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Model: a Composite Function I
A feedforward neural networks, or multilayer perceptron, defines
a function composition

ŷ = f (L)(· · · f (2)(f (1)(x;θ
(1));θ

(2));θ
(L))

that approximates the target function f ∗

Parameters θ (1), · · · ,θ (L) learned from training set X
“Feedforward” because information flows from input to output
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Model: a Composite Function II
At each layer k, the function f (k)( · ;W(k),b(k)) is nonlinear and
outputs value a(k) ∈ RD(k)

, where

a(k) = act(k)(W(k)⊤a(k−1)+b(k))

act(i)(·) : R→ R is an activation function applied elementwisely

Shorthand: a(k) = act(k)(W(k)⊤a(k−1))

a(k−1) ∈ RD(k−1)+1, a(k−1)
0 = 1, and W(k) ∈ R(D(k−1)+1)×D(k)
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Neurons I

Each f (k)j = act(k)(W(k)⊤
:,j a(k−1)) =

act(k)(z(k)j ) is a unit (or neuron)

E.g., the perceptron
Loosely guided by neuroscience
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Neurons II
Modern NN design is mainly guided by mathematical and engineering
disciplines. Consider a binary classifier where y ∈ {0,1}:

Hidden units: a(k) = max(0,z(k))
Output unit: a(L) = ρ̂ = σ(z(L)),
assuming Pr(y = 1 |x)∼ Bernoulli(ρ)

Prediction:
ŷ = 1(ρ̂; ρ̂ > 0.5) = 1(z(L);z(L) > 0)
A logistic regressor with input a(L−1)
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Representation Learning

The outputs a(1), a(2), · · · , a(L−1) of
hidden layers f (1), f (2), · · · , f (L−1) are
distributed representation of x

Nonlinear to input space since f (k)’s
are nonlinear

Usually more abstract at a deeper
layer

f (L) is the actual prediction function
Like in non-linear SVM/polynomial
regression, a simple linear function
suffices:

z(L) = W(L)a(L−1)

act(L)(·) just “normalizes” z(L) to give
ρ̂ ∈ (0,1)
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Learning the XOR I

Why ReLUs learn nonlinear (and
better) representation?

Let’s learn XOR (f ∗) in a binary
classification task

x ∈ R2 and y ∈ {0,1}
Nonlinear, so cannot be learned by
linear models

Consider an NN with 1 hidden layer:
a(1) = max(0,W(1)⊤x)
a(2) = ρ̂ = σ(w(2)⊤a(1))
Prediction: 1(ρ̂; ρ̂ > 0.5)

Learns XOR by “merging” data points
first
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Learning the XOR II

X =


1 0 0
1 0 1
1 1 0
1 1 1

 ∈ RN×(1+D), W(1) =

 1 1
1 1
0 −1

, w(2) =

 −1
2
−4



ŷ =


0
1
1
0

= 1(σ([ 1 max(0,XW(1)) ]w(2))> 0.5)
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Latent Representation A(1)

XW(1) =


1 0 0
1 0 1
1 1 0
1 1 1


 0 −1

1 1
1 1

=


0 −1
1 0
1 0
2 1



A(1) = [ 1 max(0,XW(1)) ] =


1 0 0
1 1 0
1 1 0
1 2 1


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Output Distribution a(2)

a(2) = σ(A(1)w(2)) = σ




1 0 0
1 1 0
1 1 0
1 2 1


 −1

2
−4


= σ



−1
1
1
−1




ŷ = 1(a(2) > 0.5) =


0
1
1
0



But how to train W(1) and w(2) from examples?
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Training an NN

Given examples: X= {(x(i),y(i))}N
i=1

How to learn parameters Θ = {W(1), · · · , W(L)}?

