β

2π
exp
(
−β

2 (y
(i)−w>x(i))2

)
P(x(i))

To make the problem tractable, we prefer “sums” over “products”
We can instead maximize the log likelihood

argmaxw logP(X |w)

= argmaxw log
[

∏i

√
β

2π
exp
(
−β

2 (y
(i)−w>x(i))2

)
P(x(i))

]
= argmaxw N

√
β

2π
− β

2 ∑i(y(i)−w>x(i))2 +∑i P(x(i))

The optimal point does not change since log is monotone increasing

Shan-Hung Wu (CS, NTHU) Probabilistic Models Machine Learning 9 / 37



ML Estimation I
Problem:

wML = argmax
w

P(X |w)

Since we assume i.i.d. samples, we have

P(X |w) = ∏
N
i=1 P(x(i),y(i) |w) = ∏

N
i=1 P(y(i) |x(i),w)P(x(i) |w)

= ∏
N
i=1 P(y(i) |x(i),w)P(x(i)) = ∏i N (y(i);w>x(i),σ2)P(x(i))

= ∏i

√
β

2π
exp
(
−β

2 (y
(i)−w>x(i))2

)
P(x(i))

To make the problem tractable, we prefer “sums” over “products”

We can instead maximize the log likelihood

argmaxw logP(X |w)

= argmaxw log
[

∏i

√
β

2π
exp
(
−β

2 (y
(i)−w>x(i))2

)
P(x(i))

]
= argmaxw N

√
β

2π
− β

2 ∑i(y(i)−w>x(i))2 +∑i P(x(i))

The optimal point does not change since log is monotone increasing

Shan-Hung Wu (CS, NTHU) Probabilistic Models Machine Learning 9 / 37



ML Estimation I
Problem:

wML = argmax
w

P(X |w)

Since we assume i.i.d. samples, we have

P(X |w) = ∏
N
i=1 P(x(i),y(i) |w) = ∏

N
i=1 P(y(i) |x(i),w)P(x(i) |w)

= ∏
N
i=1 P(y(i) |x(i),w)P(x(i)) = ∏i N (y(i);w>x(i),σ2)P(x(i))

= ∏i

√
β

2π
exp
(
−β

2 (y
(i)−w>x(i))2

)
P(x(i))

To make the problem tractable, we prefer “sums” over “products”
We can instead maximize the log likelihood

argmaxw logP(X |w)

= argmaxw log
[

∏i

√
β

2π
exp
(
−β

2 (y
(i)−w>x(i))2

)
P(x(i))

]
= argmaxw N

√
β

2π
− β

2 ∑i(y(i)−w>x(i))2 +∑i P(x(i))

The optimal point does not change since log is monotone increasing
Shan-Hung Wu (CS, NTHU) Probabilistic Models Machine Learning 9 / 37



ML Estimation I
Problem:

wML = argmax
w

P(X |w)

Since we assume i.i.d. samples, we have

P(X |w) = ∏
N
i=1 P(x(i),y(i) |w) = ∏

N
i=1 P(y(i) |x(i),w)P(x(i) |w)

= ∏
N
i=1 P(y(i) |x(i),w)P(x(i)) = ∏i N (y(i);w>x(i),σ2)P(x(i))

= ∏i

√
β

2π
exp
(
−β

2 (y
(i)−w>x(i))2

)
P(x(i))

To make the problem tractable, we prefer “sums” over “products”
We can instead maximize the log likelihood

argmaxw logP(X |w)

= argmaxw log
[

∏i

√
β

2π
exp
(
−β

2 (y
(i)−w>x(i))2

)
P(x(i))

]

= argmaxw N
√

β

2π
− β

2 ∑i(y(i)−w>x(i))2 +∑i P(x(i))

The optimal point does not change since log is monotone increasing
Shan-Hung Wu (CS, NTHU) Probabilistic Models Machine Learning 9 / 37



ML Estimation I
Problem:

wML = argmax
w

P(X |w)

Since we assume i.i.d. samples, we have

P(X |w) = ∏
N
i=1 P(x(i),y(i) |w) = ∏

N
i=1 P(y(i) |x(i),w)P(x(i) |w)

= ∏
N
i=1 P(y(i) |x(i),w)P(x(i)) = ∏i N (y(i);w>x(i),σ2)P(x(i))

= ∏i

√
β

2π
exp
(
−β

2 (y
(i)−w>x(i))2

)
P(x(i))

To make the problem tractable, we prefer “sums” over “products”
We can instead maximize the log likelihood

argmaxw logP(X |w)

= argmaxw log
[

∏i

√
β

2π
exp
(
−β

2 (y
(i)−w>x(i))2

)
P(x(i))

]
= argmaxw N

√
β

2π
− β

2 ∑i(y(i)−w>x(i))2 +∑i P(x(i))

