
Neural Networks:
Design

Shan-Hung Wu
shwu@cs.nthu.edu.tw

Department of Computer Science,
National Tsing Hua University, Taiwan

Machine Learning

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 1 / 51

Outline

1 The Basics
Example: Learning the XOR

2 Training
Back Propagation

3 Neuron Design
Cost Function & Output Neurons
Hidden Neurons

4 Architecture Design
Architecture Tuning

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 2 / 51

Outline

1 The Basics
Example: Learning the XOR

2 Training
Back Propagation

3 Neuron Design
Cost Function & Output Neurons
Hidden Neurons

4 Architecture Design
Architecture Tuning

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 3 / 51

Model: a Composite Function I
A feedforward neural networks, or multilayer perceptron, defines
a function composition

ŷ = f (L)(· · · f (2)(f (1)(x;θ
(1));θ

(2));θ
(L))

that approximates the target function f ∗

Parameters θ (1), · · · ,θ (L) learned from training set X
“Feedforward” because information flows from input to output

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 4 / 51

Model: a Composite Function I
A feedforward neural networks, or multilayer perceptron, defines
a function composition

ŷ = f (L)(· · · f (2)(f (1)(x;θ
(1));θ

(2));θ
(L))

that approximates the target function f ∗

Parameters θ (1), · · · ,θ (L) learned from training set X

“Feedforward” because information flows from input to output

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 4 / 51

Model: a Composite Function I
A feedforward neural networks, or multilayer perceptron, defines
a function composition

ŷ = f (L)(· · · f (2)(f (1)(x;θ
(1));θ

(2));θ
(L))

that approximates the target function f ∗

Parameters θ (1), · · · ,θ (L) learned from training set X
“Feedforward” because information flows from input to output

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 4 / 51

Model: a Composite Function II
At each layer k, the function f (k)(· ;W(k),b(k)) is nonlinear and
outputs value a(k) ∈ RD(k)

, where

a(k) = act(k)(W(k)⊤a(k−1)+b(k))

act(i)(·) : R→ R is an activation function applied elementwisely

Shorthand: a(k) = act(k)(W(k)⊤a(k−1))

a(k−1) ∈ RD(k−1)+1, a(k−1)
0 = 1, and W(k) ∈ R(D(k−1)+1)×D(k)

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 5 / 51

Model: a Composite Function II
At each layer k, the function f (k)(· ;W(k),b(k)) is nonlinear and
outputs value a(k) ∈ RD(k)

, where

a(k) = act(k)(W(k)⊤a(k−1)+b(k))

act(i)(·) : R→ R is an activation function applied elementwisely
Shorthand: a(k) = act(k)(W(k)⊤a(k−1))

a(k−1) ∈ RD(k−1)+1, a(k−1)
0 = 1, and W(k) ∈ R(D(k−1)+1)×D(k)

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 5 / 51

Neurons I

Each f (k)j = act(k)(W(k)⊤
:,j a(k−1)) =

act(k)(z(k)j) is a unit (or neuron)

E.g., the perceptron
Loosely guided by neuroscience

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 6 / 51

Neurons I

Each f (k)j = act(k)(W(k)⊤
:,j a(k−1)) =

act(k)(z(k)j) is a unit (or neuron)
E.g., the perceptron

Loosely guided by neuroscience

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 6 / 51

Neurons I

Each f (k)j = act(k)(W(k)⊤
:,j a(k−1)) =

act(k)(z(k)j) is a unit (or neuron)
E.g., the perceptron
Loosely guided by neuroscience

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 6 / 51

Neurons II
Modern NN design is mainly guided by mathematical and engineering
disciplines. Consider a binary classifier where y ∈ {0,1}:

Hidden units: a(k) = max(0,z(k))
Output unit: a(L) = ρ̂ = σ(z(L)),
assuming Pr(y = 1 |x)∼ Bernoulli(ρ)

Prediction:
ŷ = 1(ρ̂; ρ̂ > 0.5) = 1(z(L);z(L) > 0)
A logistic regressor with input a(L−1)

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 7 / 51

Neurons II
Modern NN design is mainly guided by mathematical and engineering
disciplines. Consider a binary classifier where y ∈ {0,1}:

Hidden units: a(k) = max(0,z(k))

Output unit: a(L) = ρ̂ = σ(z(L)),
assuming Pr(y = 1 |x)∼ Bernoulli(ρ)

Prediction:
ŷ = 1(ρ̂; ρ̂ > 0.5) = 1(z(L);z(L) > 0)
A logistic regressor with input a(L−1)

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 7 / 51

Neurons II
Modern NN design is mainly guided by mathematical and engineering
disciplines. Consider a binary classifier where y ∈ {0,1}:

Hidden units: a(k) = max(0,z(k))
Output unit: a(L) = ρ̂ = σ(z(L)),
assuming Pr(y = 1 |x)∼ Bernoulli(ρ)

Prediction:
ŷ = 1(ρ̂; ρ̂ > 0.5) = 1(z(L);z(L) > 0)

A logistic regressor with input a(L−1)

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 7 / 51

Neurons II
Modern NN design is mainly guided by mathematical and engineering
disciplines. Consider a binary classifier where y ∈ {0,1}:

Hidden units: a(k) = max(0,z(k))
Output unit: a(L) = ρ̂ = σ(z(L)),
assuming Pr(y = 1 |x)∼ Bernoulli(ρ)

Prediction:
ŷ = 1(ρ̂; ρ̂ > 0.5) = 1(z(L);z(L) > 0)
A logistic regressor with input a(L−1)

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 7 / 51

Representation Learning

The outputs a(1), a(2), · · · , a(L−1) of
hidden layers f (1), f (2), · · · , f (L−1) are
distributed representation of x

Nonlinear to input space since f (k)’s
are nonlinear

Usually more abstract at a deeper
layer

f (L) is the actual prediction function
Like in non-linear SVM/polynomial
regression, a simple linear function
suffices:

z(L) = W(L)a(L−1)

act(L)(·) just “normalizes” z(L) to give
ρ̂ ∈ (0,1)

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 8 / 51

Representation Learning

The outputs a(1), a(2), · · · , a(L−1) of
hidden layers f (1), f (2), · · · , f (L−1) are
distributed representation of x

Nonlinear to input space since f (k)’s
are nonlinear
Usually more abstract at a deeper
layer

f (L) is the actual prediction function
Like in non-linear SVM/polynomial
regression, a simple linear function
suffices:

z(L) = W(L)a(L−1)

act(L)(·) just “normalizes” z(L) to give
ρ̂ ∈ (0,1)

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 8 / 51

Representation Learning

The outputs a(1), a(2), · · · , a(L−1) of
hidden layers f (1), f (2), · · · , f (L−1) are
distributed representation of x

Nonlinear to input space since f (k)’s
are nonlinear
Usually more abstract at a deeper
layer

f (L) is the actual prediction function
Like in non-linear SVM/polynomial
regression, a simple linear function
suffices:

z(L) = W(L)a(L−1)

act(L)(·) just “normalizes” z(L) to give
ρ̂ ∈ (0,1)

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 8 / 51

Representation Learning

The outputs a(1), a(2), · · · , a(L−1) of
hidden layers f (1), f (2), · · · , f (L−1) are
distributed representation of x

Nonlinear to input space since f (k)’s
are nonlinear
Usually more abstract at a deeper
layer

f (L) is the actual prediction function
Like in non-linear SVM/polynomial
regression, a simple linear function
suffices:

z(L) = W(L)a(L−1)

act(L)(·) just “normalizes” z(L) to give
ρ̂ ∈ (0,1)

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 8 / 51

Outline

1 The Basics
Example: Learning the XOR

2 Training
Back Propagation

3 Neuron Design
Cost Function & Output Neurons
Hidden Neurons

4 Architecture Design
Architecture Tuning

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 9 / 51

Learning the XOR I

Why ReLUs learn nonlinear (and
better) representation?

Let’s learn XOR (f ∗) in a binary
classification task

x ∈ R2 and y ∈ {0,1}
Nonlinear, so cannot be learned by
linear models

Consider an NN with 1 hidden layer:
a(1) = max(0,W(1)⊤x)
a(2) = ρ̂ = σ(w(2)⊤a(1))
Prediction: 1(ρ̂; ρ̂ > 0.5)

Learns XOR by “merging” data points
first

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 10 / 51

Learning the XOR I

Why ReLUs learn nonlinear (and
better) representation?
Let’s learn XOR (f ∗) in a binary
classification task

x ∈ R2 and y ∈ {0,1}

Nonlinear, so cannot be learned by
linear models

Consider an NN with 1 hidden layer:
a(1) = max(0,W(1)⊤x)
a(2) = ρ̂ = σ(w(2)⊤a(1))
Prediction: 1(ρ̂; ρ̂ > 0.5)

Learns XOR by “merging” data points
first

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 10 / 51

Learning the XOR I

Why ReLUs learn nonlinear (and
better) representation?
Let’s learn XOR (f ∗) in a binary
classification task

x ∈ R2 and y ∈ {0,1}
Nonlinear, so cannot be learned by
linear models

Consider an NN with 1 hidden layer:
a(1) = max(0,W(1)⊤x)
a(2) = ρ̂ = σ(w(2)⊤a(1))
Prediction: 1(ρ̂; ρ̂ > 0.5)

Learns XOR by “merging” data points
first

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 10 / 51

Learning the XOR I

Why ReLUs learn nonlinear (and
better) representation?
Let’s learn XOR (f ∗) in a binary
classification task

x ∈ R2 and y ∈ {0,1}
Nonlinear, so cannot be learned by
linear models

Consider an NN with 1 hidden layer:
a(1) = max(0,W(1)⊤x)
a(2) = ρ̂ = σ(w(2)⊤a(1))
Prediction: 1(ρ̂; ρ̂ > 0.5)

