Shan-Hung Wu (CS, NTHU)

Neural Networks:
Design

Shan-Hung Wu

shwu@cs.nthu.edu.tw

Department of Computer Science,
National Tsing Hua University, Taiwan

Machine Learning

NN Design Machine Learning

1/51

Outline

(@ The Basics
o Example: Learning the XOR

@ Training
o Back Propagation

(3 Neuron Design
o Cost Function & Output Neurons
o Hidden Neurons

(@ Architecture Design
o Architecture Tuning

Shan-Hung Wu (CS, NTHU) NN Design

Machine Learning

2/51

Outline

(@ The Basics
o Example: Learning the XOR

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 3/51

Model: a Composite Function |

o A feedforward neural networks, or multilayer perceptron, defines
a function composition

F=rC sV s 00).017);00))
that approximates the target function f*

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 4/51

Model: a Composite Function |

o A feedforward neural networks, or multilayer perceptron, defines

a function composition
F=rC sV s 00).017);00))

that approximates the target function f*
o Parameters (1) ... 8(@) learned from training set X

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning

4/51

Model: a Composite Function |
o A feedforward neural networks, or multilayer perceptron, defines
a function composition

$:f(L)(...fﬂl(f(l)(x;9(1));9&');3(@)

that approximates the target function f*
o Parameters (1) ... 8(@) learned from training set X
o “Feedforward” because information flows from input to output

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 4/51

Model: a Composite Function Il
o At each layer k, the function f®) (. ;W% p®)) is nonlinear and
outputs value a®) ¢ RD(k), where

o act)(-): R — R is an activation function applied elementwisely

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 5/51

Model: a Composite Function Il
o At each layer k, the function f®) (. ;W% p®)) is nonlinear and
outputs value a®) ¢ RD(k), where

o act®(.): R — R is an activation function applied elementwisely
o Shorthand: a® = act®(WkTgk-1)
o alk=1) e ROV G 1 and Wit ¢ REOD+1)<0Y

AR
W

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 5/51

Neurons |

o Each];.(k) = act(")(W:(?Ta(k*I)) =

act®) (z](k)) is a unit (or neuron)

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 6/51

Neurons |

o Each];.(k) = act(k)(W:(?Ta(k*I)) = %

act® (Z](k)) is a unit (or neuron) ®
a:
J

o E.g., the perceptron

Activation
Function

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 6/51

Neurons |

o Each];(k) = act(")(W:(?Ta(kfl)) —
act®) (z](k)) is a unit (or neuron)

o E.g., the perceptron

o Loosely guided by neuroscience Activation
L
Axon
terminals
Myelin sheath /\
—
—
—_—
Input Output
. —
Signals Dendrites Signals
—
—_—
—_ Cell nucleus

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning

o

6/51

Neurons |l

o Modern NN design is mainly guided by mathematical and engineering
disciplines. Consider a binary classifier where y € {0, 1}:

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 7/51

Neurons |l

o Modern NN design is mainly guided by mathematical and engineering
disciplines. Consider a binary classifier where y € {0, 1}:

J-th Rectified Linear Unit (ReLU) at

o Hidden units: a®) = max(0,z(0) SR Hidden Layerk .. ,

®
4;

Activation
Function

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 7/51

Neurons |l

o Modern NN design is mainly guided by mathematical and engineering

disciplines. Consider a binary classifier where y € {0, 1}:
J-th Rectified Linear Unit (ReLU) at

o Hidden units: a®) = max(0,z(0) ey T Hidden Layerk .. ,
. oA o
o Output unit: a'¥) = p = 5 (z\1)),)

assuming Pr(y = 1|x) ~ Bernoulli(p) “

o Prediction: :
S 1(h: 5 (D)L -
P 1(p:p > 05) = 1) >0) g S

unction '

Activation :
Function 1
'
1

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning

Neurons |l

o Modern NN design is mainly guided by mathematical and engineering

disciplines. Consider a binary classifier where y € {0, 1}:
J-th Rectified Linear Unit (ReLU) at

o Hidden units: a®) = max(0,z(0) oy T Hidden Layerk .. ,
. oA o
o Output unit: a'¥) = p = 5 (z\1)),)

assuming Pr(y = 1|x) ~ Bernoulli(p)

o Prediction: :
§=1(p;p >0.5) =1z >0) &
o A logistic regressor with input a(t—1)

Activation |
Function 1
'
'

Activation :
Function 1
'
'

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning

Representation Learning

Output
Output Output ML e
features
Additional
Output Mapping from | | | Mapping from | | layers of more
features features abstract
features
Hand- Hand- -
designed designed Features imple
features
program features
A A A A
Input Input Input Input
e Deep
Rule-based assic learning
machine
systems learning Representation

Shan-Hung Wu (CS

learning

, NTHU)

o The outputs aV, a@, ... a1 of
hidden layers f1), £ ... fI=1) are
distributed representation of x

o Nonlinear to input space sincef(k)'s
are nonlinear

NN Design Machine Learning 8/51

Representation Learning

Output
Output Output ML e
features
‘Additional
Output Mapping from | | | Mapping from | | layers of more
features features abstract
features
Hand- Hand- -
designed designed Features imple
features
program features
A A A A
Input Input Input Input
Deep
Rule-based Classic learning
machine
systems learning Representation

Shan-Hung Wu (CS,

learning

NTHU)

o The outputs aV, a@, ... a1 of
hidden layers f1), £ ... fI=1) are
distributed representation of x

o Nonlinear to input space ﬂncejiw's
are nonlinear

o Usually more abstract at a deeper
layer

NN Design Machine Learning 8/51

Representation Learning

Output
Output Output ML e
features
Additional
Output Mapping from | | | Mapping from | | layers of more
features features abstract
features
Hand- Hand- -
designed designed Features imple
features
program features
A A A A
Input Input Input Input
Deep
Rule-based Classic learning
machine
systems learning Representation

