
Neural Networks:
Optimization & Regularization

Shan-Hung Wu
shwu@cs.nthu.edu.tw

Department of Computer Science,
National Tsing Hua University, Taiwan

Machine Learning

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 1 / 70



Outline

1 Optimization
Momentum & Nesterov Momentum
AdaGrad & RMSProp
Batch Normalization
Continuation Methods & Curriculum Learning
Cyclic Learning Rates
NTK-based Initialization*

2 Regularization
Weight Decay
Data Augmentation
Contrastive Pre-training
Dropout
Manifold Regularization
More Domain-Specific Models

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 2 / 70



Outline

1 Optimization
Momentum & Nesterov Momentum
AdaGrad & RMSProp
Batch Normalization
Continuation Methods & Curriculum Learning
Cyclic Learning Rates
NTK-based Initialization*

2 Regularization
Weight Decay
Data Augmentation
Contrastive Pre-training
Dropout
Manifold Regularization
More Domain-Specific Models

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 3 / 70



Challenges

NN a complex function:

ŷ = f (x;Θ)

= f (L)(· · · f (1)(x;W(1));W(L))

Given a training set X, our goal is to solve:

argminΘ C(Θ) = argminΘ− logP(X |Θ)

= argminΘ ∑i− logP(y(i) |x(i),Θ)

= argminΘ ∑i C(i)(Θ)

= argminW(1),··· ,W(L) ∑i C(i)(W(1), · · · ,W(L))

What are the challenges of solving this problem with SGD?

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 4 / 70



Challenges

NN a complex function:

ŷ = f (x;Θ)

= f (L)(· · · f (1)(x;W(1));W(L))

Given a training set X, our goal is to solve:

argminΘ C(Θ) = argminΘ− logP(X |Θ)

= argminΘ ∑i− logP(y(i) |x(i),Θ)

= argminΘ ∑i C(i)(Θ)

= argminW(1),··· ,W(L) ∑i C(i)(W(1), · · · ,W(L))

What are the challenges of solving this problem with SGD?

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 4 / 70



Challenges

NN a complex function:

ŷ = f (x;Θ)

= f (L)(· · · f (1)(x;W(1));W(L))

Given a training set X, our goal is to solve:

argminΘ C(Θ) = argminΘ− logP(X |Θ)

= argminΘ ∑i− logP(y(i) |x(i),Θ)

= argminΘ ∑i C(i)(Θ)

= argminW(1),··· ,W(L) ∑i C(i)(W(1), · · · ,W(L))

What are the challenges of solving this problem with SGD?

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 4 / 70



Non-Convexity
The loss function C(i) is non-convex

SGD stops at local minima or saddle points
Prior to the success of SGD (in roughly 2012), NN cost function
surfaces were generally believed to have many non-convex structure
However, studies [2, 4] show SGD seldom encounters critical points
when training a large NN

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 5 / 70



Non-Convexity
The loss function C(i) is non-convex

SGD stops at local minima or saddle points

Prior to the success of SGD (in roughly 2012), NN cost function
surfaces were generally believed to have many non-convex structure
However, studies [2, 4] show SGD seldom encounters critical points
when training a large NN

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 5 / 70



Non-Convexity
The loss function C(i) is non-convex

SGD stops at local minima or saddle points
Prior to the success of SGD (in roughly 2012), NN cost function
surfaces were generally believed to have many non-convex structure

However, studies [2, 4] show SGD seldom encounters critical points
when training a large NN

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 5 / 70



Non-Convexity
The loss function C(i) is non-convex

SGD stops at local minima or saddle points
Prior to the success of SGD (in roughly 2012), NN cost function
surfaces were generally believed to have many non-convex structure
However, studies [2, 4] show SGD seldom encounters critical points
when training a large NN

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 5 / 70



Ill-Conditioning

The loss C(i) may be ill-conditioned (in terms of Θ)
Due to, e.g., dependency between W(k)’s at different layers

SGD has slow progress at valleys or plateaus

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 6 / 70



Ill-Conditioning

The loss C(i) may be ill-conditioned (in terms of Θ)
Due to, e.g., dependency between W(k)’s at different layers

SGD has slow progress at valleys or plateaus

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 6 / 70



Lacks Global Minima

The loss C(i) may lack a global minimum point

E.g., for multiclass classification
P(y |x,Θ) provided by a softmax function
C(i)(Θ) =− logP(y(i) |x(i),Θ) can become arbitrarily close to zero (if
classifying example i correctly)
But not actually reaching zero

SGD may proceed along a
direction forever
Initialization is important

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 7 / 70



Lacks Global Minima

The loss C(i) may lack a global minimum point
E.g., for multiclass classification

P(y |x,Θ) provided by a softmax function

C(i)(Θ) =− logP(y(i) |x(i),Θ) can become arbitrarily close to zero (if
classifying example i correctly)
But not actually reaching zero

SGD may proceed along a
direction forever
Initialization is important

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 7 / 70



Lacks Global Minima

The loss C(i) may lack a global minimum point
E.g., for multiclass classification

P(y |x,Θ) provided by a softmax function
C(i)(Θ) =− logP(y(i) |x(i),Θ) can become arbitrarily close to zero (if
classifying example i correctly)

But not actually reaching zero

SGD may proceed along a
direction forever
Initialization is important

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 7 / 70



Lacks Global Minima

The loss C(i) may lack a global minimum point
E.g., for multiclass classification

P(y |x,Θ) provided by a softmax function
C(i)(Θ) =− logP(y(i) |x(i),Θ) can become arbitrarily close to zero (if
classifying example i correctly)
But not actually reaching zero

SGD may proceed along a
direction forever
Initialization is important

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 7 / 70



Lacks Global Minima

The loss C(i) may lack a global minimum point
E.g., for multiclass classification

P(y |x,Θ) provided by a softmax function
C(i)(Θ) =− logP(y(i) |x(i),Θ) can become arbitrarily close to zero (if
classifying example i correctly)
But not actually reaching zero

SGD may proceed along a
direction forever
Initialization is important

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 7 / 70



Training 101

Before training a feedforward NN, remember to standardize
(z-normalize) the input

Prevents dominating features
Improves conditioning

When training, remember to:
1 Initialize all weights to small random values

Breaks “symmetry” between different units so they are not updated in
the same way
Biases b(k)’s may be initialized to zero (or to small positive values for
ReLUs to prevent too much saturation)

2 Early stop if the validation error does not continue decreasing
Prevents overfitting

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 8 / 70



Training 101

Before training a feedforward NN, remember to standardize
(z-normalize) the input

Prevents dominating features
Improves conditioning

When training, remember to:
1 Initialize all weights to small random values

Breaks “symmetry” between different units so they are not updated in
the same way
Biases b(k)’s may be initialized to zero (or to small positive values for
ReLUs to prevent too much saturation)

2 Early stop if the validation error does not continue decreasing
Prevents overfitting

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 8 / 70



Training 101

Before training a feedforward NN, remember to standardize
(z-normalize) the input

Prevents dominating features
Improves conditioning

When training, remember to:
1 Initialize all weights to small random values

Breaks “symmetry” between different units so they are not updated in
the same way

Biases b(k)’s may be initialized to zero (or to small positive values for
ReLUs to prevent too much saturation)

2 Early stop if the validation error does not continue decreasing
Prevents overfitting

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 8 / 70



Training 101

Before training a feedforward NN, remember to standardize
(z-normalize) the input

Prevents dominating features
Improves conditioning

When training, remember to:
1 Initialize all weights to small random values

Breaks “symmetry” between different units so they are not updated in
the same way
Biases b(k)’s may be initialized to zero

(or to small positive values for
ReLUs to prevent too much saturation)

2 Early stop if the validation error does not continue decreasing
Prevents overfitting

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 8 / 70



Training 101

Before training a feedforward NN, remember to standardize
(z-normalize) the input

Prevents dominating features
Improves conditioning

When training, remember to:
1 Initialize all weights to small random values

Breaks “symmetry” between different units so they are not updated in
the same way
Biases b(k)’s may be initialized to zero (or to small positive values for
ReLUs to prevent too much saturation)

2 Early stop if the validation error does not continue decreasing
Prevents overfitting

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 8 / 70



Training 101

Before training a feedforward NN, remember to standardize
(z-normalize) the input

Prevents dominating features
Improves conditioning

When training, remember to:
1 Initialize all weights to small random values

Breaks “symmetry” between different units so they are not updated in
the same way
Biases b(k)’s may be initialized to zero (or to small positive values for
ReLUs to prevent too much saturation)

2 Early stop if the validation error does not continue decreasing

Prevents overfitting

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 8 / 70



Training 101

Before training a feedforward NN, remember to standardize
(z-normalize) the input

Prevents dominating features
Improves conditioning

When training, remember to:
1 Initialize all weights to small random values

Breaks “symmetry” between different units so they are not updated in
the same way
Biases b(k)’s may be initialized to zero (or to small positive values for
ReLUs to prevent too much saturation)

2 Early stop if the validation error does not continue decreasing
Prevents overfitting

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 8 / 70



Outline

1 Optimization
Momentum & Nesterov Momentum
AdaGrad & RMSProp
Batch Normalization
Continuation Methods & Curriculum Learning
Cyclic Learning Rates
NTK-based Initialization*

2 Regularization
Weight Decay
Data Augmentation
Contrastive Pre-training
Dropout
Manifold Regularization
More Domain-Specific Models

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 9 / 70



Momentum

Update rule in SGD:

Θ
(t+1)←Θ

(t)−ηg(t)

where g(t) = ∇ΘC(Θ(t))

Gets stuck in local minima
or saddle points

Momentum: make the same movement v(t)
in the last iteration, corrected by negative
gradient:

v(t+1)← λv(t)−(1−λ )g(t)

Θ
(t+1)←Θ

(t)+ηv(t+1)

v(t) is a moving average of −g(t)

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 10 / 70



Momentum

Update rule in SGD:

Θ
(t+1)←Θ

(t)−ηg(t)

where g(t) = ∇ΘC(Θ(t))

Gets stuck in local minima
or saddle points

Momentum: make the same movement v(t)
in the last iteration, corrected by negative
gradient:

v(t+1)← λv(t)−(1−λ )g(t)

Θ
(t+1)←Θ

(t)+ηv(t+1)

v(t) is a moving average of −g(t)

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 10 / 70



Momentum

Update rule in SGD:

Θ
(t+1)←Θ

(t)−ηg(t)

where g(t) = ∇ΘC(Θ(t))

Gets stuck in local minima
or saddle points

Momentum: make the same movement v(t)
in the last iteration, corrected by negative
gradient:

v(t+1)← λv(t)−(1−λ )g(t)

Θ
(t+1)←Θ

(t)+ηv(t+1)

v(t) is a moving average of −g(t)

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 10 / 70



Nesterov Momentum

Make the same movement v(t) in the last
iteration, corrected by lookahead
negative gradient:

Θ̃
(t+1)←Θ

(t)+ηv(t)

v(t+1)← λv(t)−(1−λ )∇ΘC(Θ̃(t))

Θ
(t+1)←Θ

(t)+ηv(t+1)

Faster convergence to a minimum
Not helpful for NNs that lack of minima

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 11 / 70



Nesterov Momentum

Make the same movement v(t) in the last
iteration, corrected by lookahead
negative gradient:

Θ̃
(t+1)←Θ

(t)+ηv(t)

v(t+1)← λv(t)−(1−λ )∇ΘC(Θ̃(t))

Θ
(t+1)←Θ

(t)+ηv(t+1)

Faster convergence to a minimum

Not helpful for NNs that lack of minima

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 11 / 70



Nesterov Momentum

Make the same movement v(t) in the last
iteration, corrected by lookahead
negative gradient:

Θ̃
(t+1)←Θ

(t)+ηv(t)

v(t+1)← λv(t)−(1−λ )∇ΘC(Θ̃(t))

Θ
(t+1)←Θ

(t)+ηv(t+1)

Faster convergence to a minimum
Not helpful for NNs that lack of minima

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 11 / 70



Outline

1 Optimization
Momentum & Nesterov Momentum
AdaGrad & RMSProp
Batch Normalization
Continuation Methods & Curriculum Learning
Cyclic Learning Rates
NTK-based Initialization*

2 Regularization
Weight Decay
Data Augmentation
Contrastive Pre-training
Dropout
Manifold Regularization
More Domain-Specific Models

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 12 / 70



Where Does SGD Spend Its Training Time?