Learns XOR by “merging” data points
first

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 10 / 51

Learning the XOR I

Why ReLUs learn nonlinear (and
better) representation?
Let’s learn XOR (f ∗) in a binary
classification task

x ∈ R2 and y ∈ {0,1}
Nonlinear, so cannot be learned by
linear models

Consider an NN with 1 hidden layer:
a(1) = max(0,W(1)⊤x)
a(2) = ρ̂ = σ(w(2)⊤a(1))
Prediction: 1(ρ̂; ρ̂ > 0.5)

Learns XOR by “merging” data points
first

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 10 / 51

Learning the XOR II

X =


1 0 0
1 0 1
1 1 0
1 1 1

 ∈ RN×(1+D), W(1) =

 1 1
1 1
0 −1

, w(2) =

 −1
2
−4



ŷ =


0
1
1
0

= 1(σ([1 max(0,XW(1))]w(2))> 0.5)

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 11 / 51

Latent Representation A(1)

XW(1) =


1 0 0
1 0 1
1 1 0
1 1 1


 0 −1

1 1
1 1

=


0 −1
1 0
1 0
2 1



A(1) = [1 max(0,XW(1))] =


1 0 0
1 1 0
1 1 0
1 2 1


Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 12 / 51

Output Distribution a(2)

a(2) = σ(A(1)w(2)) = σ




1 0 0
1 1 0
1 1 0
1 2 1


 −1

2
−4


= σ



−1
1
1
−1




ŷ = 1(a(2) > 0.5) =


0
1
1
0



But how to train W(1) and w(2) from examples?

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 13 / 51

Output Distribution a(2)

a(2) = σ(A(1)w(2)) = σ




1 0 0
1 1 0
1 1 0
1 2 1


 −1

2
−4


= σ



−1
1
1
−1




ŷ = 1(a(2) > 0.5) =


0
1
1
0


But how to train W(1) and w(2) from examples?

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 13 / 51

Outline

1 The Basics
Example: Learning the XOR

2 Training
Back Propagation

3 Neuron Design
Cost Function & Output Neurons
Hidden Neurons

4 Architecture Design
Architecture Tuning

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 14 / 51

Training an NN

Given examples: X= {(x(i),y(i))}N
i=1

How to learn parameters Θ = {W(1), · · · , W(L)}?

Most NNs are trained using the maximum likelihood by default
(assuming i.i.d examples):

argmaxΘ logP(X |Θ)
= argminΘ− logP(X |Θ)

= argminΘ ∑i− logP(x(i),y(i) |Θ)

= argminΘ ∑i[− logP(y(i) |x(i),Θ)− logP(x(i) |Θ)]

= argminΘ ∑i−logP(y(i) |x(i),Θ)

= argminΘ ∑i C(i)(Θ)

The minimizer Θ̂ is an unbiased estimator of “true” Θ∗

Good for large N

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 15 / 51

Training an NN

Given examples: X= {(x(i),y(i))}N
i=1

How to learn parameters Θ = {W(1), · · · , W(L)}?
Most NNs are trained using the maximum likelihood by default
(assuming i.i.d examples):

argmaxΘ logP(X |Θ)

= argminΘ− logP(X |Θ)

= argminΘ ∑i− logP(x(i),y(i) |Θ)

= argminΘ ∑i[− logP(y(i) |x(i),Θ)− logP(x(i) |Θ)]

= argminΘ ∑i−logP(y(i) |x(i),Θ)

= argminΘ ∑i C(i)(Θ)

The minimizer Θ̂ is an unbiased estimator of “true” Θ∗

Good for large N

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 15 / 51

Training an NN

Given examples: X= {(x(i),y(i))}N
i=1

How to learn parameters Θ = {W(1), · · · , W(L)}?
Most NNs are trained using the maximum likelihood by default
(assuming i.i.d examples):

argmaxΘ logP(X |Θ)
= argminΘ− logP(X |Θ)

= argminΘ ∑i− logP(x(i),y(i) |Θ)

= argminΘ ∑i[− logP(y(i) |x(i),Θ)− logP(x(i) |Θ)]

= argminΘ ∑i−logP(y(i) |x(i),Θ)

= argminΘ ∑i C(i)(Θ)

The minimizer Θ̂ is an unbiased estimator of “true” Θ∗

Good for large N

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 15 / 51

Training an NN

Given examples: X= {(x(i),y(i))}N
i=1

How to learn parameters Θ = {W(1), · · · , W(L)}?
Most NNs are trained using the maximum likelihood by default
(assuming i.i.d examples):

argmaxΘ logP(X |Θ)
= argminΘ− logP(X |Θ)

= argminΘ ∑i− logP(x(i),y(i) |Θ)

= argminΘ ∑i[− logP(y(i) |x(i),Θ)− logP(x(i) |Θ)]

= argminΘ ∑i−logP(y(i) |x(i),Θ)

= argminΘ ∑i C(i)(Θ)

The minimizer Θ̂ is an unbiased estimator of “true” Θ∗

Good for large N

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 15 / 51

Training an NN

Given examples: X= {(x(i),y(i))}N
i=1

How to learn parameters Θ = {W(1), · · · , W(L)}?
Most NNs are trained using the maximum likelihood by default
(assuming i.i.d examples):

argmaxΘ logP(X |Θ)
= argminΘ− logP(X |Θ)

= argminΘ ∑i− logP(x(i),y(i) |Θ)

= argminΘ ∑i[− logP(y(i) |x(i),Θ)− logP(x(i) |Θ)]

= argminΘ ∑i−logP(y(i) |x(i),Θ)

= argminΘ ∑i C(i)(Θ)

The minimizer Θ̂ is an unbiased estimator of “true” Θ∗

Good for large N

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 15 / 51

Training an NN

Given examples: X= {(x(i),y(i))}N
i=1

How to learn parameters Θ = {W(1), · · · , W(L)}?
Most NNs are trained using the maximum likelihood by default
(assuming i.i.d examples):

argmaxΘ logP(X |Θ)
= argminΘ− logP(X |Θ)

= argminΘ ∑i− logP(x(i),y(i) |Θ)

= argminΘ ∑i[− logP(y(i) |x(i),Θ)− logP(x(i) |Θ)]

= argminΘ ∑i−logP(y(i) |x(i),Θ)

= argminΘ ∑i C(i)(Θ)

The minimizer Θ̂ is an unbiased estimator of “true” Θ∗

Good for large N

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 15 / 51

Training an NN

Given examples: X= {(x(i),y(i))}N
i=1

How to learn parameters Θ = {W(1), · · · , W(L)}?
Most NNs are trained using the maximum likelihood by default
(assuming i.i.d examples):

argmaxΘ logP(X |Θ)
= argminΘ− logP(X |Θ)

= argminΘ ∑i− logP(x(i),y(i) |Θ)

= argminΘ ∑i[− logP(y(i) |x(i),Θ)− logP(x(i) |Θ)]

= argminΘ ∑i−logP(y(i) |x(i),Θ)

= argminΘ ∑i C(i)(Θ)

The minimizer Θ̂ is an unbiased estimator of “true” Θ∗

Good for large N

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 15 / 51

Example: Binary Classification

Pr(y = 1 |x)∼ Bernoulli(ρ), where x ∈ RD and y ∈ {0,1}
a(L) = ρ̂ = σ(z(L)) the predicted distribution

The cost function C(i)(Θ) can be
written as:

C(i)(Θ)

=− logP(y(i) |x(i);Θ)

=− log[(a(L))y(i)(1−a(L))1−y(i)]

=− log[σ(z(L))y(i)(1−σ(z(L)))1−y(i)]

=− log[σ((2y(i)−1)z(L))]
= ζ ((1−2y(i))z(L))

ζ (·) is the softplus function

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 16 / 51

Example: Binary Classification

Pr(y = 1 |x)∼ Bernoulli(ρ), where x ∈ RD and y ∈ {0,1}
a(L) = ρ̂ = σ(z(L)) the predicted distribution

The cost function C(i)(Θ) can be
written as:

C(i)(Θ)

=− logP(y(i) |x(i);Θ)

=− log[(a(L))y(i)(1−a(L))1−y(i)]

=− log[σ(z(L))y(i)(1−σ(z(L)))1−y(i)]

=− log[σ((2y(i)−1)z(L))]
= ζ ((1−2y(i))z(L))

ζ (·) is the softplus function

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 16 / 51

Example: Binary Classification

Pr(y = 1 |x)∼ Bernoulli(ρ), where x ∈ RD and y ∈ {0,1}
a(L) = ρ̂ = σ(z(L)) the predicted distribution

The cost function C(i)(Θ) can be
written as:

C(i)(Θ)

=− logP(y(i) |x(i);Θ)

=− log[(a(L))y(i)(1−a(L))1−y(i)]

=− log[σ(z(L))y(i)(1−σ(z(L)))1−y(i)]

=− log[σ((2y(i)−1)z(L))]

= ζ ((1−2y(i))z(L))

ζ (·) is the softplus function

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 16 / 51

Example: Binary Classification

Pr(y = 1 |x)∼ Bernoulli(ρ), where x ∈ RD and y ∈ {0,1}
a(L) = ρ̂ = σ(z(L)) the predicted distribution

The cost function C(i)(Θ) can be
written as:

C(i)(Θ)

=− logP(y(i) |x(i);Θ)

