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Model: a Composite Function |

o A feedforward neural networks, or multilayer perceptron, defines
a function composition

F=rC sV s 00).017);00))
that approximates the target function f*
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Model: a Composite Function |
o A feedforward neural networks, or multilayer perceptron, defines
a function composition

$ :f(L)(...fﬂl(f(l)(x;9(1));9&');3(@)

that approximates the target function f*
o Parameters (1) ... 8(@) learned from training set X
o “Feedforward” because information flows from input to output

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer
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Model: a Composite Function Il
o At each layer k, the function f®) (. ;W% p®)) is nonlinear and
outputs value a®) ¢ RD(k), where

o act)(-): R — R is an activation function applied elementwisely
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Model: a Composite Function Il
o At each layer k, the function f®) (. ;W% p®)) is nonlinear and
outputs value a®) ¢ RD(k), where

o act®(.): R — R is an activation function applied elementwisely
o Shorthand: a® = act®(WkTgk-1)
o alk=1) e ROV G 1 and Wit ¢ REOD+1)<0Y

AR
W

Input Layer Hidden Layer 1 Hidden Layer 2 Output Layer
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Neurons |

o Each ];.(k) = act(")(W:(?Ta(k*I)) =

act®) (z](k)) is a unit (or neuron)
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Neurons |

o Each ];.(k) = act(k)(W:(?Ta(k*I)) = %

act® (Z](k)) is a unit (or neuron) ®
a:
J

o E.g., the perceptron

Activation
Function
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Neurons |

o Each ];(k) = act(")(W:(?Ta(kfl)) —
act®) (z](k)) is a unit (or neuron)

o E.g., the perceptron

o Loosely guided by neuroscience Activation
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Neurons |l

o Modern NN design is mainly guided by mathematical and engineering
disciplines. Consider a binary classifier where y € {0, 1}:
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o Modern NN design is mainly guided by mathematical and engineering
disciplines. Consider a binary classifier where y € {0, 1}:

J-th Rectified Linear Unit (ReLU) at

o Hidden units: a®) = max(0,z(0) SR Hidden Layerk .. ,
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Neurons |l

o Modern NN design is mainly guided by mathematical and engineering

disciplines. Consider a binary classifier where y € {0, 1}:
J-th Rectified Linear Unit (ReLU) at

o Hidden units: a®) = max(0,z(0) ey T Hidden Layerk .. ,
. oA o
o Output unit: a'¥) = p = 5 (z\1)), )

assuming Pr(y = 1|x) ~ Bernoulli(p) “

o Prediction: :
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P 1(p:p > 05) = 1) >0) g S
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Neurons |l

o Modern NN design is mainly guided by mathematical and engineering

disciplines. Consider a binary classifier where y € {0, 1}:
J-th Rectified Linear Unit (ReLU) at

o Hidden units: a®) = max(0,z(0) oy T Hidden Layerk .. ,
. oA o
o Output unit: a'¥) = p = 5 (z\1)), )

assuming Pr(y = 1|x) ~ Bernoulli(p)

o Prediction: :
§=1(p;p >0.5) =1z >0) &
o A logistic regressor with input a(t—1)

Activation |
Function 1
'
'

Activation :
Function 1
'
'
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o The outputs aV, a@, ... a1 of
hidden layers f1), £ ... fI=1) are
distributed representation of x

o Nonlinear to input space sincef(k)'s
are nonlinear

o Usually more abstract at a deeper
layer

o £\ is the actual prediction function

o Like in non-linear SVM/polynomial
regression, a simple linear function
suffices:

/D) — g1

o act®) ) just “normalizes” 7z to give

(.
pe01)
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(@ The Basics
o Example: Learning the XOR
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Learning the XOR |
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Learning the XOR |

o Why ReLUs learn nonlinear (and
better) representation?

o Let's learn XOR (f*) in a binary
classification task

o xcR?>and ye{0,1}
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Learning the XOR |

o Why ReLUs learn nonlinear (and
better) representation?
o Let's learn XOR (f*) in a binary
classification task
o xcR?>and ye{0,1}
o Nonlinear, so cannot be learned by
linear models
o Consider an NN with 1 hidden layer:
o aV = max(0, W) x)
° a<2>:p:6( 2)T (1) )
o Prediction: 1(p;p >0.5)
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Learning the XOR |

o Why ReLUs learn nonlinear (and
better) representation?
o Let's learn XOR (f*) in a binary
classification task
o xcR?>and ye{0,1}
o Nonlinear, so cannot be learned by
linear models
o Consider an NN with 1 hidden layer:
o al) :max(O,W DT x)
o Prediction: l(p,p >0.5)
o Learns XOR by “merging” data points
first
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Learning the XOR Il

Original = Space Learned Space
1l 1 o - 1} °
g E
0 [] 1 0 [ 1 1
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i 8 (1) 11 -1
o X — e RVx(14D) w() — | 1 1 w? =1 2
110 ’ o 1| W
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0
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oy=|,|=Uo(1 max(0,XW) Jw?) > 0.5)
0
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Latent Representation AW
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Output Distribution a?