Shan-Hung Wu (CS,

learning

NTHU)

o The outputs aV, a@, ... a1 of
hidden layers f1), £ ... fI=1) are
distributed representation of x

o Nonlinear to input space sincef(k)'s
are nonlinear

o Usually more abstract at a deeper
layer

o f@) is the actual prediction function

o Like in non-linear SVM/polynomial
regression, a simple linear function
suffices:

NN Design Machine Learning 8/51

Representation Learning

Output
Output Output ML e
features
Additional
Output Mapping from | | | Mapping from | | layers of more
features features abstract
features
Hand- Hand- -
designed designed Features imple
features
program features
A A A A
Input Input Input Input
e Deep
Rule-based assic learning
machine
systems learning Representation

Shan-Hung Wu (CS

learning

, NTHU)

o The outputs aV, a@, ... a1 of
hidden layers f1), £ ... fI=1) are
distributed representation of x

o Nonlinear to input space sincef(k)'s
are nonlinear

o Usually more abstract at a deeper
layer

o £\ is the actual prediction function

o Like in non-linear SVM/polynomial
regression, a simple linear function
suffices:

/D) — g1

o act®)) just “normalizes” 7z to give

(.
pe01)

NN Design Machine Learning 8/51

Outline

(@ The Basics
o Example: Learning the XOR

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 9/51

Learning the XOR |

Original = Space

1 1 [
o Why ReLUs learn nonlinear (and
better) representation?
8
of o 1
0 T
z1

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 10/51

Learning the XOR |

o Why ReLUs learn nonlinear (and
better) representation?

o Let's learn XOR (f*) in a binary
classification task

o xcR?>and ye{0,1}

Shan-Hung Wu (CS, NTHU) NN Design

T2

Original = Space

1

Machine Learning

10/51

Learning the XOR |

o Why ReLUs learn nonlinear (and
better) representation?
o Let's learn XOR (f*) in a binary
classification task
o xcR?>and ye{0,1}
o Nonlinear, so cannot be learned by
linear models

Shan-Hung Wu (CS, NTHU) NN Design

T2

Original = Space

T T
1 [
0
! I
0 1

1

Machine Learning 10/51

Learning the XOR |

o Why ReLUs learn nonlinear (and
better) representation?
o Let's learn XOR (f*) in a binary
classification task
o xcR?>and ye{0,1}
o Nonlinear, so cannot be learned by
linear models
o Consider an NN with 1 hidden layer:
o aV = max(0, W) x)
° a<2>:p:6(2)T (1))
o Prediction: 1(p;p >0.5)

Shan-Hung Wu (CS, NTHU) NN Design

T2

Original x Space

Machine Learning

10/51

Learning the XOR |

o Why ReLUs learn nonlinear (and
better) representation?
o Let's learn XOR (f*) in a binary
classification task
o xcR?>and ye{0,1}
o Nonlinear, so cannot be learned by
linear models
o Consider an NN with 1 hidden layer:
o al) :max(O,W DT x)
o Prediction: l(p,p >0.5)
o Learns XOR by “merging” data points
first

Shan-Hung Wu (CS, NTHU) NN Design

Original x Space

Machine Learning

10/51

Learning the XOR Il

Original = Space Learned Space
1l 1 o - 1} °
g E
0 [] 1 0 [1 1
0 1 (I) 1 2
i 8 (1) 11 -1
o X — e RVx(14D) w() — | 1 1 w? =1 2
110 ’ o 1| W
1 1 1
0
1
oy=|,|=Uo(1 max(0,XW) Jw?) > 0.5)
0

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 11/51

Latent Representation AW

Original z Space Learned Space
1 1 [1f 0
g <
0 0 1 0 [1 B
0 1 (IJ 1 2
10 0 B 0 —1
() _ 1 01 _ 1 0
°XW 110 i i 10
1 1 1 2 1
1 00
1) = myj=| 10
0 A [1 max(0,XW"))] L1 0
1 21

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 12/51

Output Distribution a?

Original = Space

Learned Space
T

1k 1 [1} 0
0 ° 1 o o 1 B
o T o N 2
1oolr -1
oa=ow)=c| | | 0|l 2 ||=2|]
12 1 -4 ~1
0
§ = 1(a® | !
o y=1@a"? >05)= 1
0
Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 13/51

Output Distribution a?

Original = Space Learned Space
1k 1 [1} 0
0 (] 1 oL o 1 B

0 1 (I] 1 2
100, -1
oa?=cAw@)=c || 1O 2 | |=0o|] !
Lro||c, 1
1 2 1 —1

o y=1@? >05)=

S = = O

o But how to train W) and w(® from examples?

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 13/51

Outline

@ Training
o Back Propagation

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 14 /51

Training an NN

o Given examples: X = {(x(y@)}¥
o How to learn parameters ® = {W(l), W(L)}?

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 15 /51

Training an NN

o Given examples: X = {(x(y@)}¥

o How to learn parameters ® = {W(l), W(L)}?

o Most NNs are trained using the maximum likelihood by default
(assuming i.i.d examples):

argmaxe logP(X| @)

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 15 /51

Training an NN

o Given examples: X = {(x(y@)}¥

o How to learn parameters ® = {W(l), W(L)}?

o Most NNs are trained using the maximum likelihood by default
(assuming i.i.d examples):

argmaxe logP(X| @)
= argming —logP(X|®)

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 15 /51

Training an NN

o Given examples: X = {(x(y@)}¥
o How to learn parameters ® = {W(l), W(L)}?

o Most NNs are trained using the maximum likelihood by default
(assuming i.i.d examples):

argmaxe logP(X| @)

= argming — logP(X|©)
= argmineg ¥; —logP(x(), y() | ©)

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 15 /51

Training an NN
o Given examples: X = {(x(y@)}¥
o How to learn parameters ® = {W(l), W(L)}?

o Most NNs are trained using the maximum likelihood by default
(assuming i.i.d examples):

argmaxe logP(X| @)
= argming — logP(X|©)
= argming ¥; — logP(x(),y() | ®)
= argming ¥;[—logP(y") |x() @) — logP(x\) | ®)]

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 15 /51

Training an NN

o Given examples: X = {(x(y@)}¥

o How to learn parameters ® = {W(l), W(L)}?