The optimal point does not change since log is monotone increasing
Shan-Hung Wu (CS, NTHU) Probabilistic Models Machine Learning 9 / 37



ML Estimation II

argmax
w

N

√
β

2π
− β

2 ∑
i
(y(i)−w>x(i))2 +∑

i
P(x(i))

Ignoring terms irrelevant to w, we have

wML = argmin
w ∑

i
(y(i)−w>x(i))2

Effectively, we seek for w by minimizing the SSE (sum of square
errors), as we have done before

Can solved analytically
Or numerically by, e.g., the stochastic gradient descent algorithm

This new perspective explains our ad hoc choice of SSE for empirical
risk minimization

Checking assumptions helps understand when model works the best

Also motivates new models. Probabilistic model for classification?
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Probabilistic Models for Binary Classification

Probabilistic models:

ŷ = argmax
y

P(y |x;Θ)

In regression, we assume (y |x)∼N (based on y = f ∗(x)+ ε)
However, Gaussian distribution is not applicable to binary
classification

The values of y should concentrate in either 1 or −1

Which distribution to assume?
Coin flipping: (y |x)∼ Bernoulli(ρ), where

P(y |x;ρ) = ρ
y′(1−ρ)(1−y′), where y′ =

y+1
2
∈ {0,1}

ML estimate P(X |ρ)? How to relate x to ρ?
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Logistic Function

Recall that the logistic function

σ (z) =
exp(z)

exp(z)+1
=

1
1+ exp(−z)

is commonly used as a parametrizing
function of the Bernoulli distribution

We have

P(y |x;z) = σ (z)y′ (1−σ (z))(1−y′)

The larger z, the higher chance we get
a “positive flip”
How to relate x to z?
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Logistic Regression

In logistic regression, we let

z = w>x

Basically, z is the projection of x along the direction w

We have
P(y |x;w) = σ(w>x)y′ [1−σ(w>x)](1−y′)

Prediction:
ŷ = argmax

y
P(y |x;w) = sign(w>x)

How to learn w from X?
ML estimation:

wML = argmax
w

P(X |w)

Shan-Hung Wu (CS, NTHU) Probabilistic Models Machine Learning 14 / 37



Logistic Regression

In logistic regression, we let

z = w>x

Basically, z is the projection of x along the direction w

We have
P(y |x;w) = σ(w>x)y′ [1−σ(w>x)](1−y′)

Prediction:
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ML Estimation
Log-likelihood:

logP(X |w) = log∏
N
i=1 P

(
x(i),y(i) |w

)
= log∏i P

(
y(i) |x(i),w

)
P
(
x(i) |w

)

∝ log∏i σ(w>x(i))y′(i) [1−σ(w>x(i))](1−y′(i))

= ∑i y′(i)w>x(i)− log(1+ ew>x(i)) [Homework]

Unlike in linear regression, we cannot solve w analytically in a closed
form via

∇w logP(X |w) =
N

∑
i=1

[y′(i)−σ(w>x(i))]x(i) = 0

But since logP(X |w) is differentiable w.r.t. w, we can solve w∗ML
numerically using stochastic gradient descent (SGD)

It can be shown that logP(X |w) is concave in terms of w [1]
SGD finds global optimal
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Outline

1 Probabilistic Models

2 Maximum Likelihood Estimation
Linear Regression
Logistic Regression

3 Maximum A Posteriori Estimation

4 Bayesian Estimation and Inference*
Gaussian Process
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MAP Estimation

So far, we solve w by ML estimation:

wML = argmax
w

P(X |w)

In MAP estimation, we solve

wMAP = argmax
w

P(w |X) = argmax
w

P(X |w)P(w)

P(w) models our preference or prior knowledge about w
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MAP Estimation for Linear Regression
MAP estimation in linear regression:

wMAP = argmax
w

log[P(X |w)P(w)]

If we assume that w∼N (0,β−1I)

log[P(X |w)P(w)] = logP(X |w)+ logP(w) ∝−∑i
(
y(i)−w>x(i)

)2

+ log
√

1
(2π)Ddet(β−1I) exp

[
−1

2(w−0)>(β−1I)−1(w−0)
]

∝−∑i
(
y(i)−w>x(i)

)2−βw>w

P(w) corresponds to the weight decay term in Ridge regression
MAP estimation provides a way to design complicated yet
interpretable regularization terms

E.g., we have LASSO by letting P(w)∼ Laplace(0,b) [Proof]
We can also let P(w) be a mixture of Gaussians
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Remarks on ML and MAP Estimation

Theorem (Consistency)

The ML estimator ΘML is consistent, i.e., limN→∞ ΘML
Pr−→Θ∗ as long as

the “true” P(y |x;Θ∗) lies within our model F.