Original = Space

Learned Space
T
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Output Distribution a?

Original = Space Learned Space
1k 1 [ 1} 0
0 (] 1 oL o 1 B

0 1 (I] 1 2
100, -1
oa?=cAw@)=c || 1O 2 | |=0o|] !
Lro||c, 1
1 2 1 —1

o y=1@? >05)=

S = = O

o But how to train W) and w(® from examples?
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Outline

@ Training
o Back Propagation
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Training an NN

o Given examples: X = {(x( y@)}¥
o How to learn parameters ® = {W(l), W(L)}?
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Training an NN

o Given examples: X = {(x( y@)}¥

o How to learn parameters ® = {W(l), W(L)}?

o Most NNs are trained using the maximum likelihood by default
(assuming i.i.d examples):

argmaxe logP(X| @)
= argming —logP(X|®)
= argming ¥, — logP(x(),y() | @)
— argming ;[ logP(y" |, ©) ~ logP(x" | ©)]
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Training an NN

o Given examples: X = {(x( y@)}¥

o How to learn parameters ® = {W(l), W(L)}?

o Most NNs are trained using the maximum likelihood by default
(assuming i.i.d examples):

argmaxe logP(X| @)
= argming — logP(X|©)
= argmineg ¥; —logP(x(), y() | ©)
= argming ¥;[—logP(y") |x() @) — logP(x\) | ®)]
= argming }; —logP(y!") |x() @)
= argming ¥, C')(0©)

o The minimizer ® is an unbiased estimator of “true’ ®*
o Good for large N
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Example: Binary Classification

o Pr(y = 1|x) ~ Bernoulli(p), where x € R” and y € {0,1}
o al) = p = o(zV) the predicted distribution
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Example: Binary Classification

o Pr(y = 1|x) ~ Bernoulli(p), where x € R” and y € {0,1}
o al) = p = o(zV) the predicted distribution

o The cost function C1)(®) can be
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o Pr(y = 1|x) ~ Bernoulli(p), where x € R” and y € {0,1}

o al) = p = o(zV) the predicted distribution
o The cost function C1)(®) can be

written as:
ci)(@)
= —logP(y" |x(); @) 4 _
= —log[(@y"(1-a®)™") %
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Example: Binary Classification

o Pr(y = 1|x) ~ Bernoulli(p), where x € R” and y € {0,1}

o al) = p = o(zV) the predicted distribution

o The cost function C1)(®) can be
written as:
ci)(@)
— —logP(y!"|+";0) - :
= —log[(a® P (1 —a®W)1-"] 2 3
— —log[o (2D (1 — (1)) ") I
= —log[o((2y") — 1)z(1)]
= {((1-2y1")z)

o {(-) is the softplus function
16 /51
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Optimization Algorithm

o Most NNs use SGD to solve the problem argming ¥; C\)(®)

(Mini-Batched) Stochastic Gradient Descent (SGD)

Initialize @) randomly;

Repeat until convergence {
Randomly partition the training set X into minibatches of size M;
e . @0 — nVeY¥, c(@);

}
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Optimization Algorithm

o Most NNs use SGD to solve the problem argming ¥, C'")(®)
Fast convergence in time [1]

Supports (GPU-based) parallelism

Supports online learning

Easy to implement

© 06 0 o

(Mini-Batched) Stochastic Gradient Descent (SGD)

Initialize @) randomly;

Repeat until convergence {
Randomly partition the training set X into minibatches of size M;
et . @0 — nVeY¥, c(@");

}
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Optimization Algorithm

o Most NNs use SGD to solve the problem argming ¥; C\)(®)

o Fast convergence in time [1]

o Supports (GPU-based) parallelism
o Supports online learning

o Easy to implement

(Mini-Batched) Stochastic Gradient Descent (SGD)

Initialize @) randomly;

Repeat until convergence {
Randomly partition the training set X into minibatches of size M;
O+l @ —nVeYX, (@)

}

o How to compute Vg ¥; C)(O1) efficiently?

o There could be a huge number of Wi(_f)’s in ©
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Outline