o Most NNs are trained using the maximum likelihood by default
(assuming i.i.d examples):

argmaxe logP(X| @)
= argming —logP(X|®)
= argming ¥, — logP(x(),y() | @)
— argming ;[logP(y" |, ©) ~ logP(x" | ©)]
= argming }; —logP(y!") |x() @)
= argming ¥, C')(0©)

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 15 /51

Training an NN

o Given examples: X = {(x(y@)}¥

o How to learn parameters ® = {W(l), W(L)}?

o Most NNs are trained using the maximum likelihood by default
(assuming i.i.d examples):

argmaxe logP(X| @)
= argming — logP(X|©)
= argmineg ¥; —logP(x(), y() | ©)
= argming ¥;[—logP(y") |x() @) — logP(x\) | ®)]
= argming }; —logP(y!") |x() @)
= argming ¥, C')(0©)

o The minimizer ® is an unbiased estimator of “true’ ®*
o Good for large N

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning

15 /51

Example: Binary Classification

o Pr(y = 1|x) ~ Bernoulli(p), where x € R” and y € {0,1}
o al) = p = o(zV) the predicted distribution

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 16 /51

Example: Binary Classification

o Pr(y = 1|x) ~ Bernoulli(p), where x € R” and y € {0,1}
o al) = p = o(zV) the predicted distribution

o The cost function C1)(®) can be
written as:

ci)(@)
= —logP(y" |x(); @)
= —log[(a™"))y(i) (1— a(L))l—y(i)]
= —log[o(z®)" (1 - o(zW))1 "]

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning

16 /51

Example: Binary Classification

o Pr(y = 1|x) ~ Bernoulli(p), where x € R” and y € {0,1}

o al) = p = o(zV) the predicted distribution
o The cost function C1)(®) can be

written as:
ci)(@)
= —logP(y" |x(); @) 4 _
= —log[(@y"(1-a®)™") %
= ~loglo(@)" (1 - o))
= —log[o((2y!) — 1)zV)]

NN Design

Shan-Hung Wu (CS, NTHU)

Machine Learning

16 /51

Example: Binary Classification

o Pr(y = 1|x) ~ Bernoulli(p), where x € R” and y € {0,1}

o al) = p = o(zV) the predicted distribution

o The cost function C1)(®) can be
written as:
ci)(@)
— —logP(y!"|+";0) - :
= —log[(a® P (1 —a®W)1-"] 2 3
— —log[o (2D (1 — (1)) ") I
= —log[o((2y") — 1)z(1)]
= {((1-2y1")z)

o {(-) is the softplus function
16 /51

NN Design Machine Learning

Shan-Hung Wu (CS, NTHU)

Optimization Algorithm

o Most NNs use SGD to solve the problem argming ¥; C\)(®)

(Mini-Batched) Stochastic Gradient Descent (SGD)

Initialize @) randomly;

Repeat until convergence {
Randomly partition the training set X into minibatches of size M;
e . @0 — nVeY¥, c(@);

}

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 17 /51

Optimization Algorithm

o Most NNs use SGD to solve the problem argming ¥; C\)(®)
o Fast convergence in time [1]

(Mini-Batched) Stochastic Gradient Descent (SGD)

Initialize @) randomly;

Repeat until convergence {
Randomly partition the training set X into minibatches of size M;
O+l @ —nVeYX, (@)

}

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 17 /51

Optimization Algorithm

o Most NNs use SGD to solve the problem argming ¥; C\)(®)

o Fast convergence in time [1]
o Supports (GPU-based) parallelism

(Mini-Batched) Stochastic Gradient Descent (SGD)

Initialize @) randomly;

Repeat until convergence {
Randomly partition the training set X into minibatches of size M;
O+l @ —nVeYX, (@)

}

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 17 /51

Optimization Algorithm

o Most NNs use SGD to solve the problem argming ¥; C\)(®)

o Fast convergence in time [1]
o Supports (GPU-based) parallelism
o Supports online learning

(Mini-Batched) Stochastic Gradient Descent (SGD)

Initialize @) randomly;

Repeat until convergence {
Randomly partition the training set X into minibatches of size M;
O+l @ —nVeYX, (@)

}

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 17 /51

Optimization Algorithm

o Most NNs use SGD to solve the problem argming ¥, C'")(®)
Fast convergence in time [1]

Supports (GPU-based) parallelism

Supports online learning

Easy to implement

© 06 0 o

(Mini-Batched) Stochastic Gradient Descent (SGD)

Initialize @) randomly;

Repeat until convergence {
Randomly partition the training set X into minibatches of size M;
et . @0 — nVeY¥, c(@");

}

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 17 /51

Optimization Algorithm

o Most NNs use SGD to solve the problem argming ¥; C\)(®)

o Fast convergence in time [1]

o Supports (GPU-based) parallelism
o Supports online learning

o Easy to implement

(Mini-Batched) Stochastic Gradient Descent (SGD)

Initialize @) randomly;

Repeat until convergence {
Randomly partition the training set X into minibatches of size M;
O+l @ —nVeYX, (@)

}

o How to compute Vg ¥; C)(O1) efficiently?

o There could be a huge number of Wi(_f)’s in ©

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 17 /51

Outline

@ Training
o Back Propagation

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 18 /51

Back Propagation

M
0t e —nvg Z ce)
n=1

o We have Vo ¥, C" (@) =¥, VeC" (@)

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 19/51

Back Propagation

M
0t e —nvg Z ce)
n=1
o We have Vo ¥, C" (@) =¥, VeC" (@)
o Let ¢ = (@), our goal is to evaluate
et
oW
ll/

forall i, j, k, and n

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning

19 /51

Back Propagation

M
0t e —nvg Z ce)
n=1

o We have Vo ¥, C" (@) =¥, VeC" (@)
o Let ¢ = (@), our goal is to evaluate
dc
owh
ll/
forall i, j, k, and n

o Back propagation (or simply backprop) is an efficient way to
evaluate multiple partial derivatives at once
o Assuming the partial derivatives share some common evaluation steps