=− log[(a(L))y(i)(1−a(L))1−y(i)]

=− log[σ(z(L))y(i)(1−σ(z(L)))1−y(i)]

=− log[σ((2y(i)−1)z(L))]
= ζ ((1−2y(i))z(L))

ζ (·) is the softplus function

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 16 / 51

Optimization Algorithm

Most NNs use SGD to solve the problem argminΘ ∑i C(i)(Θ)

Fast convergence in time [1]
Supports (GPU-based) parallelism
Supports online learning
Easy to implement

(Mini-Batched) Stochastic Gradient Descent (SGD)

Initialize Θ(0) randomly;
Repeat until convergence {

Randomly partition the training set X into minibatches of size M;
Θ(t+1)←Θ(t)−η∇Θ ∑

M
i=1 C(i)(Θ(t));

}

How to compute ∇Θ ∑i C(i)(Θ(t)) efficiently?
There could be a huge number of W(k)

i,j ’s in Θ

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 17 / 51

Optimization Algorithm

Most NNs use SGD to solve the problem argminΘ ∑i C(i)(Θ)

Fast convergence in time [1]

Supports (GPU-based) parallelism
Supports online learning
Easy to implement

(Mini-Batched) Stochastic Gradient Descent (SGD)

Initialize Θ(0) randomly;
Repeat until convergence {

Randomly partition the training set X into minibatches of size M;
Θ(t+1)←Θ(t)−η∇Θ ∑

M
i=1 C(i)(Θ(t));

}

How to compute ∇Θ ∑i C(i)(Θ(t)) efficiently?
There could be a huge number of W(k)

i,j ’s in Θ

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 17 / 51

Optimization Algorithm

Most NNs use SGD to solve the problem argminΘ ∑i C(i)(Θ)

Fast convergence in time [1]
Supports (GPU-based) parallelism

Supports online learning
Easy to implement

(Mini-Batched) Stochastic Gradient Descent (SGD)

Initialize Θ(0) randomly;
Repeat until convergence {

Randomly partition the training set X into minibatches of size M;
Θ(t+1)←Θ(t)−η∇Θ ∑

M
i=1 C(i)(Θ(t));

}

How to compute ∇Θ ∑i C(i)(Θ(t)) efficiently?
There could be a huge number of W(k)

i,j ’s in Θ

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 17 / 51

Optimization Algorithm

Most NNs use SGD to solve the problem argminΘ ∑i C(i)(Θ)

Fast convergence in time [1]
Supports (GPU-based) parallelism
Supports online learning

Easy to implement

(Mini-Batched) Stochastic Gradient Descent (SGD)

Initialize Θ(0) randomly;
Repeat until convergence {

Randomly partition the training set X into minibatches of size M;
Θ(t+1)←Θ(t)−η∇Θ ∑

M
i=1 C(i)(Θ(t));

}

How to compute ∇Θ ∑i C(i)(Θ(t)) efficiently?
There could be a huge number of W(k)

i,j ’s in Θ

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 17 / 51

Optimization Algorithm

Most NNs use SGD to solve the problem argminΘ ∑i C(i)(Θ)

Fast convergence in time [1]
Supports (GPU-based) parallelism
Supports online learning
Easy to implement

(Mini-Batched) Stochastic Gradient Descent (SGD)

Initialize Θ(0) randomly;
Repeat until convergence {

Randomly partition the training set X into minibatches of size M;
Θ(t+1)←Θ(t)−η∇Θ ∑

M
i=1 C(i)(Θ(t));

}

How to compute ∇Θ ∑i C(i)(Θ(t)) efficiently?
There could be a huge number of W(k)

i,j ’s in Θ

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 17 / 51

Optimization Algorithm

Most NNs use SGD to solve the problem argminΘ ∑i C(i)(Θ)

Fast convergence in time [1]
Supports (GPU-based) parallelism
Supports online learning
Easy to implement

(Mini-Batched) Stochastic Gradient Descent (SGD)

Initialize Θ(0) randomly;
Repeat until convergence {

Randomly partition the training set X into minibatches of size M;
Θ(t+1)←Θ(t)−η∇Θ ∑

M
i=1 C(i)(Θ(t));

}

How to compute ∇Θ ∑i C(i)(Θ(t)) efficiently?
There could be a huge number of W(k)

i,j ’s in Θ

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 17 / 51

Outline

1 The Basics
Example: Learning the XOR

2 Training
Back Propagation

3 Neuron Design
Cost Function & Output Neurons
Hidden Neurons

4 Architecture Design
Architecture Tuning

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 18 / 51

Back Propagation

Θ
(t+1)←Θ

(t)−η∇Θ

M

∑
n=1

C(n)(Θ(t))

We have ∇Θ ∑n C(n)(Θ(t)) = ∑n ∇ΘC(n)(Θ(t))

Let c(n) = C(n)(Θ(t)), our goal is to evaluate

∂c(n)

∂W(k)
i,j

for all i, j, k, and n
Back propagation (or simply backprop) is an efficient way to
evaluate multiple partial derivatives at once

Assuming the partial derivatives share some common evaluation steps
By the chain rule, we have

∂c(n)

∂W(k)
i,j

=
∂c(n)

∂ z(k)j

·
∂ z(k)j

∂W(k)
i,j

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 19 / 51

Back Propagation

Θ
(t+1)←Θ

(t)−η∇Θ

M

∑
n=1

C(n)(Θ(t))

We have ∇Θ ∑n C(n)(Θ(t)) = ∑n ∇ΘC(n)(Θ(t))

Let c(n) = C(n)(Θ(t)), our goal is to evaluate

∂c(n)

∂W(k)
i,j

for all i, j, k, and n

Back propagation (or simply backprop) is an efficient way to
evaluate multiple partial derivatives at once

Assuming the partial derivatives share some common evaluation steps
By the chain rule, we have

∂c(n)

∂W(k)
i,j

=
∂c(n)

∂ z(k)j

·
∂ z(k)j

∂W(k)
i,j

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 19 / 51

Back Propagation

Θ
(t+1)←Θ

(t)−η∇Θ

M

∑
n=1

C(n)(Θ(t))

We have ∇Θ ∑n C(n)(Θ(t)) = ∑n ∇ΘC(n)(Θ(t))

Let c(n) = C(n)(Θ(t)), our goal is to evaluate

∂c(n)

∂W(k)
i,j

for all i, j, k, and n
Back propagation (or simply backprop) is an efficient way to
evaluate multiple partial derivatives at once

Assuming the partial derivatives share some common evaluation steps

By the chain rule, we have

∂c(n)

∂W(k)
i,j

=
∂c(n)

∂ z(k)j

·
∂ z(k)j

∂W(k)
i,j

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 19 / 51

Back Propagation

Θ
(t+1)←Θ

(t)−η∇Θ

M

∑
n=1

C(n)(Θ(t))

We have ∇Θ ∑n C(n)(Θ(t)) = ∑n ∇ΘC(n)(Θ(t))

Let c(n) = C(n)(Θ(t)), our goal is to evaluate

∂c(n)

∂W(k)
i,j

for all i, j, k, and n
Back propagation (or simply backprop) is an efficient way to
evaluate multiple partial derivatives at once

Assuming the partial derivatives share some common evaluation steps
By the chain rule, we have

∂c(n)

∂W(k)
i,j

=
∂c(n)

∂ z(k)j

·
∂ z(k)j

∂W(k)
i,j

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 19 / 51

Forward Pass

The second term:
∂ z(k)j

∂W(k)
i,j

When k = 1, we have z(1)j = ∑i W(1)
i,j x(n)i and

∂ z(1)j

∂W(1)
i,j

= x(n)i

Otherwise (k > 1), we have z(k)j = ∑i W(k)
i,j a(k−1)

i and

∂ z(k)j

∂W(k)
i,j

= a(k−1)
i

We can get the second terms of all ∂c(n)

∂W(k)
i,j

’s starting from the most

shallow layer

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 20 / 51

Forward Pass

The second term:
∂ z(k)j

∂W(k)
i,j

When k = 1, we have z(1)j = ∑i W(1)
i,j x(n)i and

∂ z(1)j

∂W(1)
i,j

= x(n)i

Otherwise (k > 1), we have z(k)j = ∑i W(k)
i,j a(k−1)

i and

∂ z(k)j

∂W(k)
i,j

= a(k−1)
i

We can get the second terms of all ∂c(n)

∂W(k)
i,j

’s starting from the most

shallow layer

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 20 / 51

Forward Pass

The second term:
∂ z(k)j

∂W(k)
i,j

When k = 1, we have z(1)j = ∑i W(1)
i,j x(n)i and

∂ z(1)j

∂W(1)
i,j

= x(n)i

Otherwise (k > 1), we have z(k)j = ∑i W(k)
i,j a(k−1)

i and

∂ z(k)j

∂W(k)
i,j

= a(k−1)
i

We can get the second terms of all ∂c(n)

∂W(k)
i,j

’s starting from the most

shallow layer

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 20 / 51

Forward Pass

The second term:
∂ z(k)j

∂W(k)
i,j

When k = 1, we have z(1)j = ∑i W(1)
i,j x(n)i and

∂ z(1)j

∂W(1)
i,j

= x(n)i

Otherwise (k > 1), we have z(k)j = ∑i W(k)
i,j a(k−1)

i and

∂ z(k)j

∂W(k)
i,j

= a(k−1)
i

We can get the second terms of all ∂c(n)

∂W(k)
i,j

’s starting from the most

shallow layer

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 20 / 51

Backward Pass I

Conversely, we can get the first terms of ∂c(n)