Theorem (Cramér-Rao Lower Bound [2])

At a fixed (large) number N of examples, no consistent estimator of Θ̂ has
a lower expected MSE (mean square error) than the ML estimator ΘML.

That is, ΘML has a low sample complexity (or is statistic efficient)
ML estimation is popular due to its consistency and efficiency
When N is small that yields overfitting behavior, we can use MAP
estimation to introduce bias and reduce variance
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Outline

1 Probabilistic Models

2 Maximum Likelihood Estimation
Linear Regression
Logistic Regression

3 Maximum A Posteriori Estimation

4 Bayesian Estimation and Inference*
Gaussian Process

Shan-Hung Wu (CS, NTHU) Probabilistic Models Machine Learning 20 / 37



Bayesian Estimation

In ML/MAP estimation, we use the estimated Θ̂ as a constant to
make prediction:

ŷ = argmax
y

P(y |x;Θ̂)

Θ̂ = argmaxΘ P(Θ |X)

Bayesian inference threats Θ as a random variable when making
prediction:

P(y |x,X) =
∫

Θ

P(y,Θ |x,X)dΘ =
∫

P(y |x,Θ)P(Θ |X)dΘ

Entire distribution P(y |x,X) is calculated, so we get not only
ŷ = argmaxy P(y |x,X) but the uncertainty of each prediction
Bayesian estimation of Θ: each prediction considers all Θ’s
(weighted by their chances P(Θ |X))
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Example: 1D Regression
Let y = f ∗(x)+ ε

Green line: f ∗(·)
Blue dots: noisy examples

Red line: predictions by a Bayesian regressor (Gaussian Process)
Shaded area: confidence intervals of predictions
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Bayesian vs. ML Estimation

Recall the bias-variance trade-off an ML-base polynomial regressor:

Bayesian regressor usually generalizes better when the size N of
training set is small

Avoids high variance VarX(ΘML)
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Bayesian vs. MAP Estimation
MAP gains some benefit of Bayesian approach by incorporating prior
as bias(ΘMAP)

Reduces VarX(ΘMAP) when training set is small

However, does not work if ΘMAP is unrepresentative of the majority Θ

in
∫

P(y,Θ |x,X)dΘ =
∫

P(y |x,Θ)P(Θ |X)dΘ

E.g. when P(Θ |X) is a mixture of Gaussian
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Evaluating P(y |x,X)

P(y |x,X) =
∫

Θ

P(y,Θ |x,X)dΘ =
∫

P(y |x,Θ)P(Θ |X)dΘ

Integral computation make the evaluation challenging
The solution may not be tractable in many applications

Fortunately, in the context of Bayesian linear regression, P(y |x,X) can
have a simple, closed form [3]
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Bayesian Linear Regression

Assuming that y = w>x+ ε , where ε ∼N (0,σε), we have

P(y |x,X) =
∫

w P(y,w |x,X)dw =
∫

P(y |x,w)P(w |X)dw
= 1

P(X)
∫

P(y |x,w)P(X |w)P(w)dw

=
ΠN

i=1P(x(i))
P(X)

∫
P(y |x,w)ΠN

i=1P(y(i) |x(i),w)P(w)dw

P(y |x,w)∼N (w>x, σε) and P(y(i) |x(i),w)∼N (w>x(i), σε), ∀i
If we assume that w∼N , then P(y |x,w)ΠiP(y(i) |x(i),w)P(w) can be
described by an N +2 dimensional Gaussian

(y |x,w), (y(i) |x(i),w), and w are (conditionally) independent with each
other

Its marginalization, P(y |x,X) =
∫

P(y,w |x,X)dw is also a Gaussian
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2 Maximum Likelihood Estimation
Linear Regression
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3 Maximum A Posteriori Estimation
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Gaussian Process
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Gaussian Process
Assume a model F where the domain of each f (·) ∈ F consists of only
N inputs x(1), · · · ,x(N)

Let y(i) = f (x(i)) ∈ R, ∀i, we can compactly represent f (·) as a vector
y = [y(1), · · · ,y(N)]>

We can specify the probability of f (·) by assuming a distribution over
y, e.g., y∼N (µ,Σ)

A stochastic process is a random distribution over functions in F
Alternatively, it can be a set of random random variables
{y(i) ≡ f (x(i))}i indexed by time or space i

f (x)

x
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Gaussian Process (GP)

A Gaussian process is a stochastic process of which the distribution is
defined by a mean function m(·) and covariance/kernel function k(·, ·): y(1)

...
y(N)

∼N (m =

 m(x(1))
...

m(x(N))

 ,K =

 k(x(1),x(1)) · · · k(x(1),x(N))
...

. . .
...

k(x(N),x(1)) · · · k(x(N),x(N))


Intuition?