1 Detouring a saddle point of high cost
Better initialization

2 Traversing the relatively flat valley
Adaptive learning rate

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 13 / 70



Where Does SGD Spend Its Training Time?

1 Detouring a saddle point of high cost
Better initialization

2 Traversing the relatively flat valley
Adaptive learning rate

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 13 / 70



SGD with Adaptive Learning Rates

Smaller learning rate η along a steep direction
Prevents overshooting

Larger learning rate η along a flat direction
Speed up convergence

How?

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 14 / 70



SGD with Adaptive Learning Rates

Smaller learning rate η along a steep direction
Prevents overshooting

Larger learning rate η along a flat direction
Speed up convergence

How?

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 14 / 70



SGD with Adaptive Learning Rates

Smaller learning rate η along a steep direction
Prevents overshooting

Larger learning rate η along a flat direction
Speed up convergence

How?

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 14 / 70



AdaGrad

Update rule:
r(t+1)← r(t)+g(t)�g(t)

Θ
(t+1)←Θ

(t)− η√
r(t+1)

�g(t)

r(t+1) accumulates squared gradients along each axis
Division and square root applied to r(t+1) elementwisely

We have

η√
r(t+1)

=
η√
t+1

� 1√
1

t+1 r(t+1)
=

η√
t+1

� 1√
1

t+1 ∑
t
i=0 g(i)�g(i)

1 Smaller learning rate along all directions as t grows
2 Larger learning rate along more gently sloped directions

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 15 / 70



AdaGrad

Update rule:
r(t+1)← r(t)+g(t)�g(t)

Θ
(t+1)←Θ

(t)− η√
r(t+1)

�g(t)

r(t+1) accumulates squared gradients along each axis

Division and square root applied to r(t+1) elementwisely

We have

η√
r(t+1)

=
η√
t+1

� 1√
1

t+1 r(t+1)
=

η√
t+1

� 1√
1

t+1 ∑
t
i=0 g(i)�g(i)

1 Smaller learning rate along all directions as t grows
2 Larger learning rate along more gently sloped directions

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 15 / 70



AdaGrad

Update rule:
r(t+1)← r(t)+g(t)�g(t)

Θ
(t+1)←Θ

(t)− η√
r(t+1)

�g(t)

r(t+1) accumulates squared gradients along each axis
Division and square root applied to r(t+1) elementwisely

We have

η√
r(t+1)

=
η√
t+1

� 1√
1

t+1 r(t+1)
=

η√
t+1

� 1√
1

t+1 ∑
t
i=0 g(i)�g(i)

1 Smaller learning rate along all directions as t grows
2 Larger learning rate along more gently sloped directions

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 15 / 70



AdaGrad

Update rule:
r(t+1)← r(t)+g(t)�g(t)

Θ
(t+1)←Θ

(t)− η√
r(t+1)

�g(t)

r(t+1) accumulates squared gradients along each axis
Division and square root applied to r(t+1) elementwisely

We have

η√
r(t+1)

=
η√
t+1

� 1√
1

t+1 r(t+1)
=

η√
t+1

� 1√
1

t+1 ∑
t
i=0 g(i)�g(i)

1 Smaller learning rate along all directions as t grows

2 Larger learning rate along more gently sloped directions

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 15 / 70



AdaGrad

Update rule:
r(t+1)← r(t)+g(t)�g(t)

Θ
(t+1)←Θ

(t)− η√
r(t+1)

�g(t)

r(t+1) accumulates squared gradients along each axis
Division and square root applied to r(t+1) elementwisely

We have

η√
r(t+1)

=
η√
t+1

� 1√
1

t+1 r(t+1)
=

η√
t+1

� 1√
1

t+1 ∑
t
i=0 g(i)�g(i)

1 Smaller learning rate along all directions as t grows
2 Larger learning rate along more gently sloped directions

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 15 / 70



Limitations

The optimal learning rate along a direction may change over time

In AdaGrad, r(t+1) accumulates squared gradients from the
beginning of training

Results in premature adaptivity

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 16 / 70



Limitations

The optimal learning rate along a direction may change over time
In AdaGrad, r(t+1) accumulates squared gradients from the
beginning of training

Results in premature adaptivity

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 16 / 70



RMSProp

RMSProp changes the gradient accumulation in r(t+1) into a moving
average:

r(t+1)← λ r(t)+(1−λ )g(t)�g(t)

Θ
(t+1)←Θ

(t)− η√
r(t+1)

�g(t)

A popular algorithm Adam (short for adaptive moments) [7] is a
combination of RMSProp and Momentum:

v(t+1)← λ1v(t)− (1−λ1)g(t)

r(t+1)← λ2r(t)+(1−λ2)g(t)�g(t)

Θ
(t+1)←Θ

(t)+
η√

r(t+1)
� v(t+1)

With some bias corrections for v(t+1) and r(t+1)

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 17 / 70



RMSProp

RMSProp changes the gradient accumulation in r(t+1) into a moving
average:

r(t+1)← λ r(t)+(1−λ )g(t)�g(t)

Θ
(t+1)←Θ

(t)− η√
r(t+1)

�g(t)

A popular algorithm Adam (short for adaptive moments) [7] is a
combination of RMSProp and Momentum:

v(t+1)← λ1v(t)− (1−λ1)g(t)

r(t+1)← λ2r(t)+(1−λ2)g(t)�g(t)

Θ
(t+1)←Θ

(t)+
η√

r(t+1)
� v(t+1)

With some bias corrections for v(t+1) and r(t+1)

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 17 / 70



Outline

1 Optimization
Momentum & Nesterov Momentum
AdaGrad & RMSProp
Batch Normalization
Continuation Methods & Curriculum Learning
Cyclic Learning Rates
NTK-based Initialization*

2 Regularization
Weight Decay
Data Augmentation
Contrastive Pre-training
Dropout
Manifold Regularization
More Domain-Specific Models

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 18 / 70



Training Deep NNs I

So far, we modify the optimization algorithm to better train the model

Can we modify the model to ease the optimization task?
What are the difficulties in training a deep NN?

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 19 / 70



Training Deep NNs I

So far, we modify the optimization algorithm to better train the model
Can we modify the model to ease the optimization task?

What are the difficulties in training a deep NN?

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 19 / 70



Training Deep NNs I

So far, we modify the optimization algorithm to better train the model
Can we modify the model to ease the optimization task?
What are the difficulties in training a deep NN?

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 19 / 70



Training Deep NNs II

The cost C(Θ) of a deep NN is usually ill-conditioned due to the
dependency between W(k)’s at different layers

As a simple example, consider a deep NN for x,y ∈ R:

ŷ = f (x) = xw(1)w(2) · · ·w(L)

Single unit at each layer
Linear activation function and no bias in each unit

The output ŷ is a linear function of x, but not of weights
The curvature of f with respect to any two w(i) and w(j) is

∂ f
∂w(i)∂w(j)

= (w(i)+w(j)) · x ∏
k 6=i,j

w(k)

Very small if L is large and w(k) < 1 for k 6= i, j
Very large if L is large and w(k) > 1 for k 6= i, j

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 20 / 70



Training Deep NNs II

The cost C(Θ) of a deep NN is usually ill-conditioned due to the
dependency between W(k)’s at different layers
As a simple example, consider a deep NN for x,y ∈ R:

ŷ = f (x) = xw(1)w(2) · · ·w(L)

Single unit at each layer
Linear activation function and no bias in each unit

The output ŷ is a linear function of x, but not of weights
The curvature of f with respect to any two w(i) and w(j) is

∂ f
∂w(i)∂w(j)

= (w(i)+w(j)) · x ∏
k 6=i,j

w(k)

Very small if L is large and w(k) < 1 for k 6= i, j
Very large if L is large and w(k) > 1 for k 6= i, j

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 20 / 70



Training Deep NNs II

The cost C(Θ) of a deep NN is usually ill-conditioned due to the
dependency between W(k)’s at different layers
As a simple example, consider a deep NN for x,y ∈ R:

ŷ = f (x) = xw(1)w(2) · · ·w(L)

Single unit at each layer
Linear activation function and no bias in each unit

The output ŷ is a linear function of x, but not of weights

The curvature of f with respect to any two w(i) and w(j) is

∂ f
∂w(i)∂w(j)

= (w(i)+w(j)) · x ∏
k 6=i,j

w(k)

Very small if L is large and w(k) < 1 for k 6= i, j
Very large if L is large and w(k) > 1 for k 6= i, j

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 20 / 70



Training Deep NNs II

The cost C(Θ) of a deep NN is usually ill-conditioned due to the
dependency between W(k)’s at different layers
As a simple example, consider a deep NN for x,y ∈ R:

ŷ = f (x) = xw(1)w(2) · · ·w(L)

Single unit at each layer
Linear activation function and no bias in each unit

The output ŷ is a linear function of x, but not of weights
The curvature of f with respect to any two w(i) and w(j) is

∂ f
∂w(i)∂w(j)

= (w(i)+w(j)) · x ∏
k 6=i,j

w(k)

Very small if L is large and w(k) < 1 for k 6= i, j
Very large if L is large and w(k) > 1 for k 6= i, j

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 20 / 70



Training Deep NNs III
The ill-conditioned C(Θ) makes a gradient-based optimization
algorithm (e.g., SGD) inefficient

Let Θ = [w(1),w(2), · · · ,w(L)]> and g(t) = ∇ΘC(Θ(t))

In gradient descent, we get Θ(t+1) by Θ(t+1)←Θ(t)−ηg(t) based on
the first-order Taylor approximation of C

The gradient g(t)i = ∂C
∂w(i) (Θ

(t)) is calculated individually by fixing
C(Θ(t)) in other dimensions (w(j)’s, j 6= i)
However, g(t) updates Θ(t) in all dimensions simultaneously in the
same iteration
C(Θ(t+1)) will be guaranteed to decrease only if C is linear at Θ(t)

Wrong assumption: Θ
(t+1)
i will decrease C even if other Θ

(t+1)
j ’s are

updated simultaneously
Second-order methods?