∂W(k)
i,j

= ∂c(n)

∂ z(k)j

· ∂ z(k)j

∂W(k)
i,j

starting

from the deepest layer

Define error signal δ
(k)
j = ∂c(n)

∂ z(k)j

When k = L, the evaluation varies from task to task
Depending on the definition of functions act(L) and C(n)

E.g., in binary classification, we have:

δ
(L) =

∂c(n)

∂ z(L)
=

∂ζ ((1−2y(n))z(L))
∂ z(L)

= σ((1−2y(n))z(L)) · (1−2y(n))

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 21 / 51

Backward Pass I

Conversely, we can get the first terms of ∂c(n)

∂W(k)
i,j

= ∂c(n)

∂ z(k)j

· ∂ z(k)j

∂W(k)
i,j

starting

from the deepest layer

Define error signal δ
(k)
j = ∂c(n)

∂ z(k)j

When k = L, the evaluation varies from task to task
Depending on the definition of functions act(L) and C(n)

E.g., in binary classification, we have:

δ
(L) =

∂c(n)

∂ z(L)
=

∂ζ ((1−2y(n))z(L))
∂ z(L)

= σ((1−2y(n))z(L)) · (1−2y(n))

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 21 / 51

Backward Pass I

Conversely, we can get the first terms of ∂c(n)

∂W(k)
i,j

= ∂c(n)

∂ z(k)j

· ∂ z(k)j

∂W(k)
i,j

starting

from the deepest layer

Define error signal δ
(k)
j = ∂c(n)

∂ z(k)j

When k = L, the evaluation varies from task to task
Depending on the definition of functions act(L) and C(n)

E.g., in binary classification, we have:

δ
(L) =

∂c(n)

∂ z(L)
=

∂ζ ((1−2y(n))z(L))
∂ z(L)

= σ((1−2y(n))z(L)) · (1−2y(n))

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 21 / 51

Backward Pass I

Conversely, we can get the first terms of ∂c(n)

∂W(k)
i,j

= ∂c(n)

∂ z(k)j

· ∂ z(k)j

∂W(k)
i,j

starting

from the deepest layer

Define error signal δ
(k)
j = ∂c(n)

∂ z(k)j

When k = L, the evaluation varies from task to task
Depending on the definition of functions act(L) and C(n)

E.g., in binary classification, we have:

δ
(L) =

∂c(n)

∂ z(L)
=

∂ζ ((1−2y(n))z(L))
∂ z(L)

= σ((1−2y(n))z(L)) · (1−2y(n))

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 21 / 51

Backward Pass II
When k < L, we have

δ
(k)
j = ∂c(n)

∂ z(k)j

= ∂c(n)

∂a(k)j

· ∂a(k)j

∂ z(k)j

= ∂c(n)

∂a(k)j

· act′(z(k)j)

=

(
∑s

∂c(n)

∂ z(k+1)
s
· ∂ z(k+1)

s

∂a(k)j

)
act′(z(k)j)

=

(
∑s δ

(k+1)
s · ∂ ∑i W(k+1)

i,s a(k)i

∂a(k)j

)
act′(z(k)j)

=
(

∑s δ
(k+1)
s ·W(k+1)

j,s

)
act′(z(k)j)

Theorem (Chain Rule)

Let g : R→ Rd and f : Rd→ R, then f

(f ◦g)′(x) = f ′(g(x))g′(x) = ∇f (g(x))⊤

 g′1(x)
...

g′d(x)

 .

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 22 / 51

Backward Pass II
When k < L, we have

δ
(k)
j = ∂c(n)

∂ z(k)j

= ∂c(n)

∂a(k)j

· ∂a(k)j

∂ z(k)j

= ∂c(n)

∂a(k)j

· act′(z(k)j)

=

(
∑s

∂c(n)

∂ z(k+1)
s
· ∂ z(k+1)

s

∂a(k)j

)
act′(z(k)j)

=

(
∑s δ

(k+1)
s · ∂ ∑i W(k+1)

i,s a(k)i

∂a(k)j

)
act′(z(k)j)

=
(

∑s δ
(k+1)
s ·W(k+1)

j,s

)
act′(z(k)j)

Theorem (Chain Rule)

Let g : R→ Rd and f : Rd→ R, then f

(f ◦g)′(x) = f ′(g(x))g′(x) = ∇f (g(x))⊤

 g′1(x)
...

g′d(x)

 .

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 22 / 51

Backward Pass II
When k < L, we have

δ
(k)
j = ∂c(n)

∂ z(k)j

= ∂c(n)

∂a(k)j

· ∂a(k)j

∂ z(k)j

= ∂c(n)

∂a(k)j

· act′(z(k)j)

=

(
∑s

∂c(n)

∂ z(k+1)
s
· ∂ z(k+1)

s

∂a(k)j

)
act′(z(k)j)

=

(
∑s δ

(k+1)
s · ∂ ∑i W(k+1)

i,s a(k)i

∂a(k)j

)
act′(z(k)j)

=
(

∑s δ
(k+1)
s ·W(k+1)

j,s

)
act′(z(k)j)

Theorem (Chain Rule)

Let g : R→ Rd and f : Rd→ R, then f

(f ◦g)′(x) = f ′(g(x))g′(x) = ∇f (g(x))⊤

 g′1(x)
...

g′d(x)

 .

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 22 / 51

Backward Pass II
When k < L, we have

δ
(k)
j = ∂c(n)

∂ z(k)j

= ∂c(n)

∂a(k)j

· ∂a(k)j

∂ z(k)j

= ∂c(n)

∂a(k)j

· act′(z(k)j)

=

(
∑s

∂c(n)

∂ z(k+1)
s
· ∂ z(k+1)

s

∂a(k)j

)
act′(z(k)j)

=

(
∑s δ

(k+1)
s · ∂ ∑i W(k+1)

i,s a(k)i

∂a(k)j

)
act′(z(k)j)

=
(

∑s δ
(k+1)
s ·W(k+1)

j,s

)
act′(z(k)j)

Theorem (Chain Rule)

Let g : R→ Rd and f : Rd→ R, then f

(f ◦g)′(x) = f ′(g(x))g′(x) = ∇f (g(x))⊤

 g′1(x)
...

g′d(x)

 .

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 22 / 51

Backward Pass III

δ
(k)
j =

(
∑

s
δ
(k+1)
s ·W(k+1)

j,s

)
act′(z(k)j)

We can evaluate all δ
(k)
j ’s starting from the deepest layer

The information propagate along a new kind of feedforward network:

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 23 / 51

Backward Pass III

δ
(k)
j =

(
∑

s
δ
(k+1)
s ·W(k+1)

j,s

)
act′(z(k)j)

We can evaluate all δ
(k)
j ’s starting from the deepest layer

The information propagate along a new kind of feedforward network:

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 23 / 51

Backward Pass III

δ
(k)
j =

(
∑

s
δ
(k+1)
s ·W(k+1)

j,s

)
act′(z(k)j)

We can evaluate all δ
(k)
j ’s starting from the deepest layer

The information propagate along a new kind of feedforward network:

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 23 / 51

Backprop Algorithm (Minibatch Size M = 1)

Input: (x(n),y(n)) and Θ(t)

Forward pass:
a(0)←

[
1 x(n)

]⊤
;

for k← 1 to L do
z(k)←W(k)⊤a(k−1) ;
a(k)← act(z(k)) ;

end
Backward pass:
Compute error signal δ

(L) (e.g., (1−2y(n))σ((1−2y(n))z(L)) in
binary classification)

for k← L−1 to 1 do
δ
(k)← act′(z(k))⊙ (W(k+1)

δ
(k+1)) ;

end
Return ∂c(n)

∂W(k) = a(k−1)⊗δ
(k) for all k

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 24 / 51

Backprop Algorithm (Minibatch Size M > 1)

Input: {(x(n),y(n))}M
n=1 and Θ(t)

Forward pass:
A(0)←

[
a(0,1) · · · a(0,M)

]⊤
;

for k← 1 to L do
Z(k)← A(k−1)W(k) ;
A(k)← act(Z(k)) ;

end
Backward pass:
Compute error signals

∆(L) =
[

δ
(L,0) · · · δ

(L,M)
]⊤

for k← L−1 to 1 do
∆
(k)← act′(Z(k))⊙ (∆(k+1)W(k+1)⊤) ;

end
Return ∂c(n)

∂W(k) = ∑
M
n=1 a(k−1,n)⊗δ

(k,n) for all
k

Speed up with
GPUs?
Large width (D(k))
at each layer
Large batch size

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 25 / 51

Backprop Algorithm (Minibatch Size M > 1)

Input: {(x(n),y(n))}M
n=1 and Θ(t)

Forward pass:
A(0)←

[
a(0,1) · · · a(0,M)

]⊤
;

for k← 1 to L do
Z(k)← A(k−1)W(k) ;
A(k)← act(Z(k)) ;

end
Backward pass:
Compute error signals

∆(L) =
[

δ
(L,0) · · · δ

(L,M)
]⊤

for k← L−1 to 1 do
∆
(k)← act′(Z(k))⊙ (∆(k+1)W(k+1)⊤) ;

end
Return ∂c(n)

∂W(k) = ∑
M
n=1 a(k−1,n)⊗δ

(k,n) for all
k

Speed up with
GPUs?