@ Training
o Back Propagation
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Back Propagation

M
0t e —nvg Z ce)
n=1

o We have Vo ¥, C" (@) =¥, VeC" (@)
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Back Propagation

M
0t e —nvg Z ce)
n=1
o We have Vo ¥, C" (@) =¥, VeC" (@)
o Let ¢ = (@), our goal is to evaluate
et
oW
ll/

forall i, j, k, and n
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Back Propagation

M
0t e —nvg Z ce)
n=1

o We have Vo ¥, C" (@) =¥, VeC" (@)
o Let ¢ = (@), our goal is to evaluate
dc
owh
ll/
forall i, j, k, and n

o Back propagation (or simply backprop) is an efficient way to
evaluate multiple partial derivatives at once
o Assuming the partial derivatives share some common evaluation steps
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Back Propagation

M
0t e —nvg Z ce)
n=1

o We have Vo ¥, C" (@) =¥, VeC" (@)
o Let ¢ = (@), our goal is to evaluate

ocm
(k)
IW;;
forall i, j, k, and n
o Back propagation (or simply backprop) is an efficient way to
evaluate multiple partial derivatives at once
o Assuming the partial derivatives share some common evaluation steps
o By the chain rule, we have
e e 9z

&) — 5.0 Ak
Iw;; dz IWy;

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 19/51



Forward Pass

dz
o The second term: —2__
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Forward Pass
)

0
o The second term: —2__

(k)

i

o When k=1, we have zy(l) =Y, Wi(;)x(") and

Shan-Hung Wu (CS, NTHU)

ow

1

(1)
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L
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Forward Pass

85@
o The second term: %k)
ij

o When k=1, we have z =YW " and

8z(1)

) (n)

(1)

o Otherwise (k> 1), we have z =YW “ and
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Forward Pass

PIY
o The second term: —Zy

ot
o When k=1, we havez =Y, W, x; ™) and

(1)
aZj( ) :x(n)
1 i

o Otherwise (k> 1), we have z =YW “ and

o We can get the second terms of all aC(Fk)) 's starting from the most
oW,

ij

shallow layer
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Backward Pass |

oM

- —L~ starting
®
oW,

: ) n)
o Conversely, we can get the first terms of -2¢ :,() = %
oW, 9z

ij

from the deepest layer
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Backward Pass |

(k)
: (n) ) 9z .
o Conversely, we can get the first terms of -2¢ E‘k) = % - —I starting
aW,‘J aZj 8Ww
from the deepest layer
: : (k) _ gcm
o Define error signal §;" = g
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Backward Pass |

(k)
: (n) () 9
o Conversely, we can get the first terms of -2¢ :‘k) = %
oW, 9z

ij

i
from the deepest layer

o Define error signal (Sj(k) A

o When k = L, the evaluation varies from task to task
o Depending on the definition of functions actX) and ")
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Backward Pass |

(k)
: ) ) 9z
Conversely, we can get the first terms of 2¢ :‘k) = ‘;‘(Z) ge (k starting

ij

©

from the deepest layer

o Define error signal (Sj( ) _ gc(
Z

When k = L, the evaluation varies from task to task
o Depending on the definition of functions actX) and (")

©

o E.g., in binary classification, we have:

S0 _ dclW  9L((1—2y"):™)
0z 97D -

o((1=2y")z")- (1-25")
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Backward Pass Il
o When k < L, we have

(k)

k) e gl dg; det) 1o (k)
5.( = 9¢ R | ¢ -act'(z;

J azy(k) 8a}k> azy(k) aa;k) (] )
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Backward Pass ||

o When k < L, we have

(k)
k) dcln el da; e ,
s — ac Co.—Lo =2 act'(z
J ¢ 8aj(»k> 8z](-k> aa;k) (

_ () kD 10 (k)
- <Zs 3Z§k+l) : 9a® act (Zj )

Theorem (Chain Rule)

Letg:R— R4 and f:R? - R, then f

(fog)'(x) =f'(g(x))g'(x) = Vf(g(x)"

/
8q(%)
V.
NN Design Machine Learning 22 /51
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Backward Pass Il
o When k < L, we have

(k)
dc 3aj 9 1 (k)
2™ 9P~ 9d (z)

o 1n) az(’\+1)
- ng(kﬂ : aa()

wken ®
k+l 92, f
= Zs

s 4 (k)
)

(k)
6}.

k)

= azj

act’( j(k))

Theorem (Chain Rule)
Letg:R— R4 and f:R? - R, then f

(fog)'(x) =f'(g(x))g'(x) = Vf(g(x)"

/
84(%)
V.
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Backward Pass Il
o When k < L, we have

(k)
6}.