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 19/51

Back Propagation

M
0t e —nvg Z ce)
n=1

o We have Vo ¥, C" (@) =¥, VeC" (@)
o Let ¢ = (@), our goal is to evaluate

ocm
(k)
IW;;
forall i, j, k, and n
o Back propagation (or simply backprop) is an efficient way to
evaluate multiple partial derivatives at once
o Assuming the partial derivatives share some common evaluation steps
o By the chain rule, we have
e e 9z

&) — 5.0 Ak
Iw;; dz IWy;

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 19/51

Forward Pass

dz
o The second term: —2__

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 20 /51

Forward Pass
)

0
o The second term: —2__

(k)

i

o When k=1, we have zy(l) =Y, Wi(;)x(") and

Shan-Hung Wu (CS, NTHU)

ow

1

(1)
8;i . (n)

L

NN Design Machine Learning

20/51

Forward Pass

85@
o The second term: %k)
ij

o When k=1, we have z =YW " and

8z(1)

) (n)

(1)

o Otherwise (k> 1), we have z =YW “ and

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning

20/51

Forward Pass

PIY
o The second term: —Zy

ot
o When k=1, we havez =Y, W, x; ™) and

(1)
aZj() :x(n)
1 i

o Otherwise (k> 1), we have z =YW “ and

o We can get the second terms of all aC(Fk)) 's starting from the most
oW,

ij

shallow layer

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 20 /51

Backward Pass |

oM

- —L~ starting
®
oW,

:) n)
o Conversely, we can get the first terms of -2¢ :,() = %
oW, 9z

ij

from the deepest layer

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 21 /51

Backward Pass |

(k)
: (n)) 9z .
o Conversely, we can get the first terms of -2¢ E‘k) = % - —I starting
aW,‘J aZj 8Ww
from the deepest layer
: : (k) _ gcm
o Define error signal §;" = g

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 21 /51

Backward Pass |

(k)
: (n) () 9
o Conversely, we can get the first terms of -2¢ :‘k) = %
oW, 9z

ij

i
from the deepest layer

o Define error signal (Sj(k) A

o When k = L, the evaluation varies from task to task
o Depending on the definition of functions actX) and ")

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning

'Wj(” starting

21/51

Backward Pass |

(k)
:)) 9z
Conversely, we can get the first terms of 2¢ :‘k) = ‘;‘(Z) ge (k starting

ij

©

from the deepest layer

o Define error signal (Sj() _ gc(
Z

When k = L, the evaluation varies from task to task
o Depending on the definition of functions actX) and (")

©

o E.g., in binary classification, we have:

S0 _ dclW 9L((1—2y"):™)
0z 97D -

o((1=2y")z")- (1-25")

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 21 /51

Backward Pass Il
o When k < L, we have

(k)

k) e gl dg; det) 1o (k)
5.(= 9¢ R | ¢ -act'(z;

J azy(k) 8a}k> azy(k) aa;k) (])

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 22 /51

Backward Pass ||

o When k < L, we have

(k)
k) dcln el da; e ,
s — ac Co.—Lo =2 act'(z
J ¢ 8aj(»k> 8z](-k> aa;k) (

_ () kD 10 (k)
- <Zs 3Z§k+l) : 9a® act (Zj)

Theorem (Chain Rule)

Letg:R— R4 and f:R? - R, then f

(fog)'(x) =f'(g(x))g'(x) = Vf(g(x)"

/
8q(%)
V.
NN Design Machine Learning 22 /51

Shan-Hung Wu (CS, NTHU)

Backward Pass Il
o When k < L, we have

(k)
dc 3aj 9 1 (k)
2™ 9P~ 9d (z)

o 1n) az(’\+1)
- ng(kﬂ : aa()

wken ®
k+l 92, f
= Zs

s 4 (k)
)

(k)
6}.

k)

= azj

act’(j(k))

Theorem (Chain Rule)
Letg:R— R4 and f:R? - R, then f

(fog)'(x) =f'(g(x))g'(x) = Vf(g(x)"

/
84(%)
V.
Shan-Hung Wu (CS, NTHU) NN Design

Machine Learning 22 /51

Backward Pass Il
o When k < L, we have

(k)
6}.

Theorem (Chain Rule)

Letg:R— R4 and f:R? - R, then f

(fog)'(x)

i 9cm aa FRO! (k)
A 8C(k 'a (k) ﬁ'aCt/(Zj)
7 J
O (Hl) (k)
= Zs PXt (k+l ' ;a() ac t,(z
9 A+1)
— ZS]\+l Z[z.v act[k
():s (k+1) k+1) t,(Zk
g1 (x)
=f'(g(x))g'(x) =Vf(gx) |
8a(x)

Shan-Hung Wu (CS, NTHU)

NN Design

V.

Machine Learning 22 /51

Backward Pass IlI

k k+1 k+1 k
5 = (Zaﬁ ewi)>act’(ZE)

s

*)

o We can evaluate all 51 's starting from the deepest layer

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 23 /51

Backward Pass IlI

k k+1 k+1 k
5 = (Zaf ewi)>act’(ZE)

s

*)

o We can evaluate all 51 's starting from the deepest layer

o The information propagate along a new kind of feedforward network:

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 23 /51

Backward Pass IlI

k k+1 k+1 k
5 = (Zaﬁ ewi)>act’(ZE)

s

*)

o We can evaluate all 51 's starting from the deepest layer

o The information propagate along a new kind of feedforward network:

®
2
5§k+ 1)

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 23 /51

Backprop Algorithm (Minibatch Size M =1)

Input: (x", y®) and @)
Forward pass:
a®[1 x0]"
for k<~ 1 to L do
7K — Wk Tgk=1)
a® — act(z®) ;
end
Backward pass:
Compute error signal 5 (e.g., (1—-2y")o((1—2y")z(1) in
binary classification)
fork<—L—1to1l do
8® act' (z0) © (WD gDy -
end

Return ;VC;:;) a* D@ 6® for all k

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 24 /51

Backprop Algorithm (Minibatch Size M > 1)

Input: {(x™ y™)}M and @
Forward pass:

AO [gOD ... g0 T,
for k<1 toL do

ZH) - A*=D k)