Large width (D(k))
at each layer
Large batch size

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 25 / 51

Backprop Algorithm (Minibatch Size M > 1)

Input: {(x(n),y(n))}M
n=1 and Θ(t)

Forward pass:
A(0)←

[
a(0,1) · · · a(0,M)

]⊤
;

for k← 1 to L do
Z(k)← A(k−1)W(k) ;
A(k)← act(Z(k)) ;

end
Backward pass:
Compute error signals

∆(L) =
[

δ
(L,0) · · · δ

(L,M)
]⊤

for k← L−1 to 1 do
∆
(k)← act′(Z(k))⊙ (∆(k+1)W(k+1)⊤) ;

end
Return ∂c(n)

∂W(k) = ∑
M
n=1 a(k−1,n)⊗δ

(k,n) for all
k

Speed up with
GPUs?
Large width (D(k))
at each layer

Large batch size

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 25 / 51

Backprop Algorithm (Minibatch Size M > 1)

Input: {(x(n),y(n))}M
n=1 and Θ(t)

Forward pass:
A(0)←

[
a(0,1) · · · a(0,M)

]⊤
;

for k← 1 to L do
Z(k)← A(k−1)W(k) ;
A(k)← act(Z(k)) ;

end
Backward pass:
Compute error signals

∆(L) =
[

δ
(L,0) · · · δ

(L,M)
]⊤

for k← L−1 to 1 do
∆
(k)← act′(Z(k))⊙ (∆(k+1)W(k+1)⊤) ;

end
Return ∂c(n)

∂W(k) = ∑
M
n=1 a(k−1,n)⊗δ

(k,n) for all
k

Speed up with
GPUs?
Large width (D(k))
at each layer
Large batch size

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 25 / 51

Outline

1 The Basics
Example: Learning the XOR

2 Training
Back Propagation

3 Neuron Design
Cost Function & Output Neurons
Hidden Neurons

4 Architecture Design
Architecture Tuning

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 26 / 51

Neuron Design

The design of modern neurons is largely influenced by how an NN is
trained

Maximum likelihood principle:

argmax
Θ

logP(X |Θ) = argmin
Θ

∑
i
− logP(y(i) |x(i),Θ)

Universal cost function
Different output units for different P(y |x)

Gradient-based optimization:
During SGD, the gradient

∂c(n)

∂W(k)
i,j

=
∂c(n)

∂ z(k)j

·
∂ z(k)j

∂W(k)
i,j

= δ
(k)
j

∂ z(k)j

∂W(k)
i,j

should be sufficiently large before we get a satisfactory NN

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 27 / 51

Neuron Design

The design of modern neurons is largely influenced by how an NN is
trained
Maximum likelihood principle:

argmax
Θ

logP(X |Θ) = argmin
Θ

∑
i
− logP(y(i) |x(i),Θ)

Universal cost function

Different output units for different P(y |x)
Gradient-based optimization:

During SGD, the gradient

∂c(n)

∂W(k)
i,j

=
∂c(n)

∂ z(k)j

·
∂ z(k)j

∂W(k)
i,j

= δ
(k)
j

∂ z(k)j

∂W(k)
i,j

should be sufficiently large before we get a satisfactory NN

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 27 / 51

Neuron Design

The design of modern neurons is largely influenced by how an NN is
trained
Maximum likelihood principle:

argmax
Θ

logP(X |Θ) = argmin
Θ

∑
i
− logP(y(i) |x(i),Θ)

Universal cost function
Different output units for different P(y |x)

Gradient-based optimization:
During SGD, the gradient

∂c(n)

∂W(k)
i,j

=
∂c(n)

∂ z(k)j

·
∂ z(k)j

∂W(k)
i,j

= δ
(k)
j

∂ z(k)j

∂W(k)
i,j

should be sufficiently large before we get a satisfactory NN

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 27 / 51

Neuron Design

The design of modern neurons is largely influenced by how an NN is
trained
Maximum likelihood principle:

argmax
Θ

logP(X |Θ) = argmin
Θ

∑
i
− logP(y(i) |x(i),Θ)

Universal cost function
Different output units for different P(y |x)

Gradient-based optimization:
During SGD, the gradient

∂c(n)

∂W(k)
i,j

=
∂c(n)

∂ z(k)j

·
∂ z(k)j

∂W(k)
i,j

= δ
(k)
j

∂ z(k)j

∂W(k)
i,j

should be sufficiently large before we get a satisfactory NN

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 27 / 51

Outline

1 The Basics
Example: Learning the XOR

2 Training
Back Propagation

3 Neuron Design
Cost Function & Output Neurons
Hidden Neurons

4 Architecture Design
Architecture Tuning

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 28 / 51

Negative Log Likelihood and Cross Entropy

The cost function of most NNs:

argmax
Θ

logP(X |Θ) = argmin
Θ

∑
i
− logP(y(i) |x(i),Θ)

For NNs that output an entire distribution P̂(y |x), the problem can be
equivalently described as minimizing the cross entropy (or KL
divergence) from P̂ to the empirical distribution of data:

argmin
P̂
−E(x,y)∼Empirical(X)

[
log P̂(y |x)

]
Provides a consistent way to define output units

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 29 / 51

Negative Log Likelihood and Cross Entropy

The cost function of most NNs:

argmax
Θ

logP(X |Θ) = argmin
Θ

∑
i
− logP(y(i) |x(i),Θ)

For NNs that output an entire distribution P̂(y |x), the problem can be
equivalently described as minimizing the cross entropy (or KL
divergence) from P̂ to the empirical distribution of data:

argmin
P̂
−E(x,y)∼Empirical(X)

[
log P̂(y |x)

]

Provides a consistent way to define output units

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 29 / 51

Negative Log Likelihood and Cross Entropy

The cost function of most NNs:

argmax
Θ

logP(X |Θ) = argmin
Θ

∑
i
− logP(y(i) |x(i),Θ)

For NNs that output an entire distribution P̂(y |x), the problem can be
equivalently described as minimizing the cross entropy (or KL
divergence) from P̂ to the empirical distribution of data:

argmin
P̂
−E(x,y)∼Empirical(X)

[
log P̂(y |x)

]
Provides a consistent way to define output units

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 29 / 51

Sigmoid Units for Bernoulli Output Distributions

In binary classification, we assuming P(y = 1 |x)∼ Bernoulli(ρ)
y ∈ {0,1} and ρ ∈ (0,1)

Sigmoid output unit:

a(L) = ρ̂ = σ(z(L)) =
exp(z(L))

exp(z(L))+1

δ (L) = ∂c(n)

∂ z(L)
= ∂−log P̂(y(n) |x(n);Θ)

∂ z(L)
= (1−2y(n))σ((1−2y(n))z(L))

Close to 0 only when y(n) = 1 and z(L) is large positive; or y(n) = 0 and
z(L) is small negative

The loss c(n) saturates (becomes flat) only when ρ̂ is “correct”

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 30 / 51

Sigmoid Units for Bernoulli Output Distributions

In binary classification, we assuming P(y = 1 |x)∼ Bernoulli(ρ)
y ∈ {0,1} and ρ ∈ (0,1)

Sigmoid output unit:

a(L) = ρ̂ = σ(z(L)) =
exp(z(L))

exp(z(L))+1

δ (L) = ∂c(n)

∂ z(L)
= ∂−log P̂(y(n) |x(n);Θ)

∂ z(L)
= (1−2y(n))σ((1−2y(n))z(L))

Close to 0 only when y(n) = 1 and z(L) is large positive; or y(n) = 0 and
z(L) is small negative

The loss c(n) saturates (becomes flat) only when ρ̂ is “correct”

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 30 / 51

Sigmoid Units for Bernoulli Output Distributions

In binary classification, we assuming P(y = 1 |x)∼ Bernoulli(ρ)
y ∈ {0,1} and ρ ∈ (0,1)

Sigmoid output unit:

a(L) = ρ̂ = σ(z(L)) =
exp(z(L))

exp(z(L))+1

δ (L) = ∂c(n)

∂ z(L)
= ∂−log P̂(y(n) |x(n);Θ)

∂ z(L)
= (1−2y(n))σ((1−2y(n))z(L))

Close to 0 only when y(n) = 1 and z(L) is large positive;

or y(n) = 0 and
z(L) is small negative

The loss c(n) saturates (becomes flat) only when ρ̂ is “correct”

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 30 / 51

Sigmoid Units for Bernoulli Output Distributions

In binary classification, we assuming P(y = 1 |x)∼ Bernoulli(ρ)
y ∈ {0,1} and ρ ∈ (0,1)

Sigmoid output unit:

a(L) = ρ̂ = σ(z(L)) =
exp(z(L))

exp(z(L))+1

δ (L) = ∂c(n)

∂ z(L)
= ∂−log P̂(y(n) |x(n);Θ)

∂ z(L)
= (1−2y(n))σ((1−2y(n))z(L))

Close to 0 only when y(n) = 1 and z(L) is large positive; or y(n) = 0 and
z(L) is small negative

The loss c(n) saturates (becomes flat) only when ρ̂ is “correct”

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 30 / 51

Sigmoid Units for Bernoulli Output Distributions

In binary classification, we assuming P(y = 1 |x)∼ Bernoulli(ρ)
y ∈ {0,1} and ρ ∈ (0,1)

Sigmoid output unit:

a(L) = ρ̂ = σ(z(L)) =
exp(z(L))

exp(z(L))+1

δ (L) = ∂c(n)

∂ z(L)
= ∂−log P̂(y(n) |x(n);Θ)

∂ z(L)
= (1−2y(n))σ((1−2y(n))z(L))

Close to 0 only when y(n) = 1 and z(L) is large positive; or y(n) = 0 and
z(L) is small negative

The loss c(n) saturates (becomes flat) only when ρ̂ is “correct”

