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Cross Validation

o So far, we use the hold out method for:

o Hyperparameter tuning: validation set
o Performance reporting: testing set

o What if we get an “unfortunate” split?
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Cross Validation

o So far, we use the hold out method for:
o Hyperparameter tuning: validation set
o Performance reporting: testing set

o What if we get an “unfortunate” split?

o K-fold cross validation:

@ Split the data set X evenly into K subsets X() (called folds)

@ Fori=1,--- K, train f_, using all data but the i-th fold (X\X()

@ Report the cross-validation error Ccy by averaging all testing errors
Clf_ywl's on X

- Training Set —
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| [ ] Training
Validation

|

|
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Nested Cross Validation

o Cross validation (CV) can be applied to both hyperparameter tuning
and performance reporting

o E.g, 5x2 nested CV

Training folds | Test fold |

| Training fold I Validation fold |
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Nested Cross Validation

o Cross validation (CV) can be applied to both hyperparameter tuning
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Nested Cross Validation

o Cross validation (CV) can be applied to both hyperparameter tuning
and performance reporting

o E.g, 5x2 nested CV

| Training folds | Test fold |

| | [ | @ Inner (2 folds): select
hyperparameters giving lowest
| L | Cev
| |
|

o Can be wrapped by grid
search

I _____________________________________________ | @ Train final model using both
@ training and validation sets with
the selected hyperparameters
@ Outer (5 folds): report Ccy as

| | | test error

| Training fold | Validation fold |
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How Many Folds K7 |
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How Many Folds K7 |

o The cross-validation error Ccy is an average of C[f_y]'s
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o The cross-validation error Ccy is an average of C[f_y]'s

o Regard each C[f_,] as an estimator of the expected generalization
error Ex(Clfv])
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How Many Folds K7 |

o The cross-validation error Ccy is an average of C[f_y]'s

o Regard each C[f_,] as an estimator of the expected generalization
error Ex(Clfv])
o Ccy is an estimator too, and we have

MSE(Ccv) = Ex[(Ccv — Ex(C[fN]))2] = Varx(Ccv) + biaS(CC\/)2
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Point Estimation Revisited: Mean Square Error

o Let 6, be an estimator of quantity 6 related to random variable x
mapped from n i.i.d samples of x

o Mean square error of 6,:

A

MSE(8,) = Ex [(6, — 6)?]
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Point Estimation Revisited: Mean Square Error

o Let 6, be an estimator of quantity 6 related to random variable x
mapped from n i.i.d samples of x

o Mean square error of 6,:

A

MSE(8,) = Ex [(6, — 6)?]

o Can be decomposed into the bias and variance:

Ex [(6,— ]f (6, —E8+E6—67]
—E[(Q [Q])2+( (6] — ) +2(9n—E[9n] (E[6,] - )]
=E[(6,— [9 2] +E[(E[8.] — 6)*] +2E (6, —E[6,]) (E[6,] — 0)
=E (6, ~E[6,])*] + (E[6.] 9) +2-0-(E[6,] - 6)

= Varx(6,) +bias(6,)?

o MSE of an unbiased estimator is its variance
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Example: 5-Fold vs. 10-Fold CV

MSE(Ccv) = EX[(CCV — Ex(C[fN]))z] = Varx(CCv) —{—biaS(Ccv)z
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Example: 5-Fold vs. 10-Fold CV

MSE(Ccv) = EX[(CCV — Ex(C[fN]))z] = Varx(CCv) —{—biaS(Ccv)z

o Consider polynomial regression where
P(y[x) = sin(x) + €,& ~ A4(0,02)
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o Consider polynomial regression where
P(y[x) = sin(x) + €,& ~ A4(0,02)
o Let C[-] be the MSE of predictions (made by a function) to true labels

o Ex(Clfy]): read line
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Example: 5-Fold vs. 10-Fold CV