AW act(zW)y ;

end

Backward pass:

Compute error signals

AL = [sLY . sk
for k< L—1to1ldo

‘ A(k) s act’(Z(k)) ® (A(k-i-l)W(k-‘rl)T) ;
end

Return % = yM a1 @ 55 for all

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 25 /51

Backprop Algorithm (Minibatch Size M > 1)

Input: {(x™ y™)}M and @

Forward pass:

AO [g0 .. g0 T,

for k< 1 toL do

ZH) - A*=D k)

AW act(zW) ; o Speed up with
GPUs?

end
Backward pass:
Compute error signals

AL — { sLO) ... §Lm
fork<L—1tol do

‘ A(k) s act’(Z(k)) ® (A(k-i-l)W(k-‘rl)T) ;
end

Return % = yM a1 @ 55 for all

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 25 /51

Backprop Algorithm (Minibatch Size M > 1)

Input: {(x™ y™)}M and @
Forward pass:

AO [g0 .. g0 T,
for k<1 to L do

ZH) - A*=D k)

AW act(zW) ; o Speed up with
end GPUs?
Backward pass: o Large width (D))
Compute error signals at each layer

AL — [sLO . s]’

fork<L—1tol do
‘ A(k) s act’(Z(k)) ® (A(k-i-l)W(k-‘rl)T) ;
end

Return % = yM a1 @ 55 for all

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 25 /51

Backprop Algorithm (Minibatch Size M > 1)

Input: {(x™ y™)}M and @
Forward pass:

AO [g0 .. g0 T,
for k<1 to L do

ZH) - A*=D k)

AW act(zW) ; o Speed up with
end GPUs?
Backward pass: o Large width (D))
Compute error signals at each layer
AL = { s§LO ... sLM) ! o Large batch size

fork<L—1tol do
‘ A(k) s act’(Z(k)) ® (A(k-i-l)W(k-‘rl)T) ;
end

Return % = yM a1 @ 55 for all

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 25 /51

Outline

(3 Neuron Design
o Cost Function & Output Neurons
o Hidden Neurons

Shan-Hung Wu (CS, NTHU) NN Design

Machine Learning

26 /51

Neuron Design

o The design of modern neurons is largely influenced by how an NN is
trained

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 27 /51

Neuron Design

o The design of modern neurons is largely influenced by how an NN is
trained

o Maximum likelihood principle:

logP(X|0®) = in}" —1logP(y®|x® ®
argmax ogP(X|0) argmén; ogP(y" |x\", @)

o Universal cost function

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 27 /51

Neuron Design

o The design of modern neurons is largely influenced by how an NN is

trained

o Maximum likelihood principle:

logP(X|0®) = in}" —1logP(y®|x® ®
argmax ogP(X|0) argmén; ogP(y" |x\", @)

o Universal cost function
o Different output units for different P(y|x)

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning

27 /51

Neuron Design

o The design of modern neurons is largely influenced by how an NN is

trained

o Maximum likelihood principle:

logP(X|0®) = in}" —1logP(y®|x® ®
argmax ogP(X|0) argmén; ogP(y" |x\", @)

o Universal cost function
o Different output units for different P(y|x)

o Gradient-based optimization:
o During SGD, the gradient
de ge oY

k) — 5.0 Ak (k)
oWy dzl IW oW}

should be sufficiently large before we get a satisfactory NN

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning

27 /51

Outline

(3 Neuron Design
o Cost Function & Output Neurons

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 28 /51

Negative Log Likelihood and Cross Entropy

o The cost function of most NNs:

logP(X|®) = in}" —logP(y® [x1)
arg max ogP(X|0) argménzi: ogP(y" |x\,0)

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 29 /51

Negative Log Likelihood and Cross Entropy

o The cost function of most NNs:

logP(X|®) = in}" —logP(y® [x1)
arg max ogP(X|0) argménzi: ogP(y" |x\,0)

o For NNs that output an entire distribution P(y|x), the problem can be
equivalently described as minimizing the cross entropy (or KL
divergence) from P to the empirical distribution of data:

arg mgn _E(x,y)~Empirical(X) [log Is(y | X)]

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 29 /51

Negative Log Likelihood and Cross Entropy

o The cost function of most NNs:

logP(X|®) = in}" —logP(y® [x1)
arg max ogP(X|0) argménzi: ogP(y" |x\,0)

o For NNs that output an entire distribution P(y|x), the problem can be
equivalently described as minimizing the cross entropy (or KL
divergence) from P to the empirical distribution of data:

arg mgn _E(x,y)~Empirical(X) [log Is(y | X)]

o Provides a consistent way to define output units

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 29 /51

Sigmoid Units for Bernoulli Output Distributions

o In binary classification, we assuming P(y = 1 |x) ~ Bernoulli(p)
o ye{0,1} and p €(0,1)

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 30/51

Sigmoid Units for Bernoulli Output Distributions

o In binary classification, we assuming P(y = 1 |x) ~ Bernoulli(p)
o ye{0,1} and p €(0,1)
o Sigmoid output unit:

b_p=o()= exp(zX))

4 __exp(e™)
exp(z) +1

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 30/51

Sigmoid Units for Bernoulli Output Distributions

o In binary classification, we assuming P(y = 1 |x) ~ Bernoulli(p)
o ye{0,1} and p €(0,1)
o Sigmoid output unit:

(L)
(L) _ a0y SXPET)
a p G(Z) eXp(Z(L))+1

e —logP(y™ |x(); n n
0 8(1) = G = SRl — (1 — 2y ((1 - 252

o Close to 0 only when y® =1 and z(I) is large positive;

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning

30/51

Sigmoid Units for Bernoulli Output Distributions

o In binary classification, we assuming P(y = 1 |x) ~ Bernoulli(p)
o ye{0,1} and p €(0,1)
o Sigmoid output unit:

(L)
(L) _ a0y SXPET)
a p G(Z) eXp(Z(L))+1

e —logP(y™ |x(); n n
0 8(1) = G = SRl — (1 — 2y ((1 - 252

o Close to 0 only when y® =1 and z(X) is large positive; or y) =0 and
Z1) is small negative