Time consuming
Does not take into account high-order effects

Can we change the model to make this assumption not-so-wrong?

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 21 / 70



Training Deep NNs III
The ill-conditioned C(Θ) makes a gradient-based optimization
algorithm (e.g., SGD) inefficient
Let Θ = [w(1),w(2), · · · ,w(L)]> and g(t) = ∇ΘC(Θ(t))

In gradient descent, we get Θ(t+1) by Θ(t+1)←Θ(t)−ηg(t) based on
the first-order Taylor approximation of C

The gradient g(t)i = ∂C
∂w(i) (Θ

(t)) is calculated individually by fixing
C(Θ(t)) in other dimensions (w(j)’s, j 6= i)
However, g(t) updates Θ(t) in all dimensions simultaneously in the
same iteration
C(Θ(t+1)) will be guaranteed to decrease only if C is linear at Θ(t)

Wrong assumption: Θ
(t+1)
i will decrease C even if other Θ

(t+1)
j ’s are

updated simultaneously
Second-order methods?

Time consuming
Does not take into account high-order effects

Can we change the model to make this assumption not-so-wrong?

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 21 / 70



Training Deep NNs III
The ill-conditioned C(Θ) makes a gradient-based optimization
algorithm (e.g., SGD) inefficient
Let Θ = [w(1),w(2), · · · ,w(L)]> and g(t) = ∇ΘC(Θ(t))

In gradient descent, we get Θ(t+1) by Θ(t+1)←Θ(t)−ηg(t) based on
the first-order Taylor approximation of C

The gradient g(t)i = ∂C
∂w(i) (Θ

(t)) is calculated individually by fixing
C(Θ(t)) in other dimensions (w(j)’s, j 6= i)

However, g(t) updates Θ(t) in all dimensions simultaneously in the
same iteration
C(Θ(t+1)) will be guaranteed to decrease only if C is linear at Θ(t)

Wrong assumption: Θ
(t+1)
i will decrease C even if other Θ

(t+1)
j ’s are

updated simultaneously
Second-order methods?

Time consuming
Does not take into account high-order effects

Can we change the model to make this assumption not-so-wrong?

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 21 / 70



Training Deep NNs III
The ill-conditioned C(Θ) makes a gradient-based optimization
algorithm (e.g., SGD) inefficient
Let Θ = [w(1),w(2), · · · ,w(L)]> and g(t) = ∇ΘC(Θ(t))

In gradient descent, we get Θ(t+1) by Θ(t+1)←Θ(t)−ηg(t) based on
the first-order Taylor approximation of C

The gradient g(t)i = ∂C
∂w(i) (Θ

(t)) is calculated individually by fixing
C(Θ(t)) in other dimensions (w(j)’s, j 6= i)
However, g(t) updates Θ(t) in all dimensions simultaneously in the
same iteration

C(Θ(t+1)) will be guaranteed to decrease only if C is linear at Θ(t)

Wrong assumption: Θ
(t+1)
i will decrease C even if other Θ

(t+1)
j ’s are

updated simultaneously
Second-order methods?

Time consuming
Does not take into account high-order effects

Can we change the model to make this assumption not-so-wrong?

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 21 / 70



Training Deep NNs III
The ill-conditioned C(Θ) makes a gradient-based optimization
algorithm (e.g., SGD) inefficient
Let Θ = [w(1),w(2), · · · ,w(L)]> and g(t) = ∇ΘC(Θ(t))

In gradient descent, we get Θ(t+1) by Θ(t+1)←Θ(t)−ηg(t) based on
the first-order Taylor approximation of C

The gradient g(t)i = ∂C
∂w(i) (Θ

(t)) is calculated individually by fixing
C(Θ(t)) in other dimensions (w(j)’s, j 6= i)
However, g(t) updates Θ(t) in all dimensions simultaneously in the
same iteration
C(Θ(t+1)) will be guaranteed to decrease only if C is linear at Θ(t)

Wrong assumption: Θ
(t+1)
i will decrease C even if other Θ

(t+1)
j ’s are

updated simultaneously
Second-order methods?

Time consuming
Does not take into account high-order effects

Can we change the model to make this assumption not-so-wrong?

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 21 / 70



Training Deep NNs III
The ill-conditioned C(Θ) makes a gradient-based optimization
algorithm (e.g., SGD) inefficient
Let Θ = [w(1),w(2), · · · ,w(L)]> and g(t) = ∇ΘC(Θ(t))

In gradient descent, we get Θ(t+1) by Θ(t+1)←Θ(t)−ηg(t) based on
the first-order Taylor approximation of C

The gradient g(t)i = ∂C
∂w(i) (Θ

(t)) is calculated individually by fixing
C(Θ(t)) in other dimensions (w(j)’s, j 6= i)
However, g(t) updates Θ(t) in all dimensions simultaneously in the
same iteration
C(Θ(t+1)) will be guaranteed to decrease only if C is linear at Θ(t)

Wrong assumption: Θ
(t+1)
i will decrease C even if other Θ

(t+1)
j ’s are

updated simultaneously

Second-order methods?
Time consuming
Does not take into account high-order effects

Can we change the model to make this assumption not-so-wrong?

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 21 / 70



Training Deep NNs III
The ill-conditioned C(Θ) makes a gradient-based optimization
algorithm (e.g., SGD) inefficient
Let Θ = [w(1),w(2), · · · ,w(L)]> and g(t) = ∇ΘC(Θ(t))

In gradient descent, we get Θ(t+1) by Θ(t+1)←Θ(t)−ηg(t) based on
the first-order Taylor approximation of C

The gradient g(t)i = ∂C
∂w(i) (Θ

(t)) is calculated individually by fixing
C(Θ(t)) in other dimensions (w(j)’s, j 6= i)
However, g(t) updates Θ(t) in all dimensions simultaneously in the
same iteration
C(Θ(t+1)) will be guaranteed to decrease only if C is linear at Θ(t)

Wrong assumption: Θ
(t+1)
i will decrease C even if other Θ

(t+1)
j ’s are

updated simultaneously
Second-order methods?

Time consuming
Does not take into account high-order effects

Can we change the model to make this assumption not-so-wrong?

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 21 / 70



Training Deep NNs III
The ill-conditioned C(Θ) makes a gradient-based optimization
algorithm (e.g., SGD) inefficient
Let Θ = [w(1),w(2), · · · ,w(L)]> and g(t) = ∇ΘC(Θ(t))

In gradient descent, we get Θ(t+1) by Θ(t+1)←Θ(t)−ηg(t) based on
the first-order Taylor approximation of C

The gradient g(t)i = ∂C
∂w(i) (Θ

(t)) is calculated individually by fixing
C(Θ(t)) in other dimensions (w(j)’s, j 6= i)
However, g(t) updates Θ(t) in all dimensions simultaneously in the
same iteration
C(Θ(t+1)) will be guaranteed to decrease only if C is linear at Θ(t)

Wrong assumption: Θ
(t+1)
i will decrease C even if other Θ

(t+1)
j ’s are

updated simultaneously
Second-order methods?

Time consuming
Does not take into account high-order effects

Can we change the model to make this assumption not-so-wrong?

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 21 / 70



Training Deep NNs III
The ill-conditioned C(Θ) makes a gradient-based optimization
algorithm (e.g., SGD) inefficient
Let Θ = [w(1),w(2), · · · ,w(L)]> and g(t) = ∇ΘC(Θ(t))

In gradient descent, we get Θ(t+1) by Θ(t+1)←Θ(t)−ηg(t) based on
the first-order Taylor approximation of C

The gradient g(t)i = ∂C
∂w(i) (Θ

(t)) is calculated individually by fixing
C(Θ(t)) in other dimensions (w(j)’s, j 6= i)
However, g(t) updates Θ(t) in all dimensions simultaneously in the
same iteration
C(Θ(t+1)) will be guaranteed to decrease only if C is linear at Θ(t)

Wrong assumption: Θ
(t+1)
i will decrease C even if other Θ

(t+1)
j ’s are

updated simultaneously
Second-order methods?

Time consuming
Does not take into account high-order effects

Can we change the model to make this assumption not-so-wrong?
Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 21 / 70



Batch Normalization I

ŷ = f (x) = xw(1)w(2) · · ·w(L)

Why not standardize each hidden activation a(k), k = 1, · · · ,L−1 (as
we standardized x)?

We have
ŷ = a(L−1)w(L)

When a(L−1) is standardized, g(t)L = ∂C
∂w(L) (Θ

(t)) is more likely to
decrease C

If x∼N (0,1), then still a(L−1) ∼N (0,1), no matter how
w(1), · · · ,w(L−1) change
Changes in other dimensions proposed by g(t)i ’s, i 6= L, can be zeroed
out

Similarly, if a(k−1) is standardized, g(t)k = ∂C
∂w(k) (Θ

(t)) is more likely to
decrease C

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 22 / 70



Batch Normalization I

ŷ = f (x) = xw(1)w(2) · · ·w(L)

Why not standardize each hidden activation a(k), k = 1, · · · ,L−1 (as
we standardized x)?
We have

ŷ = a(L−1)w(L)

When a(L−1) is standardized, g(t)L = ∂C
∂w(L) (Θ

(t)) is more likely to
decrease C

If x∼N (0,1), then still a(L−1) ∼N (0,1), no matter how
w(1), · · · ,w(L−1) change
Changes in other dimensions proposed by g(t)i ’s, i 6= L, can be zeroed
out

Similarly, if a(k−1) is standardized, g(t)k = ∂C
∂w(k) (Θ

(t)) is more likely to
decrease C

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 22 / 70



Batch Normalization I

ŷ = f (x) = xw(1)w(2) · · ·w(L)

Why not standardize each hidden activation a(k), k = 1, · · · ,L−1 (as
we standardized x)?
We have

ŷ = a(L−1)w(L)

When a(L−1) is standardized, g(t)L = ∂C
∂w(L) (Θ

(t)) is more likely to
decrease C

If x∼N (0,1), then still a(L−1) ∼N (0,1), no matter how
w(1), · · · ,w(L−1) change

Changes in other dimensions proposed by g(t)i ’s, i 6= L, can be zeroed
out

Similarly, if a(k−1) is standardized, g(t)k = ∂C
∂w(k) (Θ

(t)) is more likely to
decrease C

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 22 / 70



Batch Normalization I

ŷ = f (x) = xw(1)w(2) · · ·w(L)

Why not standardize each hidden activation a(k), k = 1, · · · ,L−1 (as
we standardized x)?
We have