Most NNs are trained using the maximum likelihood by default
(assuming i.i.d examples):

argmaxΘ logP(X |Θ)
= argminΘ− logP(X |Θ)

= argminΘ ∑i− logP(x(i),y(i) |Θ)

= argminΘ ∑i[− logP(y(i) |x(i),Θ)− logP(x(i) |Θ)]

= argminΘ ∑i−logP(y(i) |x(i),Θ)

= argminΘ ∑i C(i)(Θ)

The minimizer Θ̂ is an unbiased estimator of “true” Θ∗

Good for large N
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Example: Binary Classification

Pr(y = 1 |x)∼ Bernoulli(ρ), where x ∈ RD and y ∈ {0,1}
a(L) = ρ̂ = σ(z(L)) the predicted distribution

The cost function C(i)(Θ) can be
written as:

C(i)(Θ)

=− logP(y(i) |x(i);Θ)

=− log[(a(L))y(i)(1−a(L))1−y(i) ]

=− log[σ(z(L))y(i)(1−σ(z(L)))1−y(i) ]

=− log[σ((2y(i)−1)z(L))]
= ζ ((1−2y(i))z(L))

ζ (·) is the softplus function
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Optimization Algorithm

Most NNs use SGD to solve the problem argminΘ ∑i C(i)(Θ)

Fast convergence in time [1]
Supports (GPU-based) parallelism
Supports online learning
Easy to implement

(Mini-Batched) Stochastic Gradient Descent (SGD)

Initialize Θ(0) randomly;
Repeat until convergence {

Randomly partition the training set X into minibatches of size M;
Θ(t+1)←Θ(t)−η∇Θ ∑

M
i=1 C(i)(Θ(t));

}

How to compute ∇Θ ∑i C(i)(Θ(t)) efficiently?
There could be a huge number of W(k)

i,j ’s in Θ
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Back Propagation

Θ
(t+1)←Θ

(t)−η∇Θ

M

∑
n=1

C(n)(Θ(t))

We have ∇Θ ∑n C(n)(Θ(t)) = ∑n ∇ΘC(n)(Θ(t))

Let c(n) = C(n)(Θ(t)), our goal is to evaluate

∂c(n)

∂W(k)
i,j

for all i, j, k, and n
Back propagation (or simply backprop) is an efficient way to
evaluate multiple partial derivatives at once

Assuming the partial derivatives share some common evaluation steps
By the chain rule, we have

∂c(n)

∂W(k)
i,j

=
∂c(n)

∂ z(k)j

·
∂ z(k)j

∂W(k)
i,j
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Forward Pass

The second term:
∂ z(k)j

∂W(k)
i,j

When k = 1, we have z(1)j = ∑i W(1)
i,j x(n)i and

∂ z(1)j

∂W(1)
i,j

= x(n)i

Otherwise (k > 1), we have z(k)j = ∑i W(k)
i,j a(k−1)

i and

∂ z(k)j

∂W(k)
i,j

= a(k−1)
i

We can get the second terms of all ∂c(n)

∂W(k)
i,j

’s starting from the most

shallow layer
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Backward Pass I

Conversely, we can get the first terms of ∂c(n)

∂W(k)
i,j

= ∂c(n)

∂ z(k)j

· ∂ z(k)j

∂W(k)
i,j

starting

from the deepest layer

Define error signal δ
(k)
j = ∂c(n)

∂ z(k)j

When k = L, the evaluation varies from task to task
Depending on the definition of functions act(L) and C(n)

E.g., in binary classification, we have:

δ
(L) =

∂c(n)

∂ z(L)
=

∂ζ ((1−2y(n))z(L))
∂ z(L)

= σ((1−2y(n))z(L)) · (1−2y(n))
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Backward Pass II
When k < L, we have

δ
(k)
j = ∂c(n)

∂ z(k)j

= ∂c(n)

∂a(k)j

· ∂a(k)j

∂ z(k)j

= ∂c(n)

∂a(k)j

· act′(z(k)j )

=

(
∑s

∂c(n)

∂ z(k+1)
s
· ∂ z(k+1)

s

∂a(k)j

)
act′(z(k)j )

=

(
∑s δ

(k+1)
s · ∂ ∑i W(k+1)

i,s a(k)i

∂a(k)j

)
act′(z(k)j )

=
(

∑s δ
(k+1)
s ·W(k+1)

j,s

)
act′(z(k)j )

Theorem (Chain Rule)