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 30/51

Sigmoid Units for Bernoulli Output Distributions

o In binary classification, we assuming P(y = 1 |x) ~ Bernoulli(p)
o ye{0,1} and p €(0,1)
o Sigmoid output unit:

(L)
(L) _ a0y SXPET)
a p G(Z) eXp(Z(L))+1

e —logP(y™ |x(); n n
0 8(1) = G = SRl — (1 — 2y ((1 - 252

o Close to 0 only when y® =1 and z(X) is large positive; or y) =0 and
Z1) is small negative

o The loss ¢ saturates (becomes flat) only when p is “correct”

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 30/51

Softmax Units for Categorical Output
Distributions |

o In multiclass classification, we can assume that
P(y|x) ~ Categorical(p), where y,p € RK and 1"p =1

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 31/51

Softmax Units for Categorical Output
Distributions |

o In multiclass classification, we can assume that
P(y|x) ~ Categorical(p), where y,p € RK and 1"p =1
o Softmax units:

exp(z)”)
K exp(z)

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning

31/51

Softmax Units for Categorical Output
Distributions |
o In multiclass classification, we can assume that
P(y|x) ~ Categorical(p), where y,p € RK and 1"p =1
o Softmax units:

exp(z)”)

(L))

a(L) =
J
i=1 eXP(Zi

p; = sofmax(z(V); =

o Actually, to define a Categorical distribution, we only need
P, Px—1 (Px =1 —Z{i’llpi can be discarded)

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning

31/51

Softmax Units for Categorical Output
Distributions |

o In multiclass classification, we can assume that
P(y|x) ~ Categorical(p), where y,p € RK and 1"p =1
o Softmax units:

(L) exp(z”)
a;’ =pj= sofmax (z*))j = — - / @)
Yii1exp(z)

J
o Actually, to define a Categorical distribution, we only need
P, Pr—1 (px = 1= XX p; can be discarded)
o We can alternatively define K — 1 output units (discarding
ay) = px = 1);
L
L) _ A _ CXP(Z}))
G =PTSko D)

that is a direct generalization of ¢ in binary classification

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning

31/51

Softmax Units for Categorical Output
Distributions |
o In multiclass classification, we can assume that
P(y|x) ~ Categorical(p), where y,p € RK and 1"p =1
o Softmax units:

(L) exp(z”)
a;’ =pj= sofmax (z*))j = — - / @)
Yii1exp(z)

J
o Actually, to define a Categorical distribution, we only need
P, Px—1 (Px =1 —Z{i’llpi can be discarded)
o We can alternatively define K — 1 output units (discarding
L) A
ay) = px = 1);
L
(L) A CXP(Z}))
4 =PI Sk D)
that is a direct generalization of ¢ in binary classification
o In practice, the two versions make little difference

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning

31/51

Softmax Units for Categorical Output
Distributions Il

o Now we have

5 () =)
s _ Il _d —logP(y(”) ‘x(”);@) B d —log (HiPi YRy)
J a Z](L) aZJ(L) aZ](L)

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 32/51

Softmax Units for Categorical Output
Distributions Il

o Now we have

5 () =)
s _ Il _d —logP(y(”) ‘x(”);@) B d —log (HiPi YRy)
J a Z](L) aZJ(L) aZ](L)

o L) ologp o\ A
o If y =, then 5] =— 82?)’—*,5% (Pj*PjZ)—Pj*l

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 32/51

Softmax Units for Categorical Output
Distributions Il

o Now we have

5 () =)
s _ Il _d —logP(y(”) ‘x(”);@) B d —log (HiPi YRy)
J a Z](L) aZJ(L) aZ](L)

(n) _ (L)_ialogﬁ-_ii A A2\ oA
o |fy”) =], then 5] = az;L)J ==5 Pi—Pj) =P 1
° 8]@ is close to 0 only when p; is “correct”

(L) (L)

o In this case, zj dominates among all z;7's

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 32/51

Softmax Units for Categorical Output
Distributions Il

o Now we have

N Al((n); 7(’1):i)
s — dc™ 9 —logP(y™ |x);@) d —log <| Lo)
) =

aZ](L) - aZJ(L) - aZ](L)

(n) _ (L)_ialogﬁ-_ii A A2\ oA
o |fy”) =], then 5] = az;L)J ==5 Pi—Pj) =P 1
° 8]@ is close to 0 only when p; is “correct”

o In this case, zj(L) dominates among all z(L)

o If yW =i, then Sj(L) = —% = —é (—pip;) = P
7

's

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 32/51

Softmax Units for Categorical Output
Distributions Il

o Now we have

N Al((’l);7("):l~)
s — dc™ 9 —logP(y™ |x";@) d —log <| Lo)
j - =

aZ](L) aZJ(L) - aZ](L)

o L) ologp o\ A
o If y =, then 5] =— a:(i)’—*ﬁ% (Pj*PjZ)—Pj*l

° 8]@ is close to 0 only when p; is “correct”

o In this case, zj(L) dominates among all zSL)'s

o If Y =i then &) = — 2080 — — L (—pipy) = py
J

o Again, close to 0 only when p; is “correct”

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 32/51

Linear Units for Gaussian Means

o An NN can also output just one conditional statistic of y given x

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 33 /51

Linear Units for Gaussian Means

o An NN can also output just one conditional statistic of y given x

o For example, we can assume P(y|x) ~ .4 (u,X) for regression

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 33 /51

Linear Units for Gaussian Means
o An NN can also output just one conditional statistic of y given x

o For example, we can assume P(y|x) ~ .4 (u,X) for regression

o How to design output neurons if we want to predict the mean 1?7

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 33 /51

Linear Units for Gaussian Means

o An NN can also output just one conditional statistic of y given x

©

For example, we can assume P(y|x) ~ .4 (u,X) for regression

©

How to design output neurons if we want to predict the mean f17

o Linear units:
L)