ŷ = a(L−1)w(L)

When a(L−1) is standardized, g(t)L = ∂C
∂w(L) (Θ

(t)) is more likely to
decrease C

If x∼N (0,1), then still a(L−1) ∼N (0,1), no matter how
w(1), · · · ,w(L−1) change
Changes in other dimensions proposed by g(t)i ’s, i 6= L, can be zeroed
out

Similarly, if a(k−1) is standardized, g(t)k = ∂C
∂w(k) (Θ

(t)) is more likely to
decrease C

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 22 / 70



Batch Normalization I

ŷ = f (x) = xw(1)w(2) · · ·w(L)

Why not standardize each hidden activation a(k), k = 1, · · · ,L−1 (as
we standardized x)?
We have

ŷ = a(L−1)w(L)

When a(L−1) is standardized, g(t)L = ∂C
∂w(L) (Θ

(t)) is more likely to
decrease C

If x∼N (0,1), then still a(L−1) ∼N (0,1), no matter how
w(1), · · · ,w(L−1) change
Changes in other dimensions proposed by g(t)i ’s, i 6= L, can be zeroed
out

Similarly, if a(k−1) is standardized, g(t)k = ∂C
∂w(k) (Θ

(t)) is more likely to
decrease C

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 22 / 70



Batch Normalization II

How to standardize a(k) at training and test time?
We can standardize the input x because we see multiple examples

During training time, we see a minibatch of activations a(k) ∈ RM (M
the batch size)
Batch normalization [6]:

ã(k)i =
a(k)i −µ(k)

σ (k)
,∀i

µ(k) and σ (k) are mean and std of activations across examples in the
minibatch

At test time, µ(k) and σ (k) can be replaced by running averages that
were collected during training time
Can be readily extended to NNs having multiple neurons at each layer

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 23 / 70



Batch Normalization II

How to standardize a(k) at training and test time?
We can standardize the input x because we see multiple examples

During training time, we see a minibatch of activations a(k) ∈ RM (M
the batch size)
Batch normalization [6]:

ã(k)i =
a(k)i −µ(k)

σ (k)
,∀i

µ(k) and σ (k) are mean and std of activations across examples in the
minibatch

At test time, µ(k) and σ (k) can be replaced by running averages that
were collected during training time
Can be readily extended to NNs having multiple neurons at each layer

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 23 / 70



Batch Normalization II

How to standardize a(k) at training and test time?
We can standardize the input x because we see multiple examples

During training time, we see a minibatch of activations a(k) ∈ RM (M
the batch size)
Batch normalization [6]:

ã(k)i =
a(k)i −µ(k)

σ (k)
,∀i

µ(k) and σ (k) are mean and std of activations across examples in the
minibatch

At test time, µ(k) and σ (k) can be replaced by running averages that
were collected during training time

Can be readily extended to NNs having multiple neurons at each layer

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 23 / 70



Batch Normalization II

How to standardize a(k) at training and test time?
We can standardize the input x because we see multiple examples

During training time, we see a minibatch of activations a(k) ∈ RM (M
the batch size)
Batch normalization [6]:

ã(k)i =
a(k)i −µ(k)

σ (k)
,∀i

µ(k) and σ (k) are mean and std of activations across examples in the
minibatch

At test time, µ(k) and σ (k) can be replaced by running averages that
were collected during training time
Can be readily extended to NNs having multiple neurons at each layer

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 23 / 70



Standardizing Nonlinear Units

How to standardize a nonlinear unit a(k) = act(z(k))?

We can still zero out the effects from other layers by normalizing z(k)

Given a minibatch of z(k) ∈ RM:

z̃(k)i =
z(k)i −µ(k)

σ (k)
,∀i

A hidden unit now looks like:

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 24 / 70



Standardizing Nonlinear Units

How to standardize a nonlinear unit a(k) = act(z(k))?
We can still zero out the effects from other layers by normalizing z(k)

Given a minibatch of z(k) ∈ RM:

z̃(k)i =
z(k)i −µ(k)

σ (k)
,∀i

A hidden unit now looks like:

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 24 / 70



Standardizing Nonlinear Units

How to standardize a nonlinear unit a(k) = act(z(k))?
We can still zero out the effects from other layers by normalizing z(k)

Given a minibatch of z(k) ∈ RM:

z̃(k)i =
z(k)i −µ(k)

σ (k)
,∀i

A hidden unit now looks like:

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 24 / 70



Standardizing Nonlinear Units

How to standardize a nonlinear unit a(k) = act(z(k))?
We can still zero out the effects from other layers by normalizing z(k)

Given a minibatch of z(k) ∈ RM:

z̃(k)i =
z(k)i −µ(k)

σ (k)
,∀i

A hidden unit now looks like:

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 24 / 70



Expressiveness I

The weights W(k) at each layer is easier to train now
The “wrong assumption” of gradient-based optimization is made valid

But at the cost of expressiveness
Normalizing a(k) or z(k) limits the output range of a unit

Observe that there is no need to insist a z̃(k) to have zero mean and
unit variance

We only care about whether it is “fixed” when calculating the gradients
for other layers

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 25 / 70



Expressiveness I

The weights W(k) at each layer is easier to train now
The “wrong assumption” of gradient-based optimization is made valid

But at the cost of expressiveness
Normalizing a(k) or z(k) limits the output range of a unit

Observe that there is no need to insist a z̃(k) to have zero mean and
unit variance

We only care about whether it is “fixed” when calculating the gradients
for other layers

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 25 / 70



Expressiveness I

The weights W(k) at each layer is easier to train now
The “wrong assumption” of gradient-based optimization is made valid

But at the cost of expressiveness
Normalizing a(k) or z(k) limits the output range of a unit

Observe that there is no need to insist a z̃(k) to have zero mean and
unit variance

We only care about whether it is “fixed” when calculating the gradients
for other layers

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 25 / 70



Expressiveness II

During training time, we can introduce two parameters γ and β and
back-propagate through

γ z̃(k)+β

to learn their best values

Question: γ and β can be learned to invert z̃(k) to get z(k), so what’s
the point?

z̃(k) = z(k)−µ(k)

σ (k) , so γ z̃(k)+β = σ z̃(k)+µ = z(k)

The weights W(k), γ, and β are now easier to learn with SGD

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 26 / 70



Expressiveness II

During training time, we can introduce two parameters γ and β and
back-propagate through

γ z̃(k)+β

to learn their best values
Question: γ and β can be learned to invert z̃(k) to get z(k), so what’s
the point?

z̃(k) = z(k)−µ(k)

σ (k) , so γ z̃(k)+β = σ z̃(k)+µ = z(k)

The weights W(k), γ, and β are now easier to learn with SGD

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 26 / 70



Expressiveness II

During training time, we can introduce two parameters γ and β and
back-propagate through

γ z̃(k)+β

to learn their best values
Question: γ and β can be learned to invert z̃(k) to get z(k), so what’s
the point?

z̃(k) = z(k)−µ(k)

σ (k) , so γ z̃(k)+β = σ z̃(k)+µ = z(k)

The weights W(k), γ, and β are now easier to learn with SGD
Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 26 / 70



Outline

1 Optimization
Momentum & Nesterov Momentum
AdaGrad & RMSProp
Batch Normalization
Continuation Methods & Curriculum Learning
Cyclic Learning Rates
NTK-based Initialization*

2 Regularization
Weight Decay
Data Augmentation
Contrastive Pre-training
Dropout
Manifold Regularization
More Domain-Specific Models

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 27 / 70



Parameter Initialization

Initialization is important

How to better initialize Θ(0)?

1 Train an NN multiple times with random initial points, and then pick
the best

2 Design a series of cost functions such that a solution to one is a good
initial point of the next

Solve the “easy” problem first, and then a “harder” one, and so on

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 28 / 70



Parameter Initialization

Initialization is important

How to better initialize Θ(0)?

1 Train an NN multiple times with random initial points, and then pick
the best

2 Design a series of cost functions such that a solution to one is a good
initial point of the next

Solve the “easy” problem first, and then a “harder” one, and so on

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 28 / 70



Parameter Initialization

Initialization is important

How to better initialize Θ(0)?

1 Train an NN multiple times with random initial points, and then pick
the best

2 Design a series of cost functions such that a solution to one is a good
initial point of the next

Solve the “easy” problem first, and then a “harder” one, and so on

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 28 / 70



Parameter Initialization

Initialization is important

How to better initialize Θ(0)?

1 Train an NN multiple times with random initial points, and then pick
the best

2 Design a series of cost functions such that a solution to one is a good
initial point of the next

Solve the “easy” problem first, and then a “harder” one, and so on

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 28 / 70



Continuation Methods I
Continuation methods: construct easier cost functions by
smoothing the original cost function:

C̃(Θ) = E
Θ̃∼N (Θ,σ2)C(Θ̃)

In practice, we sample several Θ̃’s to approximate the expectation

Assumption: some non-convex functions become approximately convex
when smoothen

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 29 / 70



Continuation Methods II

Problems?

Cost function might not become convex, no matter how much it is
smoothen
Designed to deal with local minima; not very helpful for NNs without
minima

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 30 / 70



Continuation Methods II

Problems?
Cost function might not become convex, no matter how much it is
smoothen

Designed to deal with local minima; not very helpful for NNs without
minima

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 30 / 70



Continuation Methods II

Problems?
Cost function might not become convex, no matter how much it is
smoothen
Designed to deal with local minima; not very helpful for NNs without
minima

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 30 / 70



Curriculum Learning

Curriculum learning (or shaping) [1]: make the cost function easier
by increasing the influence of simpler examples

E.g., by assigning them larger weights in the new cost function
Or, by sampling them more frequently

How to define “simple” examples?
Face image recognition: front view (easy) vs. side view (hard)
Sentiment analysis for movie reviews: 0-/5-star reviews (easy) vs.
1-/2-/3-/4-star reviews (hard)

Learn simple concepts first, then learn more complex concepts that
depend on these simpler concepts

Just like how humans learn
Knowing the principles, we are less likely to explain an observation
using special (but wrong) rules

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 31 / 70



Curriculum Learning

Curriculum learning (or shaping) [1]: make the cost function easier
by increasing the influence of simpler examples

E.g., by assigning them larger weights in the new cost function
Or, by sampling them more frequently

How to define “simple” examples?