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 30 / 51

Softmax Units for Categorical Output
Distributions I

In multiclass classification, we can assume that
P(y |x)∼ Categorical(ρ), where y,ρ ∈ RK and 1⊤ρ = 1

Softmax units:

a(L)j = ρ̂j = sofmax(z(L))j =
exp(z(L)j)

∑
K
i=1 exp(z(L)i)

Actually, to define a Categorical distribution, we only need
ρ1, · · · ,ρK−1 (ρK = 1−∑

K−1
i=1 ρi can be discarded)

We can alternatively define K−1 output units (discarding
a(L)K = ρ̂K = 1):

a(L)j = ρ̂j =
exp(z(L)j)

∑
K−1
i=1 exp(z(L)i)+1

that is a direct generalization of σ in binary classification
In practice, the two versions make little difference

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 31 / 51

Softmax Units for Categorical Output
Distributions I

In multiclass classification, we can assume that
P(y |x)∼ Categorical(ρ), where y,ρ ∈ RK and 1⊤ρ = 1
Softmax units:

a(L)j = ρ̂j = sofmax(z(L))j =
exp(z(L)j)

∑
K
i=1 exp(z(L)i)

Actually, to define a Categorical distribution, we only need
ρ1, · · · ,ρK−1 (ρK = 1−∑

K−1
i=1 ρi can be discarded)

We can alternatively define K−1 output units (discarding
a(L)K = ρ̂K = 1):

a(L)j = ρ̂j =
exp(z(L)j)

∑
K−1
i=1 exp(z(L)i)+1

that is a direct generalization of σ in binary classification
In practice, the two versions make little difference

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 31 / 51

Softmax Units for Categorical Output
Distributions I

In multiclass classification, we can assume that
P(y |x)∼ Categorical(ρ), where y,ρ ∈ RK and 1⊤ρ = 1
Softmax units:

a(L)j = ρ̂j = sofmax(z(L))j =
exp(z(L)j)

∑
K
i=1 exp(z(L)i)

Actually, to define a Categorical distribution, we only need
ρ1, · · · ,ρK−1 (ρK = 1−∑

K−1
i=1 ρi can be discarded)

We can alternatively define K−1 output units (discarding
a(L)K = ρ̂K = 1):

a(L)j = ρ̂j =
exp(z(L)j)

∑
K−1
i=1 exp(z(L)i)+1

that is a direct generalization of σ in binary classification
In practice, the two versions make little difference

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 31 / 51

Softmax Units for Categorical Output
Distributions I

In multiclass classification, we can assume that
P(y |x)∼ Categorical(ρ), where y,ρ ∈ RK and 1⊤ρ = 1
Softmax units:

a(L)j = ρ̂j = sofmax(z(L))j =
exp(z(L)j)

∑
K
i=1 exp(z(L)i)

Actually, to define a Categorical distribution, we only need
ρ1, · · · ,ρK−1 (ρK = 1−∑

K−1
i=1 ρi can be discarded)

We can alternatively define K−1 output units (discarding
a(L)K = ρ̂K = 1):

a(L)j = ρ̂j =
exp(z(L)j)

∑
K−1
i=1 exp(z(L)i)+1

that is a direct generalization of σ in binary classification

In practice, the two versions make little difference

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 31 / 51

Softmax Units for Categorical Output
Distributions I

In multiclass classification, we can assume that
P(y |x)∼ Categorical(ρ), where y,ρ ∈ RK and 1⊤ρ = 1
Softmax units:

a(L)j = ρ̂j = sofmax(z(L))j =
exp(z(L)j)

∑
K
i=1 exp(z(L)i)

Actually, to define a Categorical distribution, we only need
ρ1, · · · ,ρK−1 (ρK = 1−∑

K−1
i=1 ρi can be discarded)

We can alternatively define K−1 output units (discarding
a(L)K = ρ̂K = 1):

a(L)j = ρ̂j =
exp(z(L)j)

∑
K−1
i=1 exp(z(L)i)+1

that is a direct generalization of σ in binary classification
In practice, the two versions make little difference

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 31 / 51

Softmax Units for Categorical Output
Distributions II

Now we have

δ
(L)
j =

∂c(n)

∂ z(L)j

=
∂ − log P̂(y(n) |x(n);Θ)

∂ z(L)j

=
∂ − log

(
∏i ρ̂

1(y(n);y(n)=i)
i

)
∂ z(L)j

If y(n) = j, then δ
(L)
j =− ∂ log ρ̂j

∂ z(L)j

=− 1
ρ̂j

(
ρ̂j− ρ̂2

j

)
= ρ̂j−1

δ
(L)
j is close to 0 only when ρ̂j is “correct”

In this case, z(L)j dominates among all z(L)i ’s

If y(n) = i ̸= j, then δ
(L)
j =− ∂ log ρ̂i

∂ z(L)j

=− 1
ρ̂i
(−ρ̂iρ̂j) = ρ̂j

Again, close to 0 only when ρ̂j is “correct”

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 32 / 51

Softmax Units for Categorical Output
Distributions II

Now we have

δ
(L)
j =

∂c(n)

∂ z(L)j

=
∂ − log P̂(y(n) |x(n);Θ)

∂ z(L)j

=
∂ − log

(
∏i ρ̂

1(y(n);y(n)=i)
i

)
∂ z(L)j

If y(n) = j, then δ
(L)
j =− ∂ log ρ̂j

∂ z(L)j

=− 1
ρ̂j

(
ρ̂j− ρ̂2

j

)
= ρ̂j−1

δ
(L)
j is close to 0 only when ρ̂j is “correct”

In this case, z(L)j dominates among all z(L)i ’s

If y(n) = i ̸= j, then δ
(L)
j =− ∂ log ρ̂i

∂ z(L)j

=− 1
ρ̂i
(−ρ̂iρ̂j) = ρ̂j

Again, close to 0 only when ρ̂j is “correct”

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 32 / 51

Softmax Units for Categorical Output
Distributions II

Now we have

δ
(L)
j =

∂c(n)

∂ z(L)j

=
∂ − log P̂(y(n) |x(n);Θ)

∂ z(L)j

=
∂ − log

(
∏i ρ̂

1(y(n);y(n)=i)
i

)
∂ z(L)j

If y(n) = j, then δ
(L)
j =− ∂ log ρ̂j

∂ z(L)j

=− 1
ρ̂j

(
ρ̂j− ρ̂2

j

)
= ρ̂j−1

δ
(L)
j is close to 0 only when ρ̂j is “correct”

In this case, z(L)j dominates among all z(L)i ’s

If y(n) = i ̸= j, then δ
(L)
j =− ∂ log ρ̂i

∂ z(L)j

=− 1
ρ̂i
(−ρ̂iρ̂j) = ρ̂j

Again, close to 0 only when ρ̂j is “correct”

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 32 / 51

Softmax Units for Categorical Output
Distributions II

Now we have

δ
(L)
j =

∂c(n)

∂ z(L)j

=
∂ − log P̂(y(n) |x(n);Θ)

∂ z(L)j

=
∂ − log

(
∏i ρ̂

1(y(n);y(n)=i)
i

)
∂ z(L)j

If y(n) = j, then δ
(L)
j =− ∂ log ρ̂j

∂ z(L)j

=− 1
ρ̂j

(
ρ̂j− ρ̂2

j

)
= ρ̂j−1

δ
(L)
j is close to 0 only when ρ̂j is “correct”

In this case, z(L)j dominates among all z(L)i ’s

If y(n) = i ̸= j, then δ
(L)
j =− ∂ log ρ̂i

∂ z(L)j

=− 1
ρ̂i
(−ρ̂iρ̂j) = ρ̂j

Again, close to 0 only when ρ̂j is “correct”

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 32 / 51

Softmax Units for Categorical Output
Distributions II

Now we have

δ
(L)
j =

∂c(n)

∂ z(L)j

=
∂ − log P̂(y(n) |x(n);Θ)

∂ z(L)j

=
∂ − log

(
∏i ρ̂

1(y(n);y(n)=i)
i

)
∂ z(L)j

If y(n) = j, then δ
(L)
j =− ∂ log ρ̂j

∂ z(L)j

=− 1
ρ̂j

(
ρ̂j− ρ̂2

j

)
= ρ̂j−1

δ
(L)
j is close to 0 only when ρ̂j is “correct”

In this case, z(L)j dominates among all z(L)i ’s

If y(n) = i ̸= j, then δ
(L)
j =− ∂ log ρ̂i

∂ z(L)j

=− 1
ρ̂i
(−ρ̂iρ̂j) = ρ̂j

Again, close to 0 only when ρ̂j is “correct”

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 32 / 51

Linear Units for Gaussian Means

An NN can also output just one conditional statistic of y given x

For example, we can assume P(y |x)∼N (µ,Σ) for regression
How to design output neurons if we want to predict the mean µ̂?
Linear units:

a(L) = µ̂ = z(L)

We have

δ
(L) =

∂c(n)

∂ z(L)
=

∂ − logN (y(n); µ̂,Σ)

∂ z(L)

Let Σ = I, maximizing the log-likelihood is equivalent to minimizing
the SSE/MSE

δ
(L) = ∂∥y(n)− z(L)∥2/∂ z(L) (see linear regression)

Linear units do not saturate, so they pose little difficulty for gradient
based optimization

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 33 / 51

Linear Units for Gaussian Means

An NN can also output just one conditional statistic of y given x
For example, we can assume P(y |x)∼N (µ,Σ) for regression

How to design output neurons if we want to predict the mean µ̂?
Linear units:

a(L) = µ̂ = z(L)

We have

δ
(L) =

∂c(n)

∂ z(L)
=

∂ − logN (y(n); µ̂,Σ)

∂ z(L)

Let Σ = I, maximizing the log-likelihood is equivalent to minimizing
the SSE/MSE

δ
(L) = ∂∥y(n)− z(L)∥2/∂ z(L) (see linear regression)

Linear units do not saturate, so they pose little difficulty for gradient
based optimization

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 33 / 51

Linear Units for Gaussian Means

An NN can also output just one conditional statistic of y given x
For example, we can assume P(y |x)∼N (µ,Σ) for regression
How to design output neurons if we want to predict the mean µ̂?