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 33 /51

Linear Units for Gaussian Means

o An NN can also output just one conditional statistic of y given x

©

For example, we can assume P(y|x) ~ .4 (u,X) for regression

©

How to design output neurons if we want to predict the mean f17
o Linear units:
al) =p =70
o We have
w dc _d —log A (y; f1,X)
dz\D) dz(L)

o Let ¥ =1, maximizing the log-likelihood is equivalent to minimizing
the SSE/MSE

o 8 = 9|y —z(D)|12/9z(L) (see linear regression)

0

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 33 /51

Linear Units for Gaussian Means

o An NN can also output just one conditional statistic of y given x
o For example, we can assume P(y|x) ~ .4 (u,X) for regression
o How to design output neurons if we want to predict the mean 1?7
o Linear units:
all) = fL =z

o We have
w dc _d —log A (y; f1,X)

dz\L) 0z(L)

o Let ¥ =1, maximizing the log-likelihood is equivalent to minimizing
the SSE/MSE

o 8 = 9|y —z(D)|12/9z(L) (see linear regression)

o Linear units do not saturate, so they pose little difficulty for gradient
based optimization

0

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 33/51

Outline

(3 Neuron Design

o Hidden Neurons

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 34 /51

Design Considerations

o Most units differ from each other only in activation functions:

a® = act(zW) = act(WH Tg*=1)

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 35/51

Design Considerations

o Most units differ from each other only in activation functions:
a® = act(zW) = act(WH Tg*=1)

o Why use RelLU as default hidden units?
o act(z¥)) = max(0,z%))

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning

35/51

Design Considerations

o Most units differ from each other only in activation functions:
a® = act(zW) = act(WH Tg*=1)

o Why use RelLU as default hidden units?
o act(z¥)) = max(0,z%))

o Why not, for example, use Sigmoid as hidden units?

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning

35/51

Vanishing Gradient Problem

o In backward pass of Backprop:

(Z‘S (kt1) k+1) act'(](k)>

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 36 /51

Vanishing Gradient Problem

o In backward pass of Backprop:

o Ifact'(-) = 0'(+) < 1, then Bj(k) becomes
smaller and smaller during backward pass

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 36 /51

Vanishing Gradient Problem

o In backward pass of Backprop:

o Ifact'(-) = 0'(+) < 1, then Bj(k) becomes
smaller and smaller during backward pass

o The surface of cost function becomes very
flat at shallow layers

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 36 /51

Vanishing Gradient Problem

o In backward pass of Backprop:

o Ifact'(-) = 0'(+) < 1, then Bj(k) becomes
smaller and smaller during backward pass

o The surface of cost function becomes very
flat at shallow layers

o Slows down the learning speed of entire
network N o~

o Weights at deeper layers depend on those I - T
in shallow ones

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 36 /51

Vanishing Gradient Problem

o In backward pass of Backprop:

o Ifact'(-) = 0'(+) < 1, then Bj(k) becomes
smaller and smaller during backward pass

o The surface of cost function becomes very
flat at shallow layers

o Slows down the learning speed of entire
network N /o~

o Weights at deeper layers depend on those I - T
in shallow ones

o Numeric problems, e.g., underflow

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 36 /51

RelLU I

1, ifz®¥>0
otherwise

1
ReLU

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 37/51

RelLU I

a
—y
Lo 2 if 70
I (k) _ 1, Ifz
i act(z™) {0, otherwise
ReILU

o No vanishing gradients

(Z‘S (k+1) k+1) act'(](k))

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 37/51

RelLU I

if z(0)
| iy) L ifZ9 >0
i act(z™) { 0, otherwise

ReLU

o No vanishing gradients

(Z‘S (k+1) k+1) act'(](k))

o What if z® = 0?

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 37/51

RelLU I

10 (k) 1, ifz
act(z™) {0, otherwise

o No vanishing gradients
o What if z¥) = 07

o In practice, we usually assign 1 or 0 randomly
o Floating points are not precise anyway

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 37/51

ReLU Il

o Why piecewise linear?

o To avoid vanishing gradient, we can modify 6(-) to make it steeper at
middle such that ¢’(-) > 1

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 38 /51

ReLU Il

o Why piecewise linear?
o To avoid vanishing gradient, we can modify ¢(-) to make it steeper at
middle such that ¢’(-) > 1

o The second derivative ReLU" () is 0 everywhere

o Eliminates the second-order effects and makes the gradient-based
optimization more useful (than, e.g., Newton methods)

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 38 /51

ReLU Il

o Why piecewise linear?

o To avoid vanishing gradient, we can modify ¢(-) to make it steeper at
middle such that ¢’(-) > 1

o The second derivative ReLU" () is 0 everywhere
o Eliminates the second-order effects and makes the gradient-based
optimization more useful (than, e.g., Newton methods)

®)

o Problem: for neurons with 5j(k) =0, theirs weights W will not be
updated

9c 50 97\
ow® — gw®
ij ij

o Improvement?

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 38 /51

Leaky/Parametric ReLU

. act(z¥)) = max (o -z z(0),

for some x € R

1
|
ReLU Leaky ReLU/PReLU

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 39/51

Leaky/Parametric ReLU

for some x € R

1
|
ReLU Leaky ReLU/PReLU

o Leaky ReLU: a is set in advance (fixed during training)

o Usually a small value
o Or domain-specific

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 39/51

Leaky/Parametric ReLU

. act(z¥)) = max (o -z z(0),

for some x € R

1
|
ReLU Leaky ReLU/PReLU

o Leaky RelLU: a is set in advance (fixed during training)
o Usually a small value
o Or domain-specific

o Example: absolute value rectification o0 = —1

o Used for object recognition from images
o Seek features that are invariant under a polarity reversal of the input
illumination

o Parametric ReLU (PReLU): o learned automatically by gradient
descent

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 39/51

Maxout Units |

o Maxout units generalize ReLU variants further:
act(z®); = maxz;
)

k—1

o al

) is linearly mapped to multiple groups of zj(f)'s

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 40 /51

Maxout Units |

o Maxout units generalize ReLU variants further:

act(z®); = maxz;
s

o a*= 1 is linearly mapped to multiple groups of zj(f)'s

o Learns a piecewise linear, convex activation function automatically
o Covers both leaky ReLU and PReLU

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 40 /51

Maxout Units Il

o How to train an NN with maxout units?