MSE(Ccv) = EX[(CCV —Ex(C[fN]))z] = Varx(CCv) —{—biaS(Ccv)z

o Consider polynomial regression where
P(y[x) = sin(x) + €,& ~ A4(0,02)
o Let C[-] be the MSE of predictions (made by a function) to true labels
o Ex(Clfy]): read line
o bias(Ccy): gaps between the red and other solid lines (Ex[Ccv])
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Example: 5-Fold vs. 10-Fold CV

MSE(Ccv) = EX[(CCV —Ex(C[fN]))z] = Varx(CCv) —{—biaS(Ccv)z

Consider polynomial regression where

P(y[x) = sin(x) + €,& ~ A4(0,02)

o Let C[-] be the MSE of predictions (made by a function) to true labels
Ex(C[fy]): read line

bias (Ccy): gaps between the red and other solid lines (Ex[Ccv])

Varx (Ccy): shaded areas

©

© © ©
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Decomposing Bias and Variance

o Ccy is an estimator of the expected generalization error Ex(C[fy]):

MSE(Ccv) = Val’x(CCv) —I—biaS(Ccv)2, where
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Decomposing Bias and Variance

o Ccy is an estimator of the expected generalization error Ex(C[fy]):
MSE(Ccv) = Val’x(CCv) —I—biaS(Ccv)2, where

bias (Ccv) = Ex (Cev) —Ex(Clfw]) = B (L % Clf_yw]) —E(C[fy))
= # LE(CIf_yo]) —E(Clfv))
=E(C[f_yo]) —E(Clf¥]), Vs
= bias (C[f_yv]), Vs

Varg (Ccy) = Var (Zi %C[f,Nm]) = %Var (Zl- C[f,Nm])
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How Many Folds K7 Il

MSE(Ccy) = Varg(Ccy) + bias(Ccy)?, where
bias (Ccy) = bias (C[f_yw]), Vs
Var (Cey) = ¢ Var (C[f_y]) + 2 Lij =i Cov (CIf_yi ], Clf _yi]), Vs

o We can reduce bias (Ccy) and Var(Ccy) by learning theory

o Choosing the right model complexity avoiding both underfitting and
overfitting
o Collecting more training examples (N)
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How Many Folds K7 Il

MSE(Ccy) = Varg(Ccy) + bias(Ccy)?, where
bias (Ccy) = bias (C[f_yw]), Vs
Var (Cey) = ¢ Var (C[f_y]) + 2 Lij =i Cov (CIf_yi ], Clf _yi]), Vs

o We can reduce bias (Ccy) and Var(Ccy) by learning theory
o Choosing the right model complexity avoiding both underfitting and
overfitting
o Collecting more training examples (N)
o Furthermore, we can reduce Var(Ccy) by making f ) and f
uncorrelated

Shan-Hung Wu (CS, NTHU) CV & Ensembling Machine Learning 11 / 34



How Many Folds K7 Il
bias (Ccy) = bias (C[f_yw]),Vs

Varx (Ccv) = %Var (CV;N(A)D + % Z,-J;j>l~COV (C[f_N(i)] y C[f_N(/)}) ,VS
o With a large K, the Ccy tends to have:
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How Many Folds K7 Il

bias (Ccy) = bias (C[f_yw]), Vs
Varg (Ccv) = %Var (CVLN«»)]) + % Y.ijj>i Cov (C[f—N(i)LC[f—N(/')})’vs
o With a large K, the Ccy tends to have:

o Low bias (C[f _,]) and Var (C[f y]), as f_ye is trained on more
examples
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How Many Folds K7 Il

bias (Ccy) = bias (C[f_y]), Vs
Varg (Cev) = g Var (Clf_yo]) + & Eigy=i Cov (Clf yal, Clf_yal), Vs

o With a large K, the Ccy tends to have:
o Low bias (C[f _,]) and Var (C[f y]), as f_ye is trained on more
examples
o High Cov (C[f_yi].Clf _yo]). as training sets X\X® and X\XV) are
more similar thus C[f_, ] and C[f_,)] are more positively correlated