Theorem (Chain Rule)

Letg:R— R4 and f:R? - R, then f

(fog)'(x)

i 9cm aa FRO! (k)
A 8C(k 'a (k) ﬁ'aCt/(Zj )
7 J
O (Hl) (k)
= Zs PXt (k+l ' ;a() ac t,(z
9 A+1)
— ZS ]\+l Z[ z.v act[ k
():s (k+1) k+1 ) t,(Zk
g1 (x)
=f'(g(x))g'(x) =Vf(gx) |
8a(x)
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Backward Pass IlI

k k+1 k+1 k
5 = (Zaﬁ ewi )>act’(ZE )

s

*)

o We can evaluate all 51 's starting from the deepest layer
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Backward Pass IlI
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Backward Pass IlI

k k+1 k+1 k
5 = (Zaﬁ ewi )>act’(ZE )

s

*)

o We can evaluate all 51 's starting from the deepest layer

o The information propagate along a new kind of feedforward network:

®
2
5§k+ 1)
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Backprop Algorithm (Minibatch Size M =1)

Input: (x", y®) and @)
Forward pass:
a®[1 x0]"
for k<~ 1 to L do
7K — Wk Tgk=1)
a® — act(z®) ;
end
Backward pass:
Compute error signal 5 (e.g., (1—-2y")o((1—2y")z(1) in
binary classification)
fork<—L—1to1l do
8®  act' (z0) © (WD gDy -
end

Return ;VC;:;) a* D@ 6® for all k
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Backprop Algorithm (Minibatch Size M > 1)

Input: {(x™ y™)}M  and @
Forward pass:

AO [ gOD ... g0 T,
for k<1 toL do

ZH) - A*=D k)

AW act(zW)y ;

end

Backward pass:

Compute error signals

AL = [ sLY . sk
for k< L—1to1ldo

‘ A(k) s act’(Z(k)) ® (A(k-i-l)W(k-‘rl)T) ;
end

Return % = yM a1 @ 55 for all
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Input: {(x™ y™)}M  and @

Forward pass:

AO [ g0 .. g0 T,

for k< 1 toL do

ZH) - A*=D k)

AW act(zW) ; o Speed up with
GPUs?

end
Backward pass:
Compute error signals

AL — { sLO) ... §Lm
fork<L—1tol do

‘ A(k) s act’(Z(k)) ® (A(k-i-l)W(k-‘rl)T) ;
end

Return % = yM a1 @ 55 for all
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Input: {(x™ y™)}M  and @
Forward pass:

AO [ g0 .. g0 T,
for k<1 to L do

ZH) - A*=D k)

AW act(zW) ; o Speed up with
end GPUs?
Backward pass: o Large width (D))
Compute error signals at each layer

AL — [ sLO . s ]’

fork<L—1tol do
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end
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Backprop Algorithm (Minibatch Size M > 1)

Input: {(x™ y™)}M  and @
Forward pass:

AO [ g0 .. g0 T,
for k<1 to L do

ZH) - A*=D k)

AW act(zW) ; o Speed up with
end GPUs?
Backward pass: o Large width (D))
Compute error signals at each layer
AL = { s§LO ... sLM) ! o Large batch size

fork<L—1tol do
‘ A(k) s act’(Z(k)) ® (A(k-i-l)W(k-‘rl)T) ;
end

Return % = yM a1 @ 55 for all
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Outline

(3 Neuron Design
o Cost Function & Output Neurons
o Hidden Neurons
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Neuron Design

o The design of modern neurons is largely influenced by how an NN is
trained
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Neuron Design
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o Maximum likelihood principle:

logP(X|0®) = in}" —1logP(y®|x® ®
argmax ogP(X|0) argmén; ogP(y" |x\", @)

o Universal cost function
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Neuron Design

o The design of modern neurons is largely influenced by how an NN is

trained

o Maximum likelihood principle:

logP(X|0®) = in}" —1logP(y®|x® ®
argmax ogP(X|0) argmén; ogP(y" |x\", @)

o Universal cost function
o Different output units for different P(y|x)

o Gradient-based optimization:
o During SGD, the gradient
de  ge oY

k) — 5.0 Ak (k)
oWy dzl IW oW}

should be sufficiently large before we get a satisfactory NN
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Outline