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 41 /51

Maxout Units Il

o How to train an NN with maxout units?

o Given a training example
(x,y() update the weights

that corresponds to the winning

(k)

Zjy's for this example

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 41 /51

Maxout Units Il

o How to train an NN with maxout units?

o Given a training example
(x,y() update the weights

that corresponds to the winning

(k)
Zj,s

o Different examples may update
different parts of the network

's for this example

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 41 /51

Maxout Units Il

o How to train an NN with maxout units?

o Given a training example
(x,y() update the weights

that corresponds to the winning

(k)
Zj,s

o Different examples may update
different parts of the network

's for this example

o Offers some “redundancy” that helps to resist the catastrophic
forgetting phenomenon [2]

o An NN may forget how to perform tasks that they were trained on in
the past

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 41 /51

Maxout Units Il

o Cons?

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 42 /51

Maxout Units Il

o Cons?

o Each maxout unit is now parametrized by multiple weight vectors
instead of just one

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 42 /51

Maxout Units Il

o Cons?

o Each maxout unit is now parametrized by multiple weight vectors
instead of just one

©

Typically requires more training data

o Otherwise, regularization is needed

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 42 /51

Outline

(@ Architecture Design
o Architecture Tuning

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 43 /51

Architecture Design

o Thin-and-deep or fat-and-shallow?

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 44 /51

Architecture Design

o Thin-and-deep or fat-and-shallow?

Theorem (Universal Approximation Theorem [4, 5])

A feedforward network with at least one hidden layer can approximate any
continuous function (on a closed and bounded subset of R”) or any
function mapping from a finite dimensional discrete space to another.

o In short, a feedforward network with a single layer is sufficient to
represent any function

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 44 /51

Architecture Design

o Thin-and-deep or fat-and-shallow?

Theorem (Universal Approximation Theorem [4, 5])

A feedforward network with at least one hidden layer can approximate any
continuous function (on a closed and bounded subset of R”) or any
function mapping from a finite dimensional discrete space to another.

o In short, a feedforward network with a single layer is sufficient to
represent any function

o Why going deep?

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 44 /51

Exponential Gain in Number of Hidden Units

o Functions representable with a deep rectifier NN require an
exponential number of hidden units in a shallow NN [6]

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 45 /51

Exponential Gain in Number of Hidden Units

o Functions representable with a deep rectifier NN require an
exponential number of hidden units in a shallow NN [6]

o Example: an NN with absolute value rectification units

&>

o Each hidden unit specifies where to fold the input space in order to
create mirror responses (on both sides of the absolute value)

o By composing these folding operations, we obtain an exponentially
large number of piecewise linear regions which can capture all kinds of
regular (e.g., repeating) patterns

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 45 /51

Deep ReLU Networks

o Activation-constant regions vs. output values [3]

Input dim 1

Jndno uoRduNd

Input dim 2

Figure 2: Function defined by a ReLU network of depth 5 and width 8 at initialization. Left: Partition

of the input space into regions, on each of which the activation pattern of neurons is constant. Right:
the function computed by the network, which is linear on each activation region.

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 46 /51

Architecture as Prior Knowledge

o Choosing a deep model also encodes a very general belief that the
function we want to learn should involve composition of several
simpler functions

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 47 /51

Architecture as Prior Knowledge
o Choosing a deep model also encodes a very general belief that the
function we want to learn should involve composition of several
simpler functions
o If valid, deep NNs give better generalizability

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 47 /51

Architecture as Prior Knowledge

o Choosing a deep model also encodes a very general belief that the
function we want to learn should involve composition of several
simpler functions

o If valid, deep NNs give better generalizability

o When is the assumption valid?

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 47 /51

Architecture as Prior Knowledge
o Choosing a deep model also encodes a very general belief that the
function we want to learn should involve composition of several
simpler functions
o If valid, deep NNs give better generalizability
o When is the assumption valid? E.g., image recognition, natural

language processing, etc.
Output
(object identity)

3rd hidden layer
(object parts)

2nd hidden layer
(corners and
contours)

Ist hidden layer
(edges)

Visible layer
(input pixels)

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning

47 /51

Outline

(@ Architecture Design
o Architecture Tuning

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 48 /51

Hyperparameters

o Width & depth

o Can be determined via cross
validation

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 49 /51

Hyperparameters

o Width & depth

o Can be determined via cross
validation

o Types of neurons & their wiring
o Usually model a
domain-specific prior
o Validated via ablation study

A
e

ol

,.m«',.m‘«';

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 49 /51

Hyperparameters

o Width & depth

o Can be determined via cross
validation

o Types of neurons & their wiring
o Usually model a
domain-specific prior
o Validated via ablation study
o Auto ML

o The process of automating
the above

"y
S
R R
i

AR
,.m«v,.«»‘«';

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 49 /51

Reference |

[1] Léon Bottou.
Large-scale machine learning with stochastic gradient descent.
In Proceedings of COMPSTAT 2010, pages 177-186. Springer, 2010.

[2] lan J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua
Bengio.
An empirical investigation of catastrophic forgetting in gradient-based
neural networks.
arXiv preprint arXiv:1312.6211, 2013.

[3] Boris Hanin and David Rolnick.
Deep relu networks have surprisingly few activation patterns.
Advances in neural information processing systems, 32, 20109.

[4] Kurt Hornik, Maxwell Stinchcombe, and Halbert White.
Multilayer feedforward networks are universal approximators.
Neural networks, 2(5):359-366, 1989.

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 50 /51

Reference |l

[5] Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken.
Multilayer feedforward networks with a nonpolynomial activation
function can approximate any function.

Neural networks, 6(6):861-867, 1993.

[6] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua
Bengio.
On the number of linear regions of deep neural networks.
In Advances in neural information processing systems, pages
2924-2932, 2014.

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 51 /51

	The Basics
	Example: Learning the XOR

	Training
	Back Propagation

	Neuron Design
	Cost Function & Output Neurons
	Hidden Neurons

	Architecture Design
	Architecture Tuning