Face image recognition: front view (easy) vs. side view (hard)
Sentiment analysis for movie reviews: 0-/5-star reviews (easy) vs.
1-/2-/3-/4-star reviews (hard)

Learn simple concepts first, then learn more complex concepts that
depend on these simpler concepts

Just like how humans learn
Knowing the principles, we are less likely to explain an observation
using special (but wrong) rules

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 31 / 70



Curriculum Learning

Curriculum learning (or shaping) [1]: make the cost function easier
by increasing the influence of simpler examples

E.g., by assigning them larger weights in the new cost function
Or, by sampling them more frequently

How to define “simple” examples?
Face image recognition: front view (easy) vs. side view (hard)
Sentiment analysis for movie reviews: 0-/5-star reviews (easy) vs.
1-/2-/3-/4-star reviews (hard)

Learn simple concepts first, then learn more complex concepts that
depend on these simpler concepts

Just like how humans learn
Knowing the principles, we are less likely to explain an observation
using special (but wrong) rules

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 31 / 70



Curriculum Learning

Curriculum learning (or shaping) [1]: make the cost function easier
by increasing the influence of simpler examples

E.g., by assigning them larger weights in the new cost function
Or, by sampling them more frequently

How to define “simple” examples?
Face image recognition: front view (easy) vs. side view (hard)
Sentiment analysis for movie reviews: 0-/5-star reviews (easy) vs.
1-/2-/3-/4-star reviews (hard)

Learn simple concepts first, then learn more complex concepts that
depend on these simpler concepts

Just like how humans learn
Knowing the principles, we are less likely to explain an observation
using special (but wrong) rules

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 31 / 70



Curriculum Learning

Curriculum learning (or shaping) [1]: make the cost function easier
by increasing the influence of simpler examples

E.g., by assigning them larger weights in the new cost function
Or, by sampling them more frequently

How to define “simple” examples?
Face image recognition: front view (easy) vs. side view (hard)
Sentiment analysis for movie reviews: 0-/5-star reviews (easy) vs.
1-/2-/3-/4-star reviews (hard)

Learn simple concepts first, then learn more complex concepts that
depend on these simpler concepts

Just like how humans learn
Knowing the principles, we are less likely to explain an observation
using special (but wrong) rules

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 31 / 70



Outline

1 Optimization
Momentum & Nesterov Momentum
AdaGrad & RMSProp
Batch Normalization
Continuation Methods & Curriculum Learning
Cyclic Learning Rates
NTK-based Initialization*

2 Regularization
Weight Decay
Data Augmentation
Contrastive Pre-training
Dropout
Manifold Regularization
More Domain-Specific Models

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 32 / 70



SGD Gradients are Noisy

Initialization is important
SGD gradients may not be
representative in the
beginning (and in the end)

Use a small learning rate
in the very beginning [10]

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 33 / 70



SGD Gradients are Noisy

Initialization is important
SGD gradients may not be
representative in the
beginning (and in the end)

Use a small learning rate
in the very beginning [10]

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 33 / 70



Outline

1 Optimization
Momentum & Nesterov Momentum
AdaGrad & RMSProp
Batch Normalization
Continuation Methods & Curriculum Learning
Cyclic Learning Rates
NTK-based Initialization*

2 Regularization
Weight Decay
Data Augmentation
Contrastive Pre-training
Dropout
Manifold Regularization
More Domain-Specific Models

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 34 / 70



Prior Predictions of NTK-GP

Prior (unconditioned) mean predictions for training set:

ŷN = (I− e−ηTN,N t)yN

Prior mean predictions for test set:

ŷM = TM,NT−1
N,N(I− e−ηTN,N t)yN

Given a training set, the TN,N and TM,N depends only on the network
structure and hyperparameters of initial weights

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 35 / 70



Trainability

Prior (unconditioned) mean predictions for training set:

ŷN = (I− e−ηTN,N t)yN

where η < 2
λmax+λmin

≈ 2
λmax

Goal: ŷN → yN as t→ ∞

Let TN,N = U>

 λmax
. . .

λmin

U, we have

(UŷN)i ≈ ((I− e−2 λi
λmax

t)UyN)i

It follows that if the conditioning number κ = λmax
λmin

diverges, the
NN becomes untrainable

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 36 / 70



Trainability

Prior (unconditioned) mean predictions for training set:

ŷN = (I− e−ηTN,N t)yN

where η < 2
λmax+λmin

≈ 2
λmax

Goal: ŷN → yN as t→ ∞

Let TN,N = U>

 λmax
. . .

λmin

U, we have

(UŷN)i ≈ ((I− e−2 λi
λmax

t)UyN)i

It follows that if the conditioning number κ = λmax
λmin

diverges, the
NN becomes untrainable

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 36 / 70



Generalization

Prior mean predictions for test set: ŷM = TM,NT−1
N,N(I− e−ηTN,N t)yN

As t→ ∞ (trained), we have

ŷM = TM,NT−1
N,NyN

Goal: the values of ŷM depend on data XM and X= (XN ,yN)

If TM,NT−1
N,N is a data-independent constant matrix, then the NN

will fail to generalize
Constant rows ⇒ independent with X
Constant columns ⇒ independent with XM
If yN has zero mean, this implies that TM,NT−1

N,NyN = 0

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 37 / 70



Generalization

Prior mean predictions for test set: ŷM = TM,NT−1
N,N(I− e−ηTN,N t)yN

As t→ ∞ (trained), we have

ŷM = TM,NT−1
N,NyN

Goal: the values of ŷM depend on data XM and X= (XN ,yN)

If TM,NT−1
N,N is a data-independent constant matrix, then the NN

will fail to generalize
Constant rows ⇒ independent with X
Constant columns ⇒ independent with XM
If yN has zero mean, this implies that TM,NT−1

N,NyN = 0

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 37 / 70



Results

The training and test accuracy (color) of a fully-connected NN trained
with SGD

(a) The NN is untrainable because κ is too large
(b) The NN is ungeneralizable because TM,NT−1

N,NyN is too small

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 38 / 70



Outline

1 Optimization
Momentum & Nesterov Momentum
AdaGrad & RMSProp
Batch Normalization
Continuation Methods & Curriculum Learning
Cyclic Learning Rates
NTK-based Initialization*

2 Regularization
Weight Decay
Data Augmentation
Contrastive Pre-training
Dropout
Manifold Regularization
More Domain-Specific Models

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 39 / 70



Regularization

The goal of an ML algorithm is to perform well not just on the
training data, but also on new inputs

Regularization: techniques that reduce the generalization error of an
ML algorithm

But not the training error

By expressing preference to a simpler model: weight decay
By providing different perspectives on how to explain the training
data: data augmentation, contrastive pre-training
By ensembling: dropout
By encoding domain-specific knowledge: manifolds, CNNs, RNNs

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 40 / 70



Regularization

The goal of an ML algorithm is to perform well not just on the
training data, but also on new inputs
Regularization: techniques that reduce the generalization error of an
ML algorithm

But not the training error

By expressing preference to a simpler model: weight decay
By providing different perspectives on how to explain the training
data: data augmentation, contrastive pre-training
By ensembling: dropout
By encoding domain-specific knowledge: manifolds, CNNs, RNNs

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 40 / 70



Regularization

The goal of an ML algorithm is to perform well not just on the
training data, but also on new inputs
Regularization: techniques that reduce the generalization error of an
ML algorithm

But not the training error

By expressing preference to a simpler model: weight decay

By providing different perspectives on how to explain the training
data: data augmentation, contrastive pre-training
By ensembling: dropout
By encoding domain-specific knowledge: manifolds, CNNs, RNNs

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 40 / 70



Regularization

The goal of an ML algorithm is to perform well not just on the
training data, but also on new inputs
Regularization: techniques that reduce the generalization error of an
ML algorithm

But not the training error

By expressing preference to a simpler model: weight decay
By providing different perspectives on how to explain the training
data: data augmentation, contrastive pre-training

By ensembling: dropout
By encoding domain-specific knowledge: manifolds, CNNs, RNNs

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 40 / 70



Regularization

The goal of an ML algorithm is to perform well not just on the
training data, but also on new inputs
Regularization: techniques that reduce the generalization error of an
ML algorithm

But not the training error

By expressing preference to a simpler model: weight decay
By providing different perspectives on how to explain the training
data: data augmentation, contrastive pre-training
By ensembling: dropout

By encoding domain-specific knowledge: manifolds, CNNs, RNNs

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 40 / 70



Regularization

The goal of an ML algorithm is to perform well not just on the
training data, but also on new inputs
Regularization: techniques that reduce the generalization error of an
ML algorithm

But not the training error

By expressing preference to a simpler model: weight decay
By providing different perspectives on how to explain the training
data: data augmentation, contrastive pre-training
By ensembling: dropout
By encoding domain-specific knowledge: manifolds, CNNs, RNNs

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 40 / 70



Regularization in Deep Learning I

I have big data, do I still need to regularize my NN?
The excess error is dominated by optimization error (time)

Generally, yes!
For “hard” problems, the true data generating process is almost
certainly outside the model family

E.g., problems in images, audio sequences, and text domains
The true generation process essentially involves simulating the entire
universe

In these domains, the best fitting model (with lowest generalization
error) is usually a larger model regularized appropriately

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 41 / 70



Regularization in Deep Learning I

I have big data, do I still need to regularize my NN?
The excess error is dominated by optimization error (time)

Generally, yes!

For “hard” problems, the true data generating process is almost
certainly outside the model family

E.g., problems in images, audio sequences, and text domains
The true generation process essentially involves simulating the entire
universe

In these domains, the best fitting model (with lowest generalization
error) is usually a larger model regularized appropriately

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 41 / 70



Regularization in Deep Learning I

I have big data, do I still need to regularize my NN?
The excess error is dominated by optimization error (time)

Generally, yes!
For “hard” problems, the true data generating process is almost
certainly outside the model family

E.g., problems in images, audio sequences, and text domains

The true generation process essentially involves simulating the entire
universe

In these domains, the best fitting model (with lowest generalization
error) is usually a larger model regularized appropriately

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 41 / 70



Regularization in Deep Learning I

I have big data, do I still need to regularize my NN?
The excess error is dominated by optimization error (time)

Generally, yes!
For “hard” problems, the true data generating process is almost
certainly outside the model family

E.g., problems in images, audio sequences, and text domains
The true generation process essentially involves simulating the entire
universe

In these domains, the best fitting model (with lowest generalization
error) is usually a larger model regularized appropriately

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 41 / 70



Regularization in Deep Learning I

I have big data, do I still need to regularize my NN?
The excess error is dominated by optimization error (time)

Generally, yes!
For “hard” problems, the true data generating process is almost
certainly outside the model family

E.g., problems in images, audio sequences, and text domains
The true generation process essentially involves simulating the entire
universe

In these domains, the best fitting model (with lowest generalization
error) is usually a larger model regularized appropriately

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 41 / 70



Regularization in Deep Learning II

For “easy” problems, regularization may be necessary to make the
problems well defined

For example, when applying a logistic regression to a linearly separable
dataset:

argmaxw log∏i P(y(i) |x(i);w)
= argmaxw log∏i σ(w>(i))y(i) [1−σ(w>x(i))](1−y(i))

If a weight vector w is able to achieve perfect classification, so is 2w
Furthermore, 2w gives higher likelihood
Without regularization, SGD will continually increase w’s magnitude

A deep NN is likely to separable a dataset and has the similar issue

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 42 / 70



Regularization in Deep Learning II

For “easy” problems, regularization may be necessary to make the
problems well defined
For example, when applying a logistic regression to a linearly separable
dataset:

argmaxw log∏i P(y(i) |x(i);w)
= argmaxw log∏i σ(w>(i))y(i) [1−σ(w>x(i))](1−y(i))