5

— 5-Fold CV
— 10-Fold CV
4 — Exp
- - Bayes
BX
w
a
=
2
T g
0
10 15 20 25 30 35 40 45

Shan-Hung Wu (CS, NTHU) CV & Ensembling Machine Learning 12 / 34



How Many Folds K? IV
bias (Ccy) = bias (C[f_yw]), Vs
Vary (Cev) = % Var (C[f_y]) 4+ 25 Lijjsi Cov (Clf_yo ], C[f_yw]). Vs

o Conversely, with a small K, the cross-validation error tends to have a
high bias (C[f_y]) and Var (C[f_yw]) but low Cov (C[f_ya],Clf_yo])
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How Many Folds K? IV

bias (Ccy) = bias (C[f_yw]), Vs
Vary (Cev) = % Var (C[f_y]) 4+ 25 Lijjsi Cov (Clf_yo ], C[f_yw]). Vs
o Conversely, with a small K, the cross-validation error tends to have a

high bias (C[f_y]) and Var (C[f_yw]) but low Cov (C[f_ya],Clf_yo])
o In practice, we usually set K =5 or 10
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Leave-One-Out CV

bias (Ccy) = bias (C[f_yw]), Vs

Varg (Cey) = %Var (CV—N(‘V)D + % Yijj>i Cov (C[f—zvm] ) C[f_NM) , Vs

o For very small dataset:

o MSE(Ccy) is dominated by bias (C[f,N(:)]) and Var(C[f,NmD
o Not Cov (C[f il Clf yi])
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Leave-One-Out CV

bias (Ccy) = bias (C[f_yw]), Vs

Varg (Cey) = %Var (CV—N(‘V)D + % Yijj>i Cov (C[f—zvm] ) C[f_NM) , Vs

o For very small dataset:

o MSE(Ccv) is dominated by bias (C[f ,]) and Var (C[f ])

o Not Cov (C[f_N(,-)],C[f_NU)])
o We can choose K = N, which we call the leave-one-out CV
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Ensemble Methods

o No free lunch theorem: there is no single ML algorithm that always
outperforms the others in all domains/tasks
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Ensemble Methods

()

No free lunch theorem: there is no single ML algorithm that always
outperforms the others in all domains/tasks

©

Can we combine multiple base-learners to improve

o Applicability across different domains, and/or
o Generalization performance in a specific task?

©

These are the goals of ensemble learning

o How to “combine” multiple base-learners?
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Outline

(2 Ensemble Methods
o Voting
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Voting

o Voting: linear combining the predictions of base-learners for each x:

= ijjz,(!) where w; > O,ij =1.
J Jj

o If all learners are given equal weight w; = 1/L, we have the plurality
vote (multi-class version of majority vote)

’ Voting Rule ‘ Formular ‘
Sum = 1y0, 5
Weighted sum | 5 =Y, w]y,(j),wj >0,y wi=1
Median = medianjj),(j)
Minimum j}k:minjjzl(j)
Maximum Yk = maxjy,(g)
Product Vi = ijk

Shan-Hung Wu (CS, NTHU) CV & Ensembling Machine Learning 18 / 34



Why Voting Works? |
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Why Voting Works? |

o Assume that each $) has the expected value Ex (51(7) |x) and variance

Varx (5V) |x)
o When w; =1/L, we have:

Ex (¥|x) =E (Z %9@ |x> = %ZE(&@
J

J

Varx (7|x) = Var (Z %90) |x> —Var (Zy )

J

7%Var< \x)—O—L— Z Cov( <),y(’)\x>

ij,i<j
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Why Voting Works? |

o Assume that each $) has the expected value Ex (51(7) |x) and variance
Varx (5V) |x)
o When w; =1/L, we have:

Ex(f’x)ZE(ZLA(’> ZE( x) =E(39]x)

J

Varx (7|x) = Var (Z %90) |x> = —Var (Zy )

J

7%Var< \x)—O—L— ZCOV(< \x)

ij,i<j

o The expected value doesn't change, so the bias doesn’t change
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Why Voting Works? Il
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Why Voting Works? Il