(3 Neuron Design
o Cost Function & Output Neurons
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Negative Log Likelihood and Cross Entropy

o The cost function of most NNs:

logP(X|®) = in}" —logP(y® [x1)
arg max ogP(X|0) argménzi: ogP(y" |x\,0)
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Negative Log Likelihood and Cross Entropy

o The cost function of most NNs:

logP(X|®) = in}" —logP(y® [x1)
arg max ogP(X|0) argménzi: ogP(y" |x\,0)

o For NNs that output an entire distribution P(y|x), the problem can be
equivalently described as minimizing the cross entropy (or KL
divergence) from P to the empirical distribution of data:

arg mgn _E(x,y)~Empirical(X) [log Is(y | X)]
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Negative Log Likelihood and Cross Entropy

o The cost function of most NNs:

logP(X|®) = in}" —logP(y® [x1)
arg max ogP(X|0) argménzi: ogP(y" |x\,0)

o For NNs that output an entire distribution P(y|x), the problem can be
equivalently described as minimizing the cross entropy (or KL
divergence) from P to the empirical distribution of data:

arg mgn _E(x,y)~Empirical(X) [log Is(y | X)]

o Provides a consistent way to define output units
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Sigmoid Units for Bernoulli Output Distributions

o In binary classification, we assuming P(y = 1 |x) ~ Bernoulli(p)
o ye{0,1} and p €(0,1)
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Sigmoid Units for Bernoulli Output Distributions

o In binary classification, we assuming P(y = 1 |x) ~ Bernoulli(p)
o ye{0,1} and p €(0,1)
o Sigmoid output unit:

b_p=o()= exp(zX))

4 __exp(e™)
exp(z) +1
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Sigmoid Units for Bernoulli Output Distributions

o In binary classification, we assuming P(y = 1 |x) ~ Bernoulli(p)
o ye{0,1} and p €(0,1)
o Sigmoid output unit:

(L)
(L) _ a0y SXPET)
a p G(Z ) eXp(Z(L))+1

e —logP(y™ |x(); n n
0 8(1) = G = SRl — (1 — 2y ((1 - 252

o Close to 0 only when y® =1 and z(I) is large positive;
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o In binary classification, we assuming P(y = 1 |x) ~ Bernoulli(p)
o ye{0,1} and p €(0,1)
o Sigmoid output unit:

(L)
(L) _ a0y SXPET)
a p G(Z ) eXp(Z(L))+1

e —logP(y™ |x(); n n
0 8(1) = G = SRl — (1 — 2y ((1 - 252

o Close to 0 only when y® =1 and z(X) is large positive; or y) =0 and
Z1) is small negative
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Sigmoid Units for Bernoulli Output Distributions

o In binary classification, we assuming P(y = 1 |x) ~ Bernoulli(p)
o ye{0,1} and p €(0,1)
o Sigmoid output unit:

(L)
(L) _ a0y SXPET)
a p G(Z ) eXp(Z(L))+1

e —logP(y™ |x(); n n
0 8(1) = G = SRl — (1 — 2y ((1 - 252

o Close to 0 only when y® =1 and z(X) is large positive; or y) =0 and
Z1) is small negative

o The loss ¢ saturates (becomes flat) only when p is “correct”
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Softmax Units for Categorical Output
Distributions |

o In multiclass classification, we can assume that
P(y|x) ~ Categorical(p), where y,p € RK and 1"p =1
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Softmax Units for Categorical Output
Distributions |

o In multiclass classification, we can assume that
P(y|x) ~ Categorical(p), where y,p € RK and 1"p =1
o Softmax units:

exp(z)”)
K exp(z)
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Softmax Units for Categorical Output
Distributions |
o In multiclass classification, we can assume that
P(y|x) ~ Categorical(p), where y,p € RK and 1"p =1
o Softmax units:

exp(z)”)

(L))

a(L) =
J
i=1 eXP(Zi

p; = sofmax(z(V); =

o Actually, to define a Categorical distribution, we only need
P, Px—1 (Px =1 —Z{i’llpi can be discarded)
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Softmax Units for Categorical Output
Distributions |

o In multiclass classification, we can assume that
P(y|x) ~ Categorical(p), where y,p € RK and 1"p =1
o Softmax units:

(L) exp(z”)
a;’ =pj= sofmax (z*) )j = — - / @)
Yii1exp(z )

J
o Actually, to define a Categorical distribution, we only need
P, Pr—1 (px = 1= XX p; can be discarded)
o We can alternatively define K — 1 output units (discarding
ay) = px = 1);
L
L) _ A _ CXP(Z} ))
G =PTSko D)

that is a direct generalization of ¢ in binary classification
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Softmax Units for Categorical Output
Distributions |
o In multiclass classification, we can assume that
P(y|x) ~ Categorical(p), where y,p € RK and 1"p =1
o Softmax units:

(L) exp(z”)
a;’ =pj= sofmax (z*) )j = — - / @)
Yii1exp(z )

J
o Actually, to define a Categorical distribution, we only need
P, Px—1 (Px =1 —Z{i’llpi can be discarded)
o We can alternatively define K — 1 output units (discarding
L) A
ay) = px = 1);
L
(L) A CXP(Z} ))
4 =PI Sk D)
that is a direct generalization of ¢ in binary classification
o In practice, the two versions make little difference

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning
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Softmax Units for Categorical Output
Distributions Il

o Now we have

5 () =)
s _ Il _d —logP(y(”) ‘x(”);@) B d —log (HiPi YRy )
J a Z](L) aZJ(L) aZ](L)
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Softmax Units for Categorical Output
Distributions Il

o Now we have

5 () =)
s _ Il _d —logP(y(”) ‘x(”);@) B d —log (HiPi YRy )
J a Z](L) aZJ(L) aZ](L)

o L) ologp o\ A
o If y =, then 5] =— 82?)’—*,5% (Pj*PjZ)—Pj*l
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Softmax Units for Categorical Output
Distributions Il

o Now we have

5 () =)
s _ Il _d —logP(y(”) ‘x(”);@) B d —log (HiPi YRy )
J a Z](L) aZJ(L) aZ](L)

(n) _ (L)_ialogﬁ-_ii A A2\ oA
o |fy”) =], then 5] = az;L)J ==5 Pi—Pj ) =P 1
° 8]@ is close to 0 only when p; is “correct”

(L) (L)

o In this case, zj dominates among all z;7's
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Softmax Units for Categorical Output
Distributions Il

o Now we have

N Al( (n); 7(’1):i)
s — dc™ 9 —logP(y™ |x);@) d —log <| Lo )
) =

aZ](L) - aZJ(L) - aZ](L)

(n) _ (L)_ialogﬁ-_ii A A2\ oA
o |fy”) =], then 5] = az;L)J ==5 Pi—Pj ) =P 1
° 8]@ is close to 0 only when p; is “correct”

o In this case, zj(L) dominates among all z(L)

o If yW =i, then Sj(L) = —% = —é (—pip;) = P
7

's
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Softmax Units for Categorical Output
Distributions Il

o Now we have

N Al( (’l);7("):l~)
s — dc™ 9 —logP(y™ |x";@) d —log <| Lo )
j - =

aZ](L) aZJ(L) - aZ](L)

o L) ologp o\ A
o If y =, then 5] =— a:(i)’—*ﬁ% (Pj*PjZ)—Pj*l

° 8]@ is close to 0 only when p; is “correct”

o In this case, zj(L) dominates among all zSL)'s

o If Y =i then &) = — 2080 — — L (—pipy) = py
J

o Again, close to 0 only when p; is “correct”
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Linear Units for Gaussian Means

o An NN can also output just one conditional statistic of y given x
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Linear Units for Gaussian Means
o An NN can also output just one conditional statistic of y given x

o For example, we can assume P(y|x) ~ .4 (u,X) for regression

o How to design output neurons if we want to predict the mean 1?7
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Linear Units for Gaussian Means

o An NN can also output just one conditional statistic of y given x

©

For example, we can assume P(y|x) ~ .4 (u,X) for regression

©

How to design output neurons if we want to predict the mean f17

o Linear units:
L)
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Linear Units for Gaussian Means

o An NN can also output just one conditional statistic of y given x

©

For example, we can assume P(y|x) ~ .4 (u,X) for regression

©

How to design output neurons if we want to predict the mean f17
o Linear units:
al) =p =70
o We have
w dc _d —log A (y; f1,X)
dz\D) dz(L)

o Let ¥ =1, maximizing the log-likelihood is equivalent to minimizing
the SSE/MSE

o 8 = 9|y —z(D)|12/9z(L) (see linear regression)

0
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Linear Units for Gaussian Means

o An NN can also output just one conditional statistic of y given x
o For example, we can assume P(y|x) ~ .4 (u,X) for regression
o How to design output neurons if we want to predict the mean 1?7
o Linear units:
all) = fL =z

o We have
w dc _d —log A (y; f1,X)

dz\L) 0z(L)

o Let ¥ =1, maximizing the log-likelihood is equivalent to minimizing
the SSE/MSE

o 8 = 9|y —z(D)|12/9z(L) (see linear regression)

o Linear units do not saturate, so they pose little difficulty for gradient
based optimization

0
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Outline

(3 Neuron Design

o Hidden Neurons
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Design Considerations

o Most units differ from each other only in activation functions:

a® = act(zW) = act(WH Tg*=1)
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Design Considerations
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o Why use RelLU as default hidden units?
o act(z¥)) = max(0,z%))
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Design Considerations

o Most units differ from each other only in activation functions:
a® = act(zW) = act(WH Tg*=1)

o Why use RelLU as default hidden units?
o act(z¥)) = max(0,z%))

o Why not, for example, use Sigmoid as hidden units?