Linear units:
a(L) = µ̂ = z(L)

We have

δ
(L) =

∂c(n)

∂ z(L)
=

∂ − logN (y(n); µ̂,Σ)

∂ z(L)

Let Σ = I, maximizing the log-likelihood is equivalent to minimizing
the SSE/MSE

δ
(L) = ∂∥y(n)− z(L)∥2/∂ z(L) (see linear regression)

Linear units do not saturate, so they pose little difficulty for gradient
based optimization

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 33 / 51

Linear Units for Gaussian Means

An NN can also output just one conditional statistic of y given x
For example, we can assume P(y |x)∼N (µ,Σ) for regression
How to design output neurons if we want to predict the mean µ̂?
Linear units:

a(L) = µ̂ = z(L)

We have

δ
(L) =

∂c(n)

∂ z(L)
=

∂ − logN (y(n); µ̂,Σ)

∂ z(L)

Let Σ = I, maximizing the log-likelihood is equivalent to minimizing
the SSE/MSE

δ
(L) = ∂∥y(n)− z(L)∥2/∂ z(L) (see linear regression)

Linear units do not saturate, so they pose little difficulty for gradient
based optimization

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 33 / 51

Linear Units for Gaussian Means

An NN can also output just one conditional statistic of y given x
For example, we can assume P(y |x)∼N (µ,Σ) for regression
How to design output neurons if we want to predict the mean µ̂?
Linear units:

a(L) = µ̂ = z(L)

We have

δ
(L) =

∂c(n)

∂ z(L)
=

∂ − logN (y(n); µ̂,Σ)

∂ z(L)

Let Σ = I, maximizing the log-likelihood is equivalent to minimizing
the SSE/MSE

δ
(L) = ∂∥y(n)− z(L)∥2/∂ z(L) (see linear regression)

Linear units do not saturate, so they pose little difficulty for gradient
based optimization

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 33 / 51

Linear Units for Gaussian Means

An NN can also output just one conditional statistic of y given x
For example, we can assume P(y |x)∼N (µ,Σ) for regression
How to design output neurons if we want to predict the mean µ̂?
Linear units:

a(L) = µ̂ = z(L)

We have

δ
(L) =

∂c(n)

∂ z(L)
=

∂ − logN (y(n); µ̂,Σ)

∂ z(L)

Let Σ = I, maximizing the log-likelihood is equivalent to minimizing
the SSE/MSE

δ
(L) = ∂∥y(n)− z(L)∥2/∂ z(L) (see linear regression)

Linear units do not saturate, so they pose little difficulty for gradient
based optimization

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 33 / 51

Outline

1 The Basics
Example: Learning the XOR

2 Training
Back Propagation

3 Neuron Design
Cost Function & Output Neurons
Hidden Neurons

4 Architecture Design
Architecture Tuning

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 34 / 51

Design Considerations

Most units differ from each other only in activation functions:

a(k) = act(z(k)) = act(W(k)⊤a(k−1))

Why use ReLU as default hidden units?
act(z(k)) = max(0,z(k))

Why not, for example, use Sigmoid as hidden units?

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 35 / 51

Design Considerations

Most units differ from each other only in activation functions:

a(k) = act(z(k)) = act(W(k)⊤a(k−1))

Why use ReLU as default hidden units?
act(z(k)) = max(0,z(k))

Why not, for example, use Sigmoid as hidden units?

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 35 / 51

Design Considerations

Most units differ from each other only in activation functions:

a(k) = act(z(k)) = act(W(k)⊤a(k−1))

Why use ReLU as default hidden units?
act(z(k)) = max(0,z(k))

Why not, for example, use Sigmoid as hidden units?

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 35 / 51

Vanishing Gradient Problem

In backward pass of Backprop:

δ
(k)
j =

(
∑

s
δ
(k+1)
s ·W(k+1)

j,s

)
act′(z(k)j)

If act′(·) = σ ′(·)< 1, then δ
(k)
j becomes

smaller and smaller during backward pass
The surface of cost function becomes very
flat at shallow layers
Slows down the learning speed of entire
network

Weights at deeper layers depend on those
in shallow ones

Numeric problems, e.g., underflow

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 36 / 51

Vanishing Gradient Problem

In backward pass of Backprop:

δ
(k)
j =

(
∑

s
δ
(k+1)
s ·W(k+1)

j,s

)
act′(z(k)j)

If act′(·) = σ ′(·)< 1, then δ
(k)
j becomes

smaller and smaller during backward pass

The surface of cost function becomes very
flat at shallow layers
Slows down the learning speed of entire
network

Weights at deeper layers depend on those
in shallow ones

Numeric problems, e.g., underflow

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 36 / 51

Vanishing Gradient Problem

In backward pass of Backprop:

δ
(k)
j =

(
∑

s
δ
(k+1)
s ·W(k+1)

j,s

)
act′(z(k)j)

If act′(·) = σ ′(·)< 1, then δ
(k)
j becomes

smaller and smaller during backward pass
The surface of cost function becomes very
flat at shallow layers

Slows down the learning speed of entire
network

Weights at deeper layers depend on those
in shallow ones

Numeric problems, e.g., underflow

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 36 / 51

Vanishing Gradient Problem

In backward pass of Backprop:

δ
(k)
j =

(
∑

s
δ
(k+1)
s ·W(k+1)

j,s

)
act′(z(k)j)

If act′(·) = σ ′(·)< 1, then δ
(k)
j becomes

smaller and smaller during backward pass
The surface of cost function becomes very
flat at shallow layers
Slows down the learning speed of entire
network

Weights at deeper layers depend on those
in shallow ones

Numeric problems, e.g., underflow

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 36 / 51

Vanishing Gradient Problem

In backward pass of Backprop:

δ
(k)
j =

(
∑

s
δ
(k+1)
s ·W(k+1)

j,s

)
act′(z(k)j)

If act′(·) = σ ′(·)< 1, then δ
(k)
j becomes

smaller and smaller during backward pass
The surface of cost function becomes very
flat at shallow layers
Slows down the learning speed of entire
network

Weights at deeper layers depend on those
in shallow ones

Numeric problems, e.g., underflow

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 36 / 51

ReLU I

act′(z(k)) =
{

1, if z(k) > 0
0, otherwise

No vanishing gradients

δ
(k)
j =

(
∑

s
δ
(k+1)
s ·W(k+1)

j,s

)
act′(z(k)j)

What if z(k) = 0?
In practice, we usually assign 1 or 0 randomly

Floating points are not precise anyway

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 37 / 51

ReLU I

act′(z(k)) =
{

1, if z(k) > 0
0, otherwise

No vanishing gradients

δ
(k)
j =

(
∑

s
δ
(k+1)
s ·W(k+1)

j,s

)
act′(z(k)j)

What if z(k) = 0?
In practice, we usually assign 1 or 0 randomly

Floating points are not precise anyway

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 37 / 51

ReLU I

act′(z(k)) =
{

1, if z(k) > 0
0, otherwise

No vanishing gradients

δ
(k)
j =

(
∑

s
δ
(k+1)
s ·W(k+1)

j,s

)
act′(z(k)j)

What if z(k) = 0?

In practice, we usually assign 1 or 0 randomly
Floating points are not precise anyway

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 37 / 51

ReLU I

act′(z(k)) =
{

1, if z(k) > 0
0, otherwise

No vanishing gradients

δ
(k)
j =

(
∑

s
δ
(k+1)
s ·W(k+1)

j,s

)
act′(z(k)j)

What if z(k) = 0?
In practice, we usually assign 1 or 0 randomly

Floating points are not precise anyway

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 37 / 51

ReLU II
Why piecewise linear?

To avoid vanishing gradient, we can modify σ(·) to make it steeper at
middle such that σ ′(·)> 1

The second derivative ReLU′′(·) is 0 everywhere
Eliminates the second-order effects and makes the gradient-based
optimization more useful (than, e.g., Newton methods)

Problem: for neurons with δ
(k)
j = 0, theirs weights W(k)

:,j will not be
updated

∂c(n)

∂W(k)
i,j

= δ
(k) ∂ z(k)j

∂W(k)
i,j

Improvement?

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 38 / 51

ReLU II
Why piecewise linear?

To avoid vanishing gradient, we can modify σ(·) to make it steeper at
middle such that σ ′(·)> 1

The second derivative ReLU′′(·) is 0 everywhere
Eliminates the second-order effects and makes the gradient-based
optimization more useful (than, e.g., Newton methods)

Problem: for neurons with δ
(k)
j = 0, theirs weights W(k)

:,j will not be
updated

∂c(n)

∂W(k)
i,j

= δ
(k) ∂ z(k)j

∂W(k)
i,j

Improvement?

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 38 / 51

ReLU II
Why piecewise linear?