If a weight vector w is able to achieve perfect classification, so is 2w
Furthermore, 2w gives higher likelihood
Without regularization, SGD will continually increase w’s magnitude

A deep NN is likely to separable a dataset and has the similar issue

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 42 / 70



Regularization in Deep Learning II

For “easy” problems, regularization may be necessary to make the
problems well defined
For example, when applying a logistic regression to a linearly separable
dataset:

argmaxw log∏i P(y(i) |x(i);w)
= argmaxw log∏i σ(w>(i))y(i) [1−σ(w>x(i))](1−y(i))

If a weight vector w is able to achieve perfect classification, so is 2w

Furthermore, 2w gives higher likelihood
Without regularization, SGD will continually increase w’s magnitude

A deep NN is likely to separable a dataset and has the similar issue

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 42 / 70



Regularization in Deep Learning II

For “easy” problems, regularization may be necessary to make the
problems well defined
For example, when applying a logistic regression to a linearly separable
dataset:

argmaxw log∏i P(y(i) |x(i);w)
= argmaxw log∏i σ(w>(i))y(i) [1−σ(w>x(i))](1−y(i))

If a weight vector w is able to achieve perfect classification, so is 2w
Furthermore, 2w gives higher likelihood

Without regularization, SGD will continually increase w’s magnitude

A deep NN is likely to separable a dataset and has the similar issue

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 42 / 70



Regularization in Deep Learning II

For “easy” problems, regularization may be necessary to make the
problems well defined
For example, when applying a logistic regression to a linearly separable
dataset:

argmaxw log∏i P(y(i) |x(i);w)
= argmaxw log∏i σ(w>(i))y(i) [1−σ(w>x(i))](1−y(i))

If a weight vector w is able to achieve perfect classification, so is 2w
Furthermore, 2w gives higher likelihood
Without regularization, SGD will continually increase w’s magnitude

A deep NN is likely to separable a dataset and has the similar issue

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 42 / 70



Regularization in Deep Learning II

For “easy” problems, regularization may be necessary to make the
problems well defined
For example, when applying a logistic regression to a linearly separable
dataset:

argmaxw log∏i P(y(i) |x(i);w)
= argmaxw log∏i σ(w>(i))y(i) [1−σ(w>x(i))](1−y(i))

If a weight vector w is able to achieve perfect classification, so is 2w
Furthermore, 2w gives higher likelihood
Without regularization, SGD will continually increase w’s magnitude

A deep NN is likely to separable a dataset and has the similar issue

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 42 / 70



Outline

1 Optimization
Momentum & Nesterov Momentum
AdaGrad & RMSProp
Batch Normalization
Continuation Methods & Curriculum Learning
Cyclic Learning Rates
NTK-based Initialization*

2 Regularization
Weight Decay
Data Augmentation
Contrastive Pre-training
Dropout
Manifold Regularization
More Domain-Specific Models

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 43 / 70



Weight Decay

To add norm penalties:

argmin
Θ

C(Θ)+αΩ(Θ)

Ω can be, e.g., L1- or L2-norm

Ω(W), Ω(W(k)), Ω(W(k)
i,: ), or Ω(W(k)

:,j )?

Limiting column norms Ω(W(k)
:,j ), ∀j,k, is preferred [5]

Prevents any one hidden unit from having very large weights and z(k)j

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 44 / 70



Weight Decay

To add norm penalties:

argmin
Θ

C(Θ)+αΩ(Θ)

Ω can be, e.g., L1- or L2-norm

Ω(W), Ω(W(k)), Ω(W(k)
i,: ), or Ω(W(k)

:,j )?

Limiting column norms Ω(W(k)
:,j ), ∀j,k, is preferred [5]

Prevents any one hidden unit from having very large weights and z(k)j

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 44 / 70



Weight Decay

To add norm penalties:

argmin
Θ

C(Θ)+αΩ(Θ)

Ω can be, e.g., L1- or L2-norm

Ω(W), Ω(W(k)), Ω(W(k)
i,: ), or Ω(W(k)

:,j )?

Limiting column norms Ω(W(k)
:,j ), ∀j,k, is preferred [5]

Prevents any one hidden unit from having very large weights and z(k)j

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 44 / 70



Explicit Weight Decay I

Explicit norm penalties:

argmin
Θ

C(Θ) subject to Ω(Θ)≤ R

To solve the problem, we can use the projective SGD:
At each step t, update Θ(t+1) as in SGD
If Θ(t+1) falls out of the feasible set, project Θ(t+1) back to the tangent
space (edge) of feasible set

Advantage?
Prevents dead units that do not contribute much to the behavior of
NN due to too small weights

Explicit constraints does not push weights to the origin

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 45 / 70



Explicit Weight Decay I

Explicit norm penalties:

argmin
Θ

C(Θ) subject to Ω(Θ)≤ R

To solve the problem, we can use the projective SGD:
At each step t, update Θ(t+1) as in SGD
If Θ(t+1) falls out of the feasible set, project Θ(t+1) back to the tangent
space (edge) of feasible set

Advantage?

Prevents dead units that do not contribute much to the behavior of
NN due to too small weights

Explicit constraints does not push weights to the origin

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 45 / 70



Explicit Weight Decay I

Explicit norm penalties:

argmin
Θ

C(Θ) subject to Ω(Θ)≤ R

To solve the problem, we can use the projective SGD:
At each step t, update Θ(t+1) as in SGD
If Θ(t+1) falls out of the feasible set, project Θ(t+1) back to the tangent
space (edge) of feasible set

Advantage?
Prevents dead units that do not contribute much to the behavior of
NN due to too small weights

Explicit constraints does not push weights to the origin

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 45 / 70



Explicit Weight Decay II

Also prevents instability due to a large learning rate
Reprojection clips the weights and improves numeric stability

Hinton et al. [5] recommend using:

explicit constraints + reprojection + large learning rate

to allow rapid exploration of parameter space while maintaining
numeric stability

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 46 / 70



Explicit Weight Decay II

Also prevents instability due to a large learning rate
Reprojection clips the weights and improves numeric stability

Hinton et al. [5] recommend using:

explicit constraints + reprojection + large learning rate

to allow rapid exploration of parameter space while maintaining
numeric stability

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 46 / 70



Outline

1 Optimization
Momentum & Nesterov Momentum
AdaGrad & RMSProp
Batch Normalization
Continuation Methods & Curriculum Learning
Cyclic Learning Rates
NTK-based Initialization*

2 Regularization
Weight Decay
Data Augmentation
Contrastive Pre-training
Dropout
Manifold Regularization
More Domain-Specific Models

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 47 / 70



Data Augmentation

Theoretically, the best way to improve the generalizability of a model
is to train it on more data

For some ML tasks, it is not hard to create new fake data
In classification, we can generate new (x,y) pairs by transforming an
example input x(i) given the same y(i)

E.g, scaling, translating, rotating, or flipping images (x(i)’s)

Very effective in image object recognition and speech recognition tasks

Caution
Do not to apply transformations that would change the correct class!

E.g., in OCR tasks, avoid:
Horizontal flips for ‘b’ and ‘d’
180◦ rotations for ‘6’ and ‘9’

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 48 / 70



Data Augmentation

Theoretically, the best way to improve the generalizability of a model
is to train it on more data
For some ML tasks, it is not hard to create new fake data
In classification, we can generate new (x,y) pairs by transforming an
example input x(i) given the same y(i)

E.g, scaling, translating, rotating, or flipping images (x(i)’s)

Very effective in image object recognition and speech recognition tasks

Caution
Do not to apply transformations that would change the correct class!

E.g., in OCR tasks, avoid:
Horizontal flips for ‘b’ and ‘d’
180◦ rotations for ‘6’ and ‘9’

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 48 / 70



Data Augmentation

Theoretically, the best way to improve the generalizability of a model
is to train it on more data
For some ML tasks, it is not hard to create new fake data
In classification, we can generate new (x,y) pairs by transforming an
example input x(i) given the same y(i)

E.g, scaling, translating, rotating, or flipping images (x(i)’s)

Very effective in image object recognition and speech recognition tasks

Caution
Do not to apply transformations that would change the correct class!

E.g., in OCR tasks, avoid:
Horizontal flips for ‘b’ and ‘d’
180◦ rotations for ‘6’ and ‘9’

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 48 / 70



Data Augmentation

Theoretically, the best way to improve the generalizability of a model
is to train it on more data
For some ML tasks, it is not hard to create new fake data
In classification, we can generate new (x,y) pairs by transforming an
example input x(i) given the same y(i)

E.g, scaling, translating, rotating, or flipping images (x(i)’s)

Very effective in image object recognition and speech recognition tasks

Caution
Do not to apply transformations that would change the correct class!

E.g., in OCR tasks, avoid:
Horizontal flips for ‘b’ and ‘d’
180◦ rotations for ‘6’ and ‘9’

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 48 / 70



Data Augmentation

Theoretically, the best way to improve the generalizability of a model
is to train it on more data
For some ML tasks, it is not hard to create new fake data
In classification, we can generate new (x,y) pairs by transforming an
example input x(i) given the same y(i)

E.g, scaling, translating, rotating, or flipping images (x(i)’s)

Very effective in image object recognition and speech recognition tasks

Caution
Do not to apply transformations that would change the correct class!

E.g., in OCR tasks, avoid:
Horizontal flips for ‘b’ and ‘d’
180◦ rotations for ‘6’ and ‘9’

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 48 / 70



Noise and Adversarial Data

NNs are not very robust to the perturbation of input (x(i)’s)
Noises [12]
Adversarial points [3]

How to improve the robustness?

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 49 / 70



Noise and Adversarial Data

NNs are not very robust to the perturbation of input (x(i)’s)
Noises [12]
Adversarial points [3]

How to improve the robustness?

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 49 / 70



Noise Injection

We can train an NN with artificial random noise applied to x(i)’s

Why noise injection works?
Recall that the analytic solution of Ridge regression is

w =
(

X>X+α
(t)I
)−1

X>y

In this case, weight decay = adding variance (noises)
More generally, makes the function f locally constant

Cost function C insensitive to small variations in weights
Finds solutions that are not merely minima, but minima surrounded by
flat regions

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 50 / 70



Noise Injection

We can train an NN with artificial random noise applied to x(i)’s
Why noise injection works?