Let g : R→ Rd and f : Rd→ R, then f

(f ◦g)′(x) = f ′(g(x))g′(x) = ∇f (g(x))⊤

 g′1(x)
...

g′d(x)

 .
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Backward Pass III

δ
(k)
j =

(
∑

s
δ
(k+1)
s ·W(k+1)

j,s

)
act′(z(k)j )

We can evaluate all δ
(k)
j ’s starting from the deepest layer

The information propagate along a new kind of feedforward network:
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Backprop Algorithm (Minibatch Size M = 1)

Input: (x(n),y(n)) and Θ(t)

Forward pass:
a(0)←

[
1 x(n)

]⊤
;

for k← 1 to L do
z(k)←W(k)⊤a(k−1) ;
a(k)← act(z(k)) ;

end
Backward pass:
Compute error signal δ

(L) (e.g., (1−2y(n))σ((1−2y(n))z(L)) in
binary classification)

for k← L−1 to 1 do
δ
(k)← act′(z(k))⊙ (W(k+1)

δ
(k+1)) ;

end
Return ∂c(n)

∂W(k) = a(k−1)⊗δ
(k) for all k
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Backprop Algorithm (Minibatch Size M > 1)

Input: {(x(n),y(n))}M
n=1 and Θ(t)

Forward pass:
A(0)←

[
a(0,1) · · · a(0,M)

]⊤
;

for k← 1 to L do
Z(k)← A(k−1)W(k) ;
A(k)← act(Z(k)) ;

end
Backward pass:
Compute error signals

∆(L) =
[

δ
(L,0) · · · δ

(L,M)
]⊤

for k← L−1 to 1 do
∆
(k)← act′(Z(k))⊙ (∆(k+1)W(k+1)⊤) ;

end
Return ∂c(n)

∂W(k) = ∑
M
n=1 a(k−1,n)⊗δ

(k,n) for all
k

Speed up with
GPUs?
Large width (D(k))
at each layer
Large batch size
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Neuron Design

The design of modern neurons is largely influenced by how an NN is
trained

Maximum likelihood principle:

argmax
Θ

logP(X |Θ) = argmin
Θ

∑
i
− logP(y(i) |x(i),Θ)

Universal cost function
Different output units for different P(y |x)

Gradient-based optimization:
During SGD, the gradient

∂c(n)

∂W(k)
i,j

=
∂c(n)

∂ z(k)j

·
∂ z(k)j

∂W(k)
i,j

= δ
(k)
j

∂ z(k)j

∂W(k)
i,j

should be sufficiently large before we get a satisfactory NN
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Negative Log Likelihood and Cross Entropy

The cost function of most NNs:

argmax
Θ

logP(X |Θ) = argmin
Θ

∑
i
− logP(y(i) |x(i),Θ)

For NNs that output an entire distribution P̂(y |x), the problem can be
equivalently described as minimizing the cross entropy (or KL
divergence) from P̂ to the empirical distribution of data:

argmin
P̂
−E(x,y)∼Empirical(X)

[
log P̂(y |x)

]
Provides a consistent way to define output units
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Sigmoid Units for Bernoulli Output Distributions

In binary classification, we assuming P(y = 1 |x)∼ Bernoulli(ρ)
y ∈ {0,1} and ρ ∈ (0,1)

Sigmoid output unit:

a(L) = ρ̂ = σ(z(L)) =
exp(z(L))

exp(z(L))+1

δ (L) = ∂c(n)

∂ z(L)
= ∂−log P̂(y(n) |x(n);Θ)

∂ z(L)
= (1−2y(n))σ((1−2y(n))z(L))

Close to 0 only when y(n) = 1 and z(L) is large positive; or y(n) = 0 and
z(L) is small negative

The loss c(n) saturates (becomes flat) only when ρ̂ is “correct”
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Softmax Units for Categorical Output
Distributions I

In multiclass classification, we can assume that
P(y |x)∼ Categorical(ρ), where y,ρ ∈ RK and 1⊤ρ = 1

Softmax units:

a(L)j = ρ̂j = sofmax(z(L))j =
exp(z(L)j )

∑
K
i=1 exp(z(L)i )