Vary (7]x) = %Var( |x) + = Z Cov < )

lJ i<j

o If $) and $¥) are uncorrelated, the variance can be reduced
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Why Voting Works? Il

1 ; 2 o
Var (7)) = pVar (59 1) + 7 3 Cov (3,50 1x)
i<

o If $) and $¥) are uncorrelated, the variance can be reduced
o Unfortunately, $\)'s may not be i.i.d. in practice

o If voters are positively correlated, variance increases
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Outline

(2 Ensemble Methods

o Bagging
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Bagging

o Bagging (short for bootstrap aggregating) is a voting method, but
base-learners are made different deliberately

o How?
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Bagging

o Bagging (short for bootstrap aggregating) is a voting method, but
base-learners are made different deliberately

o How? Why not train them using slightly different training sets?

@ Generate L slightly different samples from a given sample is done by
bootstrap: given X of size N, we draw N points randomly from X
with replacement to get XU)

o It is possible that some instances are drawn more than once and some
are not at all
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Bagging

o Bagging (short for bootstrap aggregating) is a voting method, but
base-learners are made different deliberately

o How? Why not train them using slightly different training sets?

@ Generate L slightly different samples from a given sample is done by
bootstrap: given X of size N, we draw N points randomly from X
with replacement to get XU)

o It is possible that some instances are drawn more than once and some
are not at all

@ Train a base-learner for each XV)
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Outline

(2 Ensemble Methods

o Boosting
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Boosting

o In bagging, generating “uncorrelated” base-learners is left to chance
and unstability of the learning method
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Boosting

o In bagging, generating “uncorrelated” base-learners is left to chance
and unstability of the learning method

o In boosting, we generate complementary base-learners

o How? Why not train the next learner on the mistakes of the previous
learners

o For simplicity, let's consider the binary classification here:
dV(x) € {1,~1}
o The original boosting algorithm combines three weak learners to
generate a strong learner
o A week learner has error probability less than 1/2 (better than random

guessing)
o A strong learner has arbitrarily small error probability
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Original Boosting Algorithm

o Training

@ Given a large training set, randomly divide it into three
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Original Boosting Algorithm

o Training

@ Given a large training set, randomly divide it into three
@ Use XM to train the first learner d(V) and feed X to d()

@ Use all points misclassified by d() and X to train d®. Then feed
X®) to dV) and d®
@ Use the points on which d(!) and d® disagree to train d©)
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@ Use the points on which d(!) and d® disagree to train d©)

o Testing
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Original Boosting Algorithm

o Training

@ Given a large training set, randomly divide it into three
@ Use XM to train the first learner d(V) and feed X to d()

@ Use all points misclassified by d() and X to train d®. Then feed
X3 to dV) and d®

@ Use the points on which d(!) and d® disagree to train d©)
o Testing

@ Feed a point it to dV) and d@ first. If their outputs agree, use them
as the final prediction

@ Otherwise the output of d®) is taken
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Example

o Assuming X, X and XO) are the same:

d(ﬂ d(!l d(s]
+ aF +
L S et 4y
£ T =
+ + -
7
pen ¢
=
+

o Disadvantage: requires a large training set to afford the three-way split
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AdaBoost

o AdaBoost: uses the same training set over and over again

o How to make some points “larger?”
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AdaBoost

o AdaBoost: uses the same training set over and over again

o How to make some points “larger?”

o Modify the probabilities of drawing the instances as a function of error
o Notation:

o Pr®): probability that an example (x(),y()) is drawn to train the jth
base-learner dV)

o e) =y, Pri) 1y £ a0 (x(®)): error rate of d¥) on its training set
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Algorithm
o Training

@ Initialize PritD) = % for all i
@ Start from j=1:

@ Randomly draw N examples from X with probabilities Pr®/) and use
them to train dV)
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Algorithm
o Training

@ Initialize PritD) = % for all i
@ Start from j=1:

@ Randomly draw N examples from X with probabilities Pr®/) and use
them to train dV)
@ Stop adding new base-learners if l) > %
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Algorithm
o Training

