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Cross Validation
So far, we use the hold out method for:

Hyperparameter tuning: validation set
Performance reporting: testing set

What if we get an “unfortunate” split?

K-fold cross validation:
1 Split the data set X evenly into K subsets X(i) (called folds)
2 For i = 1, · · · ,K, train f�N

(i) using all data but the i-th fold (X\X(i))
3 Report the cross-validation error C

CV

by averaging all testing errors
C[f�N

(i) ]’s on X(i)
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Nested Cross Validation

Cross validation (CV) can be applied to both hyperparameter tuning
and performance reporting

E.g, 5⇥2 nested CV

1 Inner (2 folds): select
hyperparameters giving lowest
C

CV

Can be wrapped by grid
search

2 Train final model using both

training and validation sets with
the selected hyperparameters

3 Outer (5 folds): report C

CV

as
test error
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How Many Folds K? I

The cross-validation error CCV is an average of C[f�N

(i) ]’s
Regard each C[f�N

(i) ] as an estimator of the expected generalization
error EX(C[f

N

])

CCV is an estimator too, and we have

MSE(CCV) = EX[(CCV�EX(C[f
N

]))2] = VarX(CCV)+bias(CCV)
2
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Point Estimation Revisited: Mean Square Error

Let ˆq
n

be an estimator of quantity q related to random variable x

mapped from n i.i.d samples of x

Mean square error of ˆq
n

:

MSE( ˆq
n

) = EX
⇥
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n
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⇤

Can be decomposed into the bias and variance:
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)2

MSE of an unbiased estimator is its variance
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Example: 5-Fold vs. 10-Fold CV

MSE(CCV) = EX[(CCV�EX(C[f
N

]))2] = VarX(CCV)+bias(CCV)
2

Consider polynomial regression where
P(y|x) = sin(x)+ e,e ⇠ N (0,s2)
Let C[·] be the MSE of predictions (made by a function) to true labels
EX(C[f

N

]): read line
bias(CCV): gaps between the red and other solid lines (EX[CCV])
VarX (CCV): shaded areas
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Decomposing Bias and Variance

CCV is an estimator of the expected generalization error EX(C[f
N

]):

MSE(CCV) = VarX(CCV)+bias(CCV)
2, where

bias(CCV) = EX (CCV)�EX(C[f
N

]) = E

�
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i
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How Many Folds K? II

MSE(CCV) = VarX(CCV)+bias(CCV)2, where
bias(CCV) = bias
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We can reduce bias(CCV) and Var(CCV) by learning theory

Choosing the right model complexity avoiding both underfitting and
overfitting
Collecting more training examples (N)

Furthermore, we can reduce Var(CCV) by making f�N

(i) and f�N

(j)

uncorrelated
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How Many Folds K? III

bias(CCV) = bias

�
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(s) ]
�
,8s
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With a large K, the CCV tends to have:

Low bias

�
C[f�N

(s) ]
�

and Var

�
C[f�N

(s) ]
�
, as f�N

(s) is trained on more
examples
High Cov

�
C[f�N

(i) ],C[f�N

(j) ]
�
, as training sets X\X(i) and X\X(j) are

more similar thus C[f�N

(i) ] and C[f�N

(j) ] are more positively correlated
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How Many Folds K? IV

bias(CCV) = bias
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Conversely, with a small K, the cross-validation error tends to have a
high bias

�
C[f�N

(s) ]
�

and Var

�
C[f�N

(s) ]
�

but low Cov

�
C[f�N

(i) ],C[f�N

(j) ]
�

In practice, we usually set K = 5 or 10
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Leave-One-Out CV
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For very small dataset:
MSE(CCV) is dominated by bias

�
C[f�N

(s) ]
�

and Var

�
C[f�N

(s) ]
�

Not Cov

�
C[f�N

(i) ],C[f�N

(j) ]
�

We can choose K = N, which we call the leave-one-out CV
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2
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Ensemble Methods

No free lunch theorem: there is no single ML algorithm that always
outperforms the others in all domains/tasks

Can we combine multiple base-learners to improve
Applicability across different domains, and/or
Generalization performance in a specific task?