Recall that the analytic solution of Ridge regression is

w =
(

X>X+α
(t)I
)−1

X>y

In this case, weight decay = adding variance (noises)
More generally, makes the function f locally constant

Cost function C insensitive to small variations in weights
Finds solutions that are not merely minima, but minima surrounded by
flat regions

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 50 / 70



Noise Injection

We can train an NN with artificial random noise applied to x(i)’s
Why noise injection works?
Recall that the analytic solution of Ridge regression is

w =
(

X>X+α
(t)I
)−1

X>y

In this case, weight decay = adding variance (noises)

More generally, makes the function f locally constant
Cost function C insensitive to small variations in weights
Finds solutions that are not merely minima, but minima surrounded by
flat regions

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 50 / 70



Noise Injection

We can train an NN with artificial random noise applied to x(i)’s
Why noise injection works?
Recall that the analytic solution of Ridge regression is

w =
(

X>X+α
(t)I
)−1

X>y

In this case, weight decay = adding variance (noises)
More generally, makes the function f locally constant

Cost function C insensitive to small variations in weights
Finds solutions that are not merely minima, but minima surrounded by
flat regions

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 50 / 70



Noise Injection

We can train an NN with artificial random noise applied to x(i)’s
Why noise injection works?
Recall that the analytic solution of Ridge regression is

w =
(

X>X+α
(t)I
)−1

X>y

In this case, weight decay = adding variance (noises)
More generally, makes the function f locally constant

Cost function C insensitive to small variations in weights
Finds solutions that are not merely minima, but minima surrounded by
flat regions

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 50 / 70



Variants

We can also inject noise to hidden representations [8]
Highly effective provided that the magnitude of the noise can be
carefully tuned

The batch normalization, in addition to simplifying optimization, offers
similar regularization effect to noise injection

Injects noises from examples in a minibatch to an activation a(k)j

How about injecting noise to outputs (y(i)’s)?
Already done in probabilistic models

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 51 / 70



Variants

We can also inject noise to hidden representations [8]
Highly effective provided that the magnitude of the noise can be
carefully tuned

The batch normalization, in addition to simplifying optimization, offers
similar regularization effect to noise injection

Injects noises from examples in a minibatch to an activation a(k)j

How about injecting noise to outputs (y(i)’s)?
Already done in probabilistic models

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 51 / 70



Variants

We can also inject noise to hidden representations [8]
Highly effective provided that the magnitude of the noise can be
carefully tuned

The batch normalization, in addition to simplifying optimization, offers
similar regularization effect to noise injection

Injects noises from examples in a minibatch to an activation a(k)j

How about injecting noise to outputs (y(i)’s)?

Already done in probabilistic models

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 51 / 70



Variants

We can also inject noise to hidden representations [8]
Highly effective provided that the magnitude of the noise can be
carefully tuned

The batch normalization, in addition to simplifying optimization, offers
similar regularization effect to noise injection

Injects noises from examples in a minibatch to an activation a(k)j

How about injecting noise to outputs (y(i)’s)?
Already done in probabilistic models

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 51 / 70



Outline

1 Optimization
Momentum & Nesterov Momentum
AdaGrad & RMSProp
Batch Normalization
Continuation Methods & Curriculum Learning
Cyclic Learning Rates
NTK-based Initialization*

2 Regularization
Weight Decay
Data Augmentation
Contrastive Pre-training
Dropout
Manifold Regularization
More Domain-Specific Models

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 52 / 70



Structured Data & Contrastive Learning

A structured x:

“I am selling these fine leather jackets”

Can we learn the grammar first to make model perform better on
targeted task?

Contrastive learning: learning the structure of x via {x(i)}i by
creating virtual labels

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 53 / 70



Structured Data & Contrastive Learning

A structured x:

“I am selling these fine leather jackets”

Can we learn the grammar first to make model perform better on
targeted task?
Contrastive learning: learning the structure of x via {x(i)}i by
creating virtual labels

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 53 / 70



Example: Word2vec Language Model
Contrastive loss for a virtual multi-lass classification task:

Positive examples: (“I”, “am”), (“am”, “selling”), (“selling”, “fine”), ...
Negative examples: (“I”, “dog”), (“I”, “cat”), ...

Models & weight tying:

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 54 / 70



Using the Pre-trained Model

How to use the pre-trained model on the target task with actual
{y(i)}i?

Embed {x(i)}i to get {z(i)}i and train a new model on {(z(i),y(i))}i
Fine-tune the pre-trained model using {(x(i),y(i))}i

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 55 / 70



Using the Pre-trained Model

How to use the pre-trained model on the target task with actual
{y(i)}i?

Embed {x(i)}i to get {z(i)}i and train a new model on {(z(i),y(i))}i
Fine-tune the pre-trained model using {(x(i),y(i))}i

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 55 / 70



Outline

1 Optimization
Momentum & Nesterov Momentum
AdaGrad & RMSProp
Batch Normalization
Continuation Methods & Curriculum Learning
Cyclic Learning Rates
NTK-based Initialization*

2 Regularization
Weight Decay
Data Augmentation
Contrastive Pre-training
Dropout
Manifold Regularization
More Domain-Specific Models

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 56 / 70



Ensemble Methods

Ensemble methods can improve generalizability by offering different
explanations to X

Voting: reduces variance of predictions if having independent voters
Bagging: resample X to makes voters less dependent
Boosting: increase confidence (margin) of predictions, if not
overfitting

Ensemble methods in deep learning?
Voting: train multiple NNs
Bagging: train multiple NNs, each with resampled X

GoogleLeNet [11], winner of ILSVRC’14, is an ensemble of 6 NNs
Very time consuming to ensemble a large number of NNs

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 57 / 70



Ensemble Methods

Ensemble methods can improve generalizability by offering different
explanations to X

Voting: reduces variance of predictions if having independent voters

Bagging: resample X to makes voters less dependent
Boosting: increase confidence (margin) of predictions, if not
overfitting

Ensemble methods in deep learning?
Voting: train multiple NNs
Bagging: train multiple NNs, each with resampled X

GoogleLeNet [11], winner of ILSVRC’14, is an ensemble of 6 NNs
Very time consuming to ensemble a large number of NNs

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 57 / 70



Ensemble Methods

Ensemble methods can improve generalizability by offering different
explanations to X

Voting: reduces variance of predictions if having independent voters
Bagging: resample X to makes voters less dependent

Boosting: increase confidence (margin) of predictions, if not
overfitting

Ensemble methods in deep learning?
Voting: train multiple NNs
Bagging: train multiple NNs, each with resampled X

GoogleLeNet [11], winner of ILSVRC’14, is an ensemble of 6 NNs
Very time consuming to ensemble a large number of NNs

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 57 / 70



Ensemble Methods

Ensemble methods can improve generalizability by offering different
explanations to X

Voting: reduces variance of predictions if having independent voters
Bagging: resample X to makes voters less dependent
Boosting: increase confidence (margin) of predictions, if not
overfitting

Ensemble methods in deep learning?
Voting: train multiple NNs
Bagging: train multiple NNs, each with resampled X

GoogleLeNet [11], winner of ILSVRC’14, is an ensemble of 6 NNs
Very time consuming to ensemble a large number of NNs

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 57 / 70



Ensemble Methods

Ensemble methods can improve generalizability by offering different
explanations to X

Voting: reduces variance of predictions if having independent voters
Bagging: resample X to makes voters less dependent
Boosting: increase confidence (margin) of predictions, if not
overfitting

Ensemble methods in deep learning?

Voting: train multiple NNs
Bagging: train multiple NNs, each with resampled X

GoogleLeNet [11], winner of ILSVRC’14, is an ensemble of 6 NNs
Very time consuming to ensemble a large number of NNs

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 57 / 70



Ensemble Methods

Ensemble methods can improve generalizability by offering different
explanations to X

Voting: reduces variance of predictions if having independent voters
Bagging: resample X to makes voters less dependent
Boosting: increase confidence (margin) of predictions, if not
overfitting

Ensemble methods in deep learning?
Voting: train multiple NNs

Bagging: train multiple NNs, each with resampled X
GoogleLeNet [11], winner of ILSVRC’14, is an ensemble of 6 NNs
Very time consuming to ensemble a large number of NNs

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 57 / 70



Ensemble Methods

Ensemble methods can improve generalizability by offering different
explanations to X

Voting: reduces variance of predictions if having independent voters
Bagging: resample X to makes voters less dependent
Boosting: increase confidence (margin) of predictions, if not
overfitting

Ensemble methods in deep learning?
Voting: train multiple NNs
Bagging: train multiple NNs, each with resampled X

GoogleLeNet [11], winner of ILSVRC’14, is an ensemble of 6 NNs
Very time consuming to ensemble a large number of NNs

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 57 / 70



Ensemble Methods

Ensemble methods can improve generalizability by offering different
explanations to X

Voting: reduces variance of predictions if having independent voters
Bagging: resample X to makes voters less dependent
Boosting: increase confidence (margin) of predictions, if not
overfitting

Ensemble methods in deep learning?
Voting: train multiple NNs
Bagging: train multiple NNs, each with resampled X

GoogleLeNet [11], winner of ILSVRC’14, is an ensemble of 6 NNs

Very time consuming to ensemble a large number of NNs

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 57 / 70



Ensemble Methods

Ensemble methods can improve generalizability by offering different
explanations to X

Voting: reduces variance of predictions if having independent voters
Bagging: resample X to makes voters less dependent
Boosting: increase confidence (margin) of predictions, if not
overfitting

Ensemble methods in deep learning?
Voting: train multiple NNs
Bagging: train multiple NNs, each with resampled X

GoogleLeNet [11], winner of ILSVRC’14, is an ensemble of 6 NNs
Very time consuming to ensemble a large number of NNs

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 57 / 70



Dropout I

Dropout: a feature-based
bagging

Resamples input as
well as latent features
With parameter
sharing among voters

SGD training: each time loading a minibatch, randomly sample a
binary mask to apply to all input and hidden units

Each unit has probability α to be included (a hyperparameter)
Typically, 0.8 for input units and 0.5 for hidden units

Different minibatches are used to train different parts of the NN
Similar to bagging, but much more efficient
No need to retrain unmasked units
Exponential number of voters

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 58 / 70



Dropout I

Dropout: a feature-based
bagging

Resamples input as
well as latent features

With parameter
sharing among voters

SGD training: each time loading a minibatch, randomly sample a
binary mask to apply to all input and hidden units

Each unit has probability α to be included (a hyperparameter)
Typically, 0.8 for input units and 0.5 for hidden units

Different minibatches are used to train different parts of the NN
Similar to bagging, but much more efficient
No need to retrain unmasked units
Exponential number of voters

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 58 / 70



Dropout I

Dropout: a feature-based
bagging

Resamples input as
well as latent features
With parameter
sharing among voters

SGD training: each time loading a minibatch, randomly sample a
binary mask to apply to all input and hidden units

Each unit has probability α to be included (a hyperparameter)
Typically, 0.8 for input units and 0.5 for hidden units

Different minibatches are used to train different parts of the NN
Similar to bagging, but much more efficient
No need to retrain unmasked units
Exponential number of voters

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 58 / 70



Dropout I

Dropout: a feature-based
bagging

Resamples input as
well as latent features
With parameter
sharing among voters

SGD training: each time loading a minibatch, randomly sample a
binary mask to apply to all input and hidden units

Each unit has probability α to be included (a hyperparameter)

Typically, 0.8 for input units and 0.5 for hidden units
Different minibatches are used to train different parts of the NN

Similar to bagging, but much more efficient
No need to retrain unmasked units
Exponential number of voters

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 58 / 70



Dropout I

Dropout: a feature-based
bagging

Resamples input as
well as latent features
With parameter
sharing among voters

SGD training: each time loading a minibatch, randomly sample a
binary mask to apply to all input and hidden units

Each unit has probability α to be included (a hyperparameter)
Typically, 0.8 for input units and 0.5 for hidden units

Different minibatches are used to train different parts of the NN
Similar to bagging, but much more efficient
No need to retrain unmasked units
Exponential number of voters

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 58 / 70



Dropout I

Dropout: a feature-based
bagging

Resamples input as
well as latent features
With parameter
sharing among voters

SGD training: each time loading a minibatch, randomly sample a
binary mask to apply to all input and hidden units

Each unit has probability α to be included (a hyperparameter)
Typically, 0.8 for input units and 0.5 for hidden units

Different minibatches are used to train different parts of the NN
Similar to bagging, but much more efficient

No need to retrain unmasked units
Exponential number of voters

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 58 / 70



Dropout I

Dropout: a feature-based
bagging

Resamples input as
well as latent features
With parameter
sharing among voters

SGD training: each time loading a minibatch, randomly sample a
binary mask to apply to all input and hidden units

Each unit has probability α to be included (a hyperparameter)
Typically, 0.8 for input units and 0.5 for hidden units

Different minibatches are used to train different parts of the NN
Similar to bagging, but much more efficient
No need to retrain unmasked units
Exponential number of voters

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 58 / 70



Dropout II

How to vote to make a final prediction?