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning

35/51



Vanishing Gradient Problem

o In backward pass of Backprop:

(Z‘S (kt1) k+1 ) act'( ](k)>
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Vanishing Gradient Problem

o In backward pass of Backprop:

o Ifact'(-) = 0'(+) < 1, then Bj(k) becomes
smaller and smaller during backward pass
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Vanishing Gradient Problem

o In backward pass of Backprop:

o Ifact'(-) = 0'(+) < 1, then Bj(k) becomes
smaller and smaller during backward pass

o The surface of cost function becomes very
flat at shallow layers
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Vanishing Gradient Problem

o In backward pass of Backprop:

o Ifact'(-) = 0'(+) < 1, then Bj(k) becomes
smaller and smaller during backward pass

o The surface of cost function becomes very
flat at shallow layers

o Slows down the learning speed of entire
network N o~

o Weights at deeper layers depend on those I - T
in shallow ones
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Vanishing Gradient Problem

o In backward pass of Backprop:

o Ifact'(-) = 0'(+) < 1, then Bj(k) becomes
smaller and smaller during backward pass

o The surface of cost function becomes very
flat at shallow layers

o Slows down the learning speed of entire
network N /o~

o Weights at deeper layers depend on those I - T
in shallow ones

o Numeric problems, e.g., underflow

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 36 /51



RelLU I

1, ifz®¥>0
otherwise

1
ReLU

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 37/51



RelLU I

a
—y
Lo 2 if 70
I (k) _ 1, Ifz
i act(z™) {0, otherwise
ReILU

o No vanishing gradients

(Z‘S (k+1) k+1 ) act'( ](k))
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RelLU I

if z(0)
| iy ) L ifZ9 >0
i act(z™) { 0, otherwise

ReLU

o No vanishing gradients

(Z‘S (k+1) k+1 ) act'( ](k))

o What if z® = 0?
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RelLU I

10 (k) 1, ifz
act(z™) {0, otherwise

o No vanishing gradients
o What if z¥) = 07

o In practice, we usually assign 1 or 0 randomly
o Floating points are not precise anyway
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ReLU Il

o Why piecewise linear?

o To avoid vanishing gradient, we can modify 6(-) to make it steeper at
middle such that ¢’(-) > 1
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ReLU Il

o Why piecewise linear?
o To avoid vanishing gradient, we can modify ¢(-) to make it steeper at
middle such that ¢’(-) > 1

o The second derivative ReLU" () is 0 everywhere

o Eliminates the second-order effects and makes the gradient-based
optimization more useful (than, e.g., Newton methods)
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ReLU Il

o Why piecewise linear?

o To avoid vanishing gradient, we can modify ¢(-) to make it steeper at
middle such that ¢’(-) > 1

o The second derivative ReLU" () is 0 everywhere
o Eliminates the second-order effects and makes the gradient-based
optimization more useful (than, e.g., Newton methods)

®)

o Problem: for neurons with 5j(k) =0, theirs weights W will not be
updated

9c 50 97\
ow® — gw®
ij ij

o Improvement?
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Leaky/Parametric ReLU

. act(z¥)) = max (o -z z(0),

for some x € R

1
|
ReLU Leaky ReLU/PReLU
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Leaky/Parametric ReLU

for some x € R

1
|
ReLU Leaky ReLU/PReLU

o Leaky ReLU: a is set in advance (fixed during training)

o Usually a small value
o Or domain-specific
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Leaky/Parametric ReLU

. act(z¥)) = max (o -z z(0),

for some x € R

1
|
ReLU Leaky ReLU/PReLU

o Leaky RelLU: a is set in advance (fixed during training)
o Usually a small value
o Or domain-specific

o Example: absolute value rectification o0 = —1

o Used for object recognition from images
o Seek features that are invariant under a polarity reversal of the input
illumination

o Parametric ReLU (PReLU): o learned automatically by gradient
descent
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Maxout Units |

o Maxout units generalize ReLU variants further:
act(z®); = maxz;
)

k—1

o al

) is linearly mapped to multiple groups of zj(f)'s
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Maxout Units |

o Maxout units generalize ReLU variants further:

act(z®); = maxz;
s

o a*= 1 is linearly mapped to multiple groups of zj(f)'s

o Learns a piecewise linear, convex activation function automatically
o Covers both leaky ReLU and PReLU
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Maxout Units Il

o How to train an NN with maxout units?
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Maxout Units Il

o How to train an NN with maxout units?