These are the goals of ensemble learning

How to “combine” multiple base-learners?
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Voting
Voting: linear combining the predictions of base-learners for each x:

ỹ

k

= Â
j

w

j

ŷ

(j)
k

where w

j

� 0,Â
j

w

j

= 1.

If all learners are given equal weight w

j

= 1/L, we have the plurality

vote (multi-class version of majority vote)

Voting Rule Formular
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k
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L
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Why Voting Works? I

Assume that each ŷ

(j) has the expected value EX
�
ŷ

(j) |x
�

and variance
VarX

�
ŷ

(j) |x
�

When w

j

= 1/L, we have:

EX (ỹ |x) = E
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=
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+

2

L

2

Â
i,j,i<j

Cov

⇣
ŷ

(i), ŷ(j) |x
⌘

The expected value doesn’t change, so the bias doesn’t change
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ŷ

(j) |x
�

When w

j

= 1/L, we have:
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ŷ

(j) |x
⌘
= E

⇣
ŷ
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Why Voting Works? II

VarX (ỹ |x) = 1

L

Var

⇣
ŷ

(j) |x
⌘
+

2

L

2

Â
i,j,i<j

Cov

⇣
ŷ

(i), ŷ(j) |x
⌘

If ŷ

(i) and ŷ

(j) are uncorrelated, the variance can be reduced
Unfortunately, ŷ

(j)’s may not be i.i.d. in practice
If voters are positively correlated, variance increases
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Bagging

Bagging (short for bootstrap aggregating) is a voting method, but
base-learners are made different deliberately
How?

Why not train them using slightly different training sets?

1 Generate L slightly different samples from a given sample is done by
bootstrap: given X of size N, we draw N points randomly from X
with replacement to get X(j)

It is possible that some instances are drawn more than once and some
are not at all

2 Train a base-learner for each X(j)

Shan-Hung Wu (CS, NTHU) CV & Ensembling Machine Learning 22 / 34



Bagging

Bagging (short for bootstrap aggregating) is a voting method, but
base-learners are made different deliberately
How? Why not train them using slightly different training sets?

1 Generate L slightly different samples from a given sample is done by
bootstrap: given X of size N, we draw N points randomly from X
with replacement to get X(j)

It is possible that some instances are drawn more than once and some
are not at all

2 Train a base-learner for each X(j)

Shan-Hung Wu (CS, NTHU) CV & Ensembling Machine Learning 22 / 34



Bagging

Bagging (short for bootstrap aggregating) is a voting method, but
base-learners are made different deliberately
How? Why not train them using slightly different training sets?

1 Generate L slightly different samples from a given sample is done by
bootstrap: given X of size N, we draw N points randomly from X
with replacement to get X(j)

It is possible that some instances are drawn more than once and some
are not at all

2 Train a base-learner for each X(j)

Shan-Hung Wu (CS, NTHU) CV & Ensembling Machine Learning 22 / 34



Bagging

Bagging (short for bootstrap aggregating) is a voting method, but
base-learners are made different deliberately
How? Why not train them using slightly different training sets?

1 Generate L slightly different samples from a given sample is done by
bootstrap: given X of size N, we draw N points randomly from X
with replacement to get X(j)

It is possible that some instances are drawn more than once and some
are not at all

2 Train a base-learner for each X(j)

Shan-Hung Wu (CS, NTHU) CV & Ensembling Machine Learning 22 / 34



Outline

1
Cross Validation

How Many Folds?

2
Ensemble Methods

Voting
Bagging
Boosting
Why AdaBoost Works?

Shan-Hung Wu (CS, NTHU) CV & Ensembling Machine Learning 23 / 34



Boosting

In bagging, generating “uncorrelated” base-learners is left to chance
and unstability of the learning method

In boosting, we generate complementary base-learners
How? Why not train the next learner on the mistakes of the previous
learners
For simplicity, let’s consider the binary classification here:
d

(j)(x) 2 {1,�1}
The original boosting algorithm combines three weak learners to
generate a strong learner

A week learner has error probability less than 1/2 (better than random
guessing)
A strong learner has arbitrarily small error probability
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Original Boosting Algorithm

Training

1 Given a large training set, randomly divide it into three

2 Use X(1) to train the first learner d

(1) and feed X(2) to d

(1)

3 Use all points misclassified by d

(1) and X(2) to train d

(2). Then feed
X(3) to d

(1) and d

(2)

4 Use the points on which d

(1) and d

(2) disagree to train d

(3)

Testing

1 Feed a point it to d

(1) and d

(2) first. If their outputs agree, use them
as the final prediction

2 Otherwise the output of d

(3) is taken
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Example

Assuming X(1), X(2), and X(3) are the same:

Disadvantage: requires a large training set to afford the three-way split
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AdaBoost

AdaBoost: uses the same training set over and over again
How to make some points “larger?”