To avoid vanishing gradient, we can modify σ(·) to make it steeper at
middle such that σ ′(·)> 1

The second derivative ReLU′′(·) is 0 everywhere
Eliminates the second-order effects and makes the gradient-based
optimization more useful (than, e.g., Newton methods)

Problem: for neurons with δ
(k)
j = 0, theirs weights W(k)

:,j will not be
updated

∂c(n)

∂W(k)
i,j

= δ
(k) ∂ z(k)j

∂W(k)
i,j

Improvement?
Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 38 / 51

Leaky/Parametric ReLU

act(z(k)) = max(α · z(k),z(k)),

for some α ∈ R

Leaky ReLU: α is set in advance (fixed during training)
Usually a small value
Or domain-specific

Example: absolute value rectification α =−1
Used for object recognition from images
Seek features that are invariant under a polarity reversal of the input
illumination

Parametric ReLU (PReLU): α learned automatically by gradient
descent

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 39 / 51

Leaky/Parametric ReLU

act(z(k)) = max(α · z(k),z(k)),

for some α ∈ R

Leaky ReLU: α is set in advance (fixed during training)
Usually a small value
Or domain-specific

Example: absolute value rectification α =−1
Used for object recognition from images
Seek features that are invariant under a polarity reversal of the input
illumination

Parametric ReLU (PReLU): α learned automatically by gradient
descent

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 39 / 51

Leaky/Parametric ReLU

act(z(k)) = max(α · z(k),z(k)),

for some α ∈ R

Leaky ReLU: α is set in advance (fixed during training)
Usually a small value
Or domain-specific

Example: absolute value rectification α =−1
Used for object recognition from images
Seek features that are invariant under a polarity reversal of the input
illumination

Parametric ReLU (PReLU): α learned automatically by gradient
descent

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 39 / 51

Maxout Units I
Maxout units generalize ReLU variants further:

act(z(k))j = max
s

zj,s

a(k−1) is linearly mapped to multiple groups of z(k)j,: ’s

Learns a piecewise linear, convex activation function automatically
Covers both leaky ReLU and PReLU

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 40 / 51

Maxout Units I
Maxout units generalize ReLU variants further:

act(z(k))j = max
s

zj,s

a(k−1) is linearly mapped to multiple groups of z(k)j,: ’s

Learns a piecewise linear, convex activation function automatically
Covers both leaky ReLU and PReLU

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 40 / 51

Maxout Units II

How to train an NN with maxout units?

Given a training example
(x(n),y(n)), update the weights
that corresponds to the winning
z(k)j,s ’s for this example
Different examples may update
different parts of the network

Offers some “redundancy” that helps to resist the catastrophic
forgetting phenomenon [2]

An NN may forget how to perform tasks that they were trained on in
the past

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 41 / 51

Maxout Units II

How to train an NN with maxout units?

Given a training example
(x(n),y(n)), update the weights
that corresponds to the winning
z(k)j,s ’s for this example

Different examples may update
different parts of the network

Offers some “redundancy” that helps to resist the catastrophic
forgetting phenomenon [2]

An NN may forget how to perform tasks that they were trained on in
the past

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 41 / 51

Maxout Units II

How to train an NN with maxout units?

Given a training example
(x(n),y(n)), update the weights
that corresponds to the winning
z(k)j,s ’s for this example
Different examples may update
different parts of the network

Offers some “redundancy” that helps to resist the catastrophic
forgetting phenomenon [2]

An NN may forget how to perform tasks that they were trained on in
the past

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 41 / 51

Maxout Units II

How to train an NN with maxout units?

Given a training example
(x(n),y(n)), update the weights
that corresponds to the winning
z(k)j,s ’s for this example
Different examples may update
different parts of the network

Offers some “redundancy” that helps to resist the catastrophic
forgetting phenomenon [2]

An NN may forget how to perform tasks that they were trained on in
the past

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 41 / 51

Maxout Units III

Cons?

Each maxout unit is now parametrized by multiple weight vectors
instead of just one
Typically requires more training data
Otherwise, regularization is needed

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 42 / 51

Maxout Units III

Cons?
Each maxout unit is now parametrized by multiple weight vectors
instead of just one

Typically requires more training data
Otherwise, regularization is needed

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 42 / 51

Maxout Units III

Cons?
Each maxout unit is now parametrized by multiple weight vectors
instead of just one
Typically requires more training data
Otherwise, regularization is needed

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 42 / 51

Outline

1 The Basics
Example: Learning the XOR

2 Training
Back Propagation

3 Neuron Design
Cost Function & Output Neurons
Hidden Neurons

4 Architecture Design
Architecture Tuning

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 43 / 51

Architecture Design

Thin-and-deep or fat-and-shallow?

Theorem (Universal Approximation Theorem [4, 5])

A feedforward network with at least one hidden layer can approximate any
continuous function (on a closed and bounded subset of RD) or any
function mapping from a finite dimensional discrete space to another.

In short, a feedforward network with a single layer is sufficient to
represent any function
Why going deep?

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 44 / 51

Architecture Design

Thin-and-deep or fat-and-shallow?

Theorem (Universal Approximation Theorem [4, 5])

A feedforward network with at least one hidden layer can approximate any
continuous function (on a closed and bounded subset of RD) or any
function mapping from a finite dimensional discrete space to another.

In short, a feedforward network with a single layer is sufficient to
represent any function

Why going deep?

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 44 / 51

Architecture Design

Thin-and-deep or fat-and-shallow?

Theorem (Universal Approximation Theorem [4, 5])

A feedforward network with at least one hidden layer can approximate any
continuous function (on a closed and bounded subset of RD) or any
function mapping from a finite dimensional discrete space to another.

In short, a feedforward network with a single layer is sufficient to
represent any function
Why going deep?

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 44 / 51

Exponential Gain in Number of Hidden Units

Functions representable with a deep rectifier NN require an
exponential number of hidden units in a shallow NN [6]

Example: an NN with absolute value rectification units

Each hidden unit specifies where to fold the input space in order to
create mirror responses (on both sides of the absolute value)
By composing these folding operations, we obtain an exponentially
large number of piecewise linear regions which can capture all kinds of
regular (e.g., repeating) patterns

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 45 / 51

Exponential Gain in Number of Hidden Units

Functions representable with a deep rectifier NN require an
exponential number of hidden units in a shallow NN [6]
Example: an NN with absolute value rectification units

Each hidden unit specifies where to fold the input space in order to
create mirror responses (on both sides of the absolute value)
By composing these folding operations, we obtain an exponentially
large number of piecewise linear regions which can capture all kinds of
regular (e.g., repeating) patterns

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 45 / 51

Deep ReLU Networks

Activation-constant regions vs. output values [3]

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 46 / 51

Architecture as Prior Knowledge
Choosing a deep model also encodes a very general belief that the
function we want to learn should involve composition of several
simpler functions

If valid, deep NNs give better generalizability
When is the assumption valid? E.g., image recognition, natural
language processing, etc.

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 47 / 51

Architecture as Prior Knowledge
Choosing a deep model also encodes a very general belief that the
function we want to learn should involve composition of several
simpler functions

If valid, deep NNs give better generalizability

When is the assumption valid? E.g., image recognition, natural
language processing, etc.

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 47 / 51

Architecture as Prior Knowledge
Choosing a deep model also encodes a very general belief that the
function we want to learn should involve composition of several
simpler functions

If valid, deep NNs give better generalizability
When is the assumption valid?

E.g., image recognition, natural
language processing, etc.

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 47 / 51

Architecture as Prior Knowledge
Choosing a deep model also encodes a very general belief that the
function we want to learn should involve composition of several
simpler functions

If valid, deep NNs give better generalizability
When is the assumption valid? E.g., image recognition, natural
language processing, etc.

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 47 / 51

Outline

1 The Basics
Example: Learning the XOR

2 Training
Back Propagation

3 Neuron Design
Cost Function & Output Neurons
Hidden Neurons

4 Architecture Design
Architecture Tuning

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 48 / 51

Hyperparameters

Width & depth
Can be determined via cross
validation

Types of neurons & their wiring
Usually model a
domain-specific prior
Validated via ablation study

Auto ML
The process of automating
the above

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 49 / 51

Hyperparameters

Width & depth
Can be determined via cross
validation

Types of neurons & their wiring
Usually model a
domain-specific prior
Validated via ablation study

Auto ML
The process of automating
the above

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 49 / 51

Hyperparameters

Width & depth
Can be determined via cross
validation

Types of neurons & their wiring
Usually model a
domain-specific prior
Validated via ablation study

Auto ML
The process of automating
the above

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 49 / 51

Reference I

[1] Léon Bottou.
Large-scale machine learning with stochastic gradient descent.
In Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[2] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua
Bengio.
An empirical investigation of catastrophic forgetting in gradient-based
neural networks.
arXiv preprint arXiv:1312.6211, 2013.

[3] Boris Hanin and David Rolnick.
Deep relu networks have surprisingly few activation patterns.
Advances in neural information processing systems, 32, 2019.

[4] Kurt Hornik, Maxwell Stinchcombe, and Halbert White.
Multilayer feedforward networks are universal approximators.
Neural networks, 2(5):359–366, 1989.

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 50 / 51

Reference II

[5] Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken.
Multilayer feedforward networks with a nonpolynomial activation
function can approximate any function.
Neural networks, 6(6):861–867, 1993.

[6] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua
Bengio.
On the number of linear regions of deep neural networks.
In Advances in neural information processing systems, pages
2924–2932, 2014.

Shan-Hung Wu (CS, NTHU) NN Design Machine Learning 51 / 51

	The Basics
	Example: Learning the XOR

	Training
	Back Propagation

	Neuron Design
	Cost Function & Output Neurons
	Hidden Neurons

	Architecture Design
	Architecture Tuning