o Given a training example
(x,y() update the weights

that corresponds to the winning

(k)

Zjy's for this example
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Maxout Units Il

o How to train an NN with maxout units?

o Given a training example
(x,y() update the weights

that corresponds to the winning

(k)
Zj,s

o Different examples may update
different parts of the network

's for this example
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Maxout Units Il

o How to train an NN with maxout units?

o Given a training example
(x,y() update the weights

that corresponds to the winning

(k)
Zj,s

o Different examples may update
different parts of the network

's for this example

o Offers some “redundancy” that helps to resist the catastrophic
forgetting phenomenon [2]

o An NN may forget how to perform tasks that they were trained on in
the past
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Maxout Units Il

o Cons?
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Maxout Units Il

o Cons?

o Each maxout unit is now parametrized by multiple weight vectors
instead of just one

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 42 /51



Maxout Units Il

o Cons?

o Each maxout unit is now parametrized by multiple weight vectors
instead of just one

©

Typically requires more training data

o Otherwise, regularization is needed
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Outline

(@ Architecture Design
o Architecture Tuning
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Architecture Design

o Thin-and-deep or fat-and-shallow?
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Architecture Design

o Thin-and-deep or fat-and-shallow?

Theorem (Universal Approximation Theorem [4, 5])

A feedforward network with at least one hidden layer can approximate any
continuous function (on a closed and bounded subset of R”) or any
function mapping from a finite dimensional discrete space to another.

o In short, a feedforward network with a single layer is sufficient to
represent any function
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Architecture Design

o Thin-and-deep or fat-and-shallow?

Theorem (Universal Approximation Theorem [4, 5])

A feedforward network with at least one hidden layer can approximate any
continuous function (on a closed and bounded subset of R”) or any
function mapping from a finite dimensional discrete space to another.

o In short, a feedforward network with a single layer is sufficient to
represent any function

o Why going deep?
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Exponential Gain in Number of Hidden Units

o Functions representable with a deep rectifier NN require an
exponential number of hidden units in a shallow NN [6]
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Exponential Gain in Number of Hidden Units

o Functions representable with a deep rectifier NN require an
exponential number of hidden units in a shallow NN [6]

o Example: an NN with absolute value rectification units

&>

o Each hidden unit specifies where to fold the input space in order to
create mirror responses (on both sides of the absolute value)

o By composing these folding operations, we obtain an exponentially
large number of piecewise linear regions which can capture all kinds of
regular (e.g., repeating) patterns
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Deep ReLU Networks

o Activation-constant regions vs. output values [3]

Input dim 1

Jndno uoRduNd

Input dim 2

Figure 2: Function defined by a ReLU network of depth 5 and width 8 at initialization. Left: Partition

of the input space into regions, on each of which the activation pattern of neurons is constant. Right:
the function computed by the network, which is linear on each activation region.
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Architecture as Prior Knowledge

o Choosing a deep model also encodes a very general belief that the
function we want to learn should involve composition of several
simpler functions
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Architecture as Prior Knowledge

o Choosing a deep model also encodes a very general belief that the
function we want to learn should involve composition of several
simpler functions

o If valid, deep NNs give better generalizability

o When is the assumption valid?
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Architecture as Prior Knowledge
o Choosing a deep model also encodes a very general belief that the
function we want to learn should involve composition of several
simpler functions
o If valid, deep NNs give better generalizability
o When is the assumption valid? E.g., image recognition, natural

language processing, etc.
Output
(object identity)

3rd hidden layer
(object parts)

2nd hidden layer
(corners and
contours)

Ist hidden layer
(edges)

Visible layer
(input pixels)
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Outline

(@ Architecture Design
o Architecture Tuning

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 48 /51



Hyperparameters

o Width & depth

o Can be determined via cross
validation
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Hyperparameters

o Width & depth

o Can be determined via cross
validation

o Types of neurons & their wiring
o Usually model a
domain-specific prior
o Validated via ablation study
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Hyperparameters

o Width & depth

o Can be determined via cross
validation

o Types of neurons & their wiring
o Usually model a
domain-specific prior
o Validated via ablation study
o Auto ML

o The process of automating
the above
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