Actually, to define a Categorical distribution, we only need
ρ1, · · · ,ρK−1 (ρK = 1−∑

K−1
i=1 ρi can be discarded)

We can alternatively define K−1 output units (discarding
a(L)K = ρ̂K = 1):

a(L)j = ρ̂j =
exp(z(L)j )

∑
K−1
i=1 exp(z(L)i )+1

that is a direct generalization of σ in binary classification
In practice, the two versions make little difference
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Softmax Units for Categorical Output
Distributions II

Now we have

δ
(L)
j =

∂c(n)

∂ z(L)j

=
∂ − log P̂(y(n) |x(n);Θ)

∂ z(L)j

=
∂ − log

(
∏i ρ̂

1(y(n);y(n)=i)
i

)
∂ z(L)j

If y(n) = j, then δ
(L)
j =− ∂ log ρ̂j

∂ z(L)j

=− 1
ρ̂j

(
ρ̂j− ρ̂2

j

)
= ρ̂j−1

δ
(L)
j is close to 0 only when ρ̂j is “correct”

In this case, z(L)j dominates among all z(L)i ’s

If y(n) = i ̸= j, then δ
(L)
j =− ∂ log ρ̂i

∂ z(L)j

=− 1
ρ̂i
(−ρ̂iρ̂j) = ρ̂j

Again, close to 0 only when ρ̂j is “correct”
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Linear Units for Gaussian Means

An NN can also output just one conditional statistic of y given x

For example, we can assume P(y |x)∼N (µ,Σ) for regression
How to design output neurons if we want to predict the mean µ̂?
Linear units:

a(L) = µ̂ = z(L)

We have

δ
(L) =

∂c(n)

∂ z(L)
=

∂ − logN (y(n); µ̂,Σ)

∂ z(L)

Let Σ = I, maximizing the log-likelihood is equivalent to minimizing
the SSE/MSE

δ
(L) = ∂∥y(n)− z(L)∥2/∂ z(L) (see linear regression)

Linear units do not saturate, so they pose little difficulty for gradient
based optimization
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Design Considerations

Most units differ from each other only in activation functions:

a(k) = act(z(k)) = act(W(k)⊤a(k−1))

Why use ReLU as default hidden units?
act(z(k)) = max(0,z(k))

Why not, for example, use Sigmoid as hidden units?
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Vanishing Gradient Problem

In backward pass of Backprop:

δ
(k)
j =

(
∑

s
δ
(k+1)
s ·W(k+1)

j,s

)
act′(z(k)j )

If act′(·) = σ ′(·)< 1, then δ
(k)
j becomes

smaller and smaller during backward pass
The surface of cost function becomes very
flat at shallow layers
Slows down the learning speed of entire
network

Weights at deeper layers depend on those
in shallow ones

Numeric problems, e.g., underflow
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(k)
j becomes

smaller and smaller during backward pass
The surface of cost function becomes very
flat at shallow layers
Slows down the learning speed of entire
network

Weights at deeper layers depend on those
in shallow ones

Numeric problems, e.g., underflow
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ReLU I

act′(z(k)) =
{

1, if z(k) > 0
0, otherwise

No vanishing gradients

δ
(k)
j =

(
∑

s
δ
(k+1)
s ·W(k+1)

j,s

)
act′(z(k)j )

What if z(k) = 0?
In practice, we usually assign 1 or 0 randomly

Floating points are not precise anyway
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ReLU II
Why piecewise linear?

To avoid vanishing gradient, we can modify σ(·) to make it steeper at
middle such that σ ′(·)> 1

The second derivative ReLU′′(·) is 0 everywhere
Eliminates the second-order effects and makes the gradient-based
optimization more useful (than, e.g., Newton methods)

Problem: for neurons with δ
(k)
j = 0, theirs weights W(k)

:,j will not be
updated

∂c(n)

∂W(k)
i,j

= δ
(k) ∂ z(k)j

∂W(k)
i,j

Improvement?
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Leaky/Parametric ReLU

act(z(k)) = max(α · z(k),z(k)),

for some α ∈ R

Leaky ReLU: α is set in advance (fixed during training)
Usually a small value
Or domain-specific

Example: absolute value rectification α =−1
Used for object recognition from images
Seek features that are invariant under a polarity reversal of the input
illumination

Parametric ReLU (PReLU): α learned automatically by gradient
descent
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Maxout Units I
Maxout units generalize ReLU variants further:

act(z(k))j = max
s

zj,s

a(k−1) is linearly mapped to multiple groups of z(k)j,: ’s

Learns a piecewise linear, convex activation function automatically
Covers both leaky ReLU and PReLU
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Maxout Units II

How to train an NN with maxout units?