Modify the probabilities of drawing the instances as a function of error
Notation:
Pr

(i,j): probability that an example (x(i),y(i)) is drawn to train the jth
base-learner d

(j)

e(j) = Â
i

Pr

(i,j)
1(y(i) 6= d

(j)(x(i))): error rate of d

(j) on its training set
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Algorithm

Training

1 Initialize Pr

(i,1) = 1

N

for all i

2 Start from j = 1:
1 Randomly draw N examples from X with probabilities Pr

(i,j) and use
them to train d

(j)

2 Stop adding new base-learners if e(j) � 1

2

3 Define a
j

= 1

2

log

⇣
1�e(j)

e(j)

⌘
> 0 and set

Pr

(i,j+1) = Pr

(i,j) ·exp(�a
j

y

(i)
d

(j)(x(i))) for all i

4 Normalize Pr

(i,j+1), 8i, by multiplying
⇣

Â
i

Pr

(i,j+1)
⌘�1

Testing

1 Given x, calculate ŷ

(j) for all j

2 Make final prediction ỹ by voting: ỹ = Â
j

a
j

d

(j)(x)
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(j) for all j

2 Make final prediction ỹ by voting: ỹ = Â
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Example

d

(j+1) complements d

(j) and d

(j�1) by focusing on predictions they
disagree

Voting weights (a
j

= 1

2

log

⇣
1�e(j)

e(j)

⌘
) in predictions are proportional to

the base-learner’s accuracy
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Outline

1
Cross Validation

How Many Folds?

2
Ensemble Methods

Voting
Bagging
Boosting
Why AdaBoost Works?
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Why AdaBoost Works
Why AdaBoost improves performance?

By increasing model complexity? Not exactly
Empirical study: AdaBoost reduces overfitting as L grows, even when
there is no training error

AdaBoost increases margin [1, 2]

Shan-Hung Wu (CS, NTHU) CV & Ensembling Machine Learning 31 / 34



Why AdaBoost Works
Why AdaBoost improves performance?
By increasing model complexity?

Not exactly
Empirical study: AdaBoost reduces overfitting as L grows, even when
there is no training error

AdaBoost increases margin [1, 2]

Shan-Hung Wu (CS, NTHU) CV & Ensembling Machine Learning 31 / 34



Why AdaBoost Works
Why AdaBoost improves performance?
By increasing model complexity? Not exactly

Empirical study: AdaBoost reduces overfitting as L grows, even when
there is no training error

AdaBoost increases margin [1, 2]

Shan-Hung Wu (CS, NTHU) CV & Ensembling Machine Learning 31 / 34



Why AdaBoost Works
Why AdaBoost improves performance?
By increasing model complexity? Not exactly

Empirical study: AdaBoost reduces overfitting as L grows, even when
there is no training error

AdaBoost increases margin [1, 2]

Shan-Hung Wu (CS, NTHU) CV & Ensembling Machine Learning 31 / 34



Margin as Confidence of Predictions

Recall in SVC, a larger margin
improves generalizability

Due to higher confidence

predictions over training
examples
We can define the margin for AdaBoost similarly
In binary classification, define margin of a prediction of an example
(x(i),y(i)) 2 X as:

margin(x(i),y(i)) = y

(i)
f (x(i)) = Â

j:y

(i)=d

(j)(x(i))

a
j

� Â
j:y

(i) 6=d

(j)(x(i))

a
j
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Margin Distribution
Margin distribution over q :

PrX(y
(i)

f (x(i)) q)⇡ |(x(i),y(i)) : y

(i)
f (x(i)) q |

|X|

A complementary learner:
Clarifies low confidence areas
Increases margin of points in these
areas
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