@ Initialize PritD) = % for all i
@ Start from j=1:

@ Randomly draw N examples from X with probabilities Pr®/) and use
them to train dV)
@ Stop adding new base-learners if l) >

@ Define o = 1log(1 £? ) >0 and set
Pl = Prliv) . exp(—agydV) (x(D)) for all i
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@ Define o = 1log(1 £? ) >0 and set
Pl = Prliv) . exp(—agydV) (x(D)) for all i
.. .. -1
@ Normalize Pri+1) | Vi, by multiplying (ZiPr ’J“))

m\»—

Shan-Hung Wu (CS, NTHU) CV & Ensembling Machine Learning 28 / 34



Algorithm
o Training

@ Initialize PritD) = % for all i
@ Start from j=1:

@ Randomly draw N examples from X with probabilities Pr®/) and use
them to train dV)
@ Stop adding new base-learners if l) >

@ Define o = 1log(1 £? ) >0 and set
Pl = Prliv) . exp(—agydV) (x(D)) for all i
.. .. -1
@ Normalize Pri+1) | Vi, by multiplying (ZiPr ’J“))

m\»—

o Testing

@ Given x, calculate V) for all j
@ Make final prediction 3 by voting: 7 =¥ asdV (x)
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Example

dom d@ d®

Clrl. +az.+03. : .

o dUtY) complements d¥) and dUV=Y by focusing on predictions they
disagree
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Example

d@ d®

alj +02|:.+a3 :

o dU*) complements d¥) and dU~") by focusing on predictions they
disagree

o Voting weights (o = %log (1;—5)@>) in predictions are proportional to

the base-learner’s accuracy
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Outline

(2 Ensemble Methods

o Why AdaBoost Works?
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Why AdaBoost Works

o Why AdaBoost improves performance?
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Why AdaBoost Works

o Why AdaBoost improves performance?
o By increasing model complexity? Not exactly

o Empirical study: AdaBoost reduces overfitting as L grows, even when
there is no training error

test error
training error
BT 100 1000
# rounds

C4.5 decision trees (Schapire et al., 1998).
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Why AdaBoost Works

o Why AdaBoost improves performance?
o By increasing model complexity? Not exactly

o Empirical study: AdaBoost reduces overfitting as L grows, even when
there is no training error

o AdaBoost increases margin [1, 2]

20:
: test error
15
£ 10t
v
training error 5:
o L
10 100 1000
# rounds

C4.5 decision trees (Schapire et al., 1998).
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Margin as Confidence of Predictions

o Recall in SVC, a larger margin
improves generalizability

.
o oo AA
®e o A A,
* e, A AAA 4
ao.. .‘AAA
A AA
A
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Margin as Confidence of Predictions

o Recall in SVC, a larger margin
improves generalizability

o Due to higher confidence
predictions over training
examples
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Margin as Confidence of Predictions

o Recall in SVC, a larger margin
improves generalizability

o Due to higher confidence
predictions over training
examples

o We can define the margin for AdaBoost similarly
o In binary classification, define margin of a prediction of an example
(x,y) € X as:

margin(x,y0y =y r(x0) = Y ao- )Y o
j;y(i):d(/) (x(’)) j;y(");éd(/’) (x(l))
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Margin Distribution

o Margin distribution over 6:

|(x®,30) : yOF (xD) < 6]
X

Pry (yf (x) < 6) ~

0.5-

cumulative distribution

margin (6 )

LEGEND: (small dash, large dash,
solid) lines equal (5, 100, 1000)
rounds of boosting
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Margin Distribution

cumulative distribution

o Margin distribution over 6:

|(x@,yD) - yOr () < 6

Prx (b (") < 0) = ]

o A complementary learner:

10-
- o Clarifies low confidence areas
: o Increases margin of points in these
0.5- areas
A 0.5 '
margin (6 )

LEGEND: (small dash, large dash,
solid) lines equal (5, 100, 1000)
rounds of boosting
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