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Challenges

NN a complex function:

ŷ = f (x;Θ)

= f (L)(· · · f (1)(x;W(1));W(L))

Given a training set X, our goal is to solve:

argminΘ C(Θ) = argminΘ− logP(X |Θ)

= argminΘ ∑i− logP(y(i) |x(i),Θ)

= argminΘ ∑i C(i)(Θ)

= argminW(1),··· ,W(L) ∑i C(i)(W(1), · · · ,W(L))

What are the challenges of solving this problem with SGD?
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Non-Convexity
The loss function C(i) is non-convex

SGD stops at local minima or saddle points
Prior to the success of SGD (in roughly 2012), NN cost function
surfaces were generally believed to have many non-convex structure
However, studies [2, 4] show SGD seldom encounters critical points
when training a large NN
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Ill-Conditioning

The loss C(i) may be ill-conditioned (in terms of Θ)
Due to, e.g., dependency between W(k)’s at different layers

SGD has slow progress at valleys or plateaus
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Lacks Global Minima

The loss C(i) may lack a global minimum point

E.g., for multiclass classification
P(y |x,Θ) provided by a softmax function
C(i)(Θ) =− logP(y(i) |x(i),Θ) can become arbitrarily close to zero (if
classifying example i correctly)
But not actually reaching zero

SGD may proceed along a
direction forever
Initialization is important
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Training 101

Before training a feedforward NN, remember to standardize
(z-normalize) the input

Prevents dominating features
Improves conditioning

When training, remember to:
1 Initialize all weights to small random values

Breaks “symmetry” between different units so they are not updated in
the same way
Biases b(k)’s may be initialized to zero (or to small positive values for
ReLUs to prevent too much saturation)

2 Early stop if the validation error does not continue decreasing
Prevents overfitting
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Momentum

Update rule in SGD:

Θ
(t+1)←Θ

(t)−ηg(t)

where g(t) = ∇ΘC(Θ(t))

Gets stuck in local minima
or saddle points

Momentum: make the same movement v(t)
in the last iteration, corrected by negative
gradient:

v(t+1)← λv(t)−(1−λ )g(t)

Θ
(t+1)←Θ

(t)+ηv(t+1)

v(t) is a moving average of −g(t)
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Nesterov Momentum

Make the same movement v(t) in the last
iteration, corrected by lookahead
negative gradient:

Θ̃
(t+1)←Θ

(t)+ηv(t)

v(t+1)← λv(t)−(1−λ )∇ΘC(Θ̃(t))

Θ
(t+1)←Θ

(t)+ηv(t+1)

Faster convergence to a minimum
Not helpful for NNs that lack of minima
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Where Does SGD Spend Its Training Time?

1 Detouring a saddle point of high cost
Better initialization

2 Traversing the relatively flat valley
Adaptive learning rate
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SGD with Adaptive Learning Rates

Smaller learning rate η along a steep direction
Prevents overshooting

Larger learning rate η along a flat direction
Speed up convergence

How?
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AdaGrad

Update rule:
r(t+1)← r(t)+g(t)�g(t)

Θ
(t+1)←Θ

(t)− η√
r(t+1)

�g(t)

r(t+1) accumulates squared gradients along each axis
Division and square root applied to r(t+1) elementwisely

We have

η√
r(t+1)

=
η√
t+1

� 1√
1

t+1 r(t+1)
=

η√
t+1

� 1√
1

t+1 ∑
t
i=0 g(i)�g(i)

1 Smaller learning rate along all directions as t grows
2 Larger learning rate along more gently sloped directions
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Limitations

The optimal learning rate along a direction may change over time

In AdaGrad, r(t+1) accumulates squared gradients from the
beginning of training

Results in premature adaptivity
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RMSProp

RMSProp changes the gradient accumulation in r(t+1) into a moving
average:

r(t+1)← λ r(t)+(1−λ )g(t)�g(t)

Θ
(t+1)←Θ

(t)− η√
r(t+1)

�g(t)

A popular algorithm Adam (short for adaptive moments) [7] is a
combination of RMSProp and Momentum:

v(t+1)← λ1v(t)− (1−λ1)g(t)

r(t+1)← λ2r(t)+(1−λ2)g(t)�g(t)

Θ
(t+1)←Θ

(t)+
η√

r(t+1)
� v(t+1)

With some bias corrections for v(t+1) and r(t+1)
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Training Deep NNs I

So far, we modify the optimization algorithm to better train the model

Can we modify the model to ease the optimization task?
What are the difficulties in training a deep NN?
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Training Deep NNs II

The cost C(Θ) of a deep NN is usually ill-conditioned due to the
dependency between W(k)’s at different layers

As a simple example, consider a deep NN for x,y ∈ R:

ŷ = f (x) = xw(1)w(2) · · ·w(L)

Single unit at each layer
Linear activation function and no bias in each unit

The output ŷ is a linear function of x, but not of weights
The curvature of