Given a training example
(x(n),y(n)), update the weights
that corresponds to the winning
z(k)j,s ’s for this example
Different examples may update
different parts of the network

Offers some “redundancy” that helps to resist the catastrophic
forgetting phenomenon [2]

An NN may forget how to perform tasks that they were trained on in
the past
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Maxout Units III

Cons?

Each maxout unit is now parametrized by multiple weight vectors
instead of just one
Typically requires more training data
Otherwise, regularization is needed
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Outline

1 The Basics
Example: Learning the XOR

2 Training
Back Propagation

3 Neuron Design
Cost Function & Output Neurons
Hidden Neurons

4 Architecture Design
Architecture Tuning
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Architecture Design

Thin-and-deep or fat-and-shallow?

Theorem (Universal Approximation Theorem [4, 5])

A feedforward network with at least one hidden layer can approximate any
continuous function (on a closed and bounded subset of RD) or any
function mapping from a finite dimensional discrete space to another.

In short, a feedforward network with a single layer is sufficient to
represent any function
Why going deep?
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Exponential Gain in Number of Hidden Units

Functions representable with a deep rectifier NN require an
exponential number of hidden units in a shallow NN [6]

Example: an NN with absolute value rectification units

Each hidden unit specifies where to fold the input space in order to
create mirror responses (on both sides of the absolute value)
By composing these folding operations, we obtain an exponentially
large number of piecewise linear regions which can capture all kinds of
regular (e.g., repeating) patterns
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Deep ReLU Networks

Activation-constant regions vs. output values [3]
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Architecture as Prior Knowledge
Choosing a deep model also encodes a very general belief that the
function we want to learn should involve composition of several
simpler functions

If valid, deep NNs give better generalizability
When is the assumption valid? E.g., image recognition, natural
language processing, etc.
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Hyperparameters

Width & depth
Can be determined via cross
validation

Types of neurons & their wiring
Usually model a
domain-specific prior
Validated via ablation study

Auto ML
The process of automating
the above

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 49 / 51



Hyperparameters

Width & depth
Can be determined via cross
validation

Types of neurons & their wiring
Usually model a
domain-specific prior
Validated via ablation study

Auto ML
The process of automating
the above

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 49 / 51



Hyperparameters

Width & depth
Can be determined via cross
validation

Types of neurons & their wiring
Usually model a
domain-specific prior
Validated via ablation study

Auto ML
The process of automating
the above

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 49 / 51



Reference I

[1] Léon Bottou.
Large-scale machine learning with stochastic gradient descent.
In Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[2] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua
Bengio.
An empirical investigation of catastrophic forgetting in gradient-based
neural networks.
arXiv preprint arXiv:1312.6211, 2013.

[3] Boris Hanin and David Rolnick.
Deep relu networks have surprisingly few activation patterns.
Advances in neural information processing systems, 32, 2019.

[4] Kurt Hornik, Maxwell Stinchcombe, and Halbert White.
Multilayer feedforward networks are universal approximators.
Neural networks, 2(5):359–366, 1989.

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 50 / 51



Reference II

[5] Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken.
Multilayer feedforward networks with a nonpolynomial activation
function can approximate any function.
Neural networks, 6(6):861–867, 1993.

[6] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua
Bengio.
On the number of linear regions of deep neural networks.
In Advances in neural information processing systems, pages
2924–2932, 2014.

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 51 / 51


	The Basics 
	Example: Learning the XOR

	Training
	Back Propagation

	Neuron Design
	Cost Function & Output Neurons
	Hidden Neurons

	Architecture Design
	Architecture Tuning 