Mask sampling:
1 Randomly sample some (typically, 10∼ 20) masks
2 For each mask, apply it to the trained NN and get a prediction
3 Average the predictions

Weigh scaling:
Make a single prediction using the NN with all units
But weights going out from a unit is multiplied by α

Heuristic: each unit outputs the same expected amount of weight as in
training

The better one is problem dependent

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 59 / 70



Dropout II

How to vote to make a final prediction?
Mask sampling:

1 Randomly sample some (typically, 10∼ 20) masks
2 For each mask, apply it to the trained NN and get a prediction
3 Average the predictions

Weigh scaling:
Make a single prediction using the NN with all units
But weights going out from a unit is multiplied by α

Heuristic: each unit outputs the same expected amount of weight as in
training

The better one is problem dependent

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 59 / 70



Dropout II

How to vote to make a final prediction?
Mask sampling:

1 Randomly sample some (typically, 10∼ 20) masks
2 For each mask, apply it to the trained NN and get a prediction
3 Average the predictions

Weigh scaling:
Make a single prediction using the NN with all units
But weights going out from a unit is multiplied by α

Heuristic: each unit outputs the same expected amount of weight as in
training

The better one is problem dependent

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 59 / 70



Dropout II

How to vote to make a final prediction?
Mask sampling:

1 Randomly sample some (typically, 10∼ 20) masks
2 For each mask, apply it to the trained NN and get a prediction
3 Average the predictions

Weigh scaling:
Make a single prediction using the NN with all units
But weights going out from a unit is multiplied by α

Heuristic: each unit outputs the same expected amount of weight as in
training

The better one is problem dependent

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 59 / 70



Dropout II

How to vote to make a final prediction?
Mask sampling:

1 Randomly sample some (typically, 10∼ 20) masks
2 For each mask, apply it to the trained NN and get a prediction
3 Average the predictions

Weigh scaling:
Make a single prediction using the NN with all units
But weights going out from a unit is multiplied by α

Heuristic: each unit outputs the same expected amount of weight as in
training

The better one is problem dependent

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 59 / 70



Dropout III

Dropout improves generalization beyond ensembling

For example, in face image recognition:
If there is a unit that detects nose
Dropping the unit encourages the model to learn mouth (or nose
again) in another unit

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 60 / 70



Dropout III

Dropout improves generalization beyond ensembling
For example, in face image recognition:

If there is a unit that detects nose
Dropping the unit encourages the model to learn mouth (or nose
again) in another unit

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 60 / 70



Dropout III

Dropout improves generalization beyond ensembling
For example, in face image recognition:
If there is a unit that detects nose

Dropping the unit encourages the model to learn mouth (or nose
again) in another unit

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 60 / 70



Dropout III

Dropout improves generalization beyond ensembling
For example, in face image recognition:
If there is a unit that detects nose
Dropping the unit encourages the model to learn mouth (or nose
again) in another unit

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 60 / 70



Outline

1 Optimization
Momentum & Nesterov Momentum
AdaGrad & RMSProp
Batch Normalization
Continuation Methods & Curriculum Learning
Cyclic Learning Rates
NTK-based Initialization*

2 Regularization
Weight Decay
Data Augmentation
Contrastive Pre-training
Dropout
Manifold Regularization
More Domain-Specific Models

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 61 / 70



Manifolds I
One way to improve the generalizability of a model is to incorporate
the prior knowledge

In many applications, data of the same class concentrate around one
or more low-dimensional manifolds
A manifold is a topological space that are linear locally

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 62 / 70



Manifolds I
One way to improve the generalizability of a model is to incorporate
the prior knowledge
In many applications, data of the same class concentrate around one
or more low-dimensional manifolds

A manifold is a topological space that are linear locally

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 62 / 70



Manifolds I
One way to improve the generalizability of a model is to incorporate
the prior knowledge
In many applications, data of the same class concentrate around one
or more low-dimensional manifolds
A manifold is a topological space that are linear locally

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 62 / 70



Manifolds II

For each point x on a manifold, we have its tangent space spanned
by tangent vectors

Local directions specify how one can change x infinitesimally while
staying on the manifold

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 63 / 70



Tangent Prop

How to incorporate the manifold prior into a model?

Suppose we have the tangent vectors {v(i,j)}j for each example x(i)

Tangent Prop [9] trains an NN classifier f with cost penalty:

Ω[f ] = ∑
i,j

∇xf (x(i))>v(i,j)

To make f local constant along tangent directions

How to obtain {v(i,j)}j ?
Manually specified based on domain knowledge

Images: scaling, translating, rotating, flipping etc.

Or learned automatically (to be discussed later)

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 64 / 70



Tangent Prop

How to incorporate the manifold prior into a model?
Suppose we have the tangent vectors {v(i,j)}j for each example x(i)

Tangent Prop [9] trains an NN classifier f with cost penalty:

Ω[f ] = ∑
i,j

∇xf (x(i))>v(i,j)

To make f local constant along tangent directions

How to obtain {v(i,j)}j ?
Manually specified based on domain knowledge

Images: scaling, translating, rotating, flipping etc.

Or learned automatically (to be discussed later)

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 64 / 70



Tangent Prop

How to incorporate the manifold prior into a model?
Suppose we have the tangent vectors {v(i,j)}j for each example x(i)

Tangent Prop [9] trains an NN classifier f with cost penalty:

Ω[f ] = ∑
i,j

∇xf (x(i))>v(i,j)

To make f local constant along tangent directions

How to obtain {v(i,j)}j ?

Manually specified based on domain knowledge
Images: scaling, translating, rotating, flipping etc.

Or learned automatically (to be discussed later)

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 64 / 70



Tangent Prop

How to incorporate the manifold prior into a model?
Suppose we have the tangent vectors {v(i,j)}j for each example x(i)

Tangent Prop [9] trains an NN classifier f with cost penalty:

Ω[f ] = ∑
i,j

∇xf (x(i))>v(i,j)

To make f local constant along tangent directions

How to obtain {v(i,j)}j ?
Manually specified based on domain knowledge

Images: scaling, translating, rotating, flipping etc.

Or learned automatically (to be discussed later)

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 64 / 70



Tangent Prop

How to incorporate the manifold prior into a model?
Suppose we have the tangent vectors {v(i,j)}j for each example x(i)

Tangent Prop [9] trains an NN classifier f with cost penalty:

Ω[f ] = ∑
i,j

∇xf (x(i))>v(i,j)

To make f local constant along tangent directions

How to obtain {v(i,j)}j ?
Manually specified based on domain knowledge

Images: scaling, translating, rotating, flipping etc.

Or learned automatically (to be discussed later)

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 64 / 70



Outline

1 Optimization
Momentum & Nesterov Momentum
AdaGrad & RMSProp
Batch Normalization
Continuation Methods & Curriculum Learning
Cyclic Learning Rates
NTK-based Initialization*

2 Regularization
Weight Decay
Data Augmentation
Contrastive Pre-training
Dropout
Manifold Regularization
More Domain-Specific Models

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 65 / 70



Domain-Specific Models
Convolutional Neural Networks (CNNs) for image processing:

Recurrent Neural Networks (RNNs) for sequential data (e.g.,
natural language) processing:

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 66 / 70



Reference I

[1] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason
Weston.
Curriculum learning.
In Proceedings of the 26th annual international conference on machine
learning, pages 41–48. ACM, 2009.

[2] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben
Arous, and Yann LeCun.
The loss surfaces of multilayer networks.
In AISTATS, 2015.

[3] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy.
Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014.

[4] Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe.
Qualitatively characterizing neural network optimization problems.
arXiv preprint arXiv:1412.6544, 2014.

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 67 / 70



Reference II

[5] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever,
and Ruslan R Salakhutdinov.
Improving neural networks by preventing co-adaptation of feature
detectors.
arXiv preprint arXiv:1207.0580, 2012.

[6] Sergey Ioffe and Christian Szegedy.
Batch normalization: Accelerating deep network training by reducing
internal covariate shift.
arXiv preprint arXiv:1502.03167, 2015.

[7] Diederik Kingma and Jimmy Ba.
Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[8] Ben Poole, Jascha Sohl-Dickstein, and Surya Ganguli.
Analyzing noise in autoencoders and deep networks.
arXiv preprint arXiv:1406.1831, 2014.

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 68 / 70



Reference III

[9] Patrice Simard, Bernard Victorri, Yann LeCun, and John S Denker.
Tangent prop-a formalism for specifying selected invariances in an
adaptive network.
In NIPS, volume 91, pages 895–903, 1991.

[10] Leslie N Smith.
Cyclical learning rates for training neural networks.
In 2017 IEEE Winter Conference on Applications of Computer Vision
(WACV), pages 464–472. IEEE, 2017.

[11] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and
Andrew Rabinovich.
Going deeper with convolutions.
In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–9, 2015.

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 69 / 70



Reference IV

[12] Yichuan Tang and Chris Eliasmith.
Deep networks for robust visual recognition.
In Proceedings of the 27th International Conference on Machine
Learning (ICML-10), pages 1055–1062, 2010.

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 70 / 70


	Optimization
	Momentum & Nesterov Momentum
	AdaGrad & RMSProp
	Batch Normalization
	Continuation Methods & Curriculum Learning
	Cyclic Learning Rates
	NTK-based Initialization*

	Regularization
	Weight Decay
	Data Augmentation
	Contrastive Pre-training
	Dropout
	Manifold Regularization
	More Domain-Specific Models