If x(i) and x(j) are positively (or negatively) correlated, then
y(i) and y(j) should be positively (or negatively) correlated too
Common choices of mean and kernel functions:

m(·) = 0

k(x(i),x(j)) = exp(− ‖x
(i)−x(j)‖2

2τ2 ) for some fixed τ ∈ R−{0}
The kernel matrix K is usually made positive definite (when
x(i) 6= x(j),∀i, j) so it is invertible
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Bayesian Regression
Given N examples X= {(x(i),y(i))}N

i=1, how to predict the labels of M
unlabeled instances X′ = {x′(i)}M

i=1?
Gaussian process:[

yN
yM

]
∼N (

[
mN

mM

]
,

[
KN,N KN,M

KM,N KM,M

]
,

mN = mM = 0 or ȳN1, where ȳN = 1
N ΣN

i=1y(i)

yM is unknown

Bayesian inference:

P(yM |X′,X) = N (KM,NK−1
N,NyN , KM,M−KM,NK−1

N,NKN,M)

Gaussian distribution is closed under conditioning

There is no explicit training phase
Predictions: ŷM = KM,NK−1

N,NyN (with uncertainty)
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N ΣN

i=1y(i)

yM is unknown

Bayesian inference:

P(yM |X′,X) = N (KM,NK−1
N,NyN , KM,M−KM,NK−1

N,NKN,M)

Gaussian distribution is closed under conditioning

There is no explicit training phase
Predictions: ŷM = KM,NK−1
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Noisy Data

What if the examples X= {(x(i),y(i))}N
i=1 contain noise, i.e.,

y = f ∗(x)+ ε , ε ∼N (0,σ2
ε )?

From the i.i.d. noise assumption where ε(i) and ε(j) are independent,
∀i, j, we have[

yN
yM

]
∼N (

[
mN

mM

]
,

[
KN,N+σ2

ε IN KN,M

KM,N KM,M+σ2
ε IM

]

Bayesian inference:

P(yM |X′,X) = N (KM,N(KN,N +σ2
ε IN)

−1yN ,
KM,M +σ2

ε IM−KM,N(KN,N +σ2
ε IN)

−1KN,M)

Predictions: ŷM = KM,N(KN,N +σ2
ε IN)

−1yN (with uncertainty)
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Predictions Given Clean and Noisy Data

Clean Data Noisy Data
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Other Choices of Kernels
Radial basis function (RBF) or exponentiated quadratic kernel:

k(x(i),x(j)) = exp(−‖x
(i)−x(j)‖2

2τ2 )

for some fixed τ ∈ R−{0}

Periodic kernel:

k(x(i),x(j)) = exp(− 2
τ2 sin2(

‖x(i)−x(j)‖
p

π))

for some fixed τ,p ∈ R−{0}
Suitable for sequential data with periodic patterns

Combined kernel:

k(x(i),x(j)) = k(1)(x(i),x(j)) · k(2)(x(i),x(j)) · · ·

Has a high value only if all source covariances have a high value (AND
operation)
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Hyperparameter Tuning
The τ in the RBF kernel k(x(i),x(j)) = exp(−‖x

(i)−x(j)‖2

2τ2 ) controls the
“smoothness” of the prediction functions

τ = 0.5 τ = 2 τ = 10

How to decide the best τ for a given X?
More generally, how to decide the hyperparameters of chosen kernels?

We can solve τ using the ML estimation we already familiar with:

τML = argminτ− logP(X |τ) = argminτ− logP(yN |XN ,τ)

= argminτ(yN−mN)
>K−1

N,N(yN−mN)+ logdet(KN,N)

Derivable w.r.t. τ, so can be solved using a gradient-based approach
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Parametric vs. Non-Parametric Models

Probabilistic linear regression and logistic regression are special cases
of parametric models, whose #parameters is fixed with respect to
#data seen

ŷ = w>x or ŷ = sign(w>x)
Model complexity grows with data dimension D

Gaussian process, on the other hand, is a non-parametric model
ŷM = KM,NK−1

N,NyN , where each predicted label ŷ is a linear combination
of the labels in training set
Model complexity grows with N
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Remarks

Bayesian estimation:

ŷ = argmax
y

P(y |x,X) = argmax
y

∫
P(y,Θ |x,X)dΘ

Usually generalizes better given a small training set

Unfortunately, solution may not be tractable in many applications
Even tractable, incurs high computation cost

In GP, each batch of predictions ŷM = KM,NK−1
N,NyN may take O(N3)

time
Not suitable for large-scale learning tasks
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N,NyN may take O(N3)
time
Not suitable for large-scale learning tasks

Shan-Hung Wu (CS, NTHU) Probabilistic Models Machine Learning 36 / 37



Remarks

Bayesian estimation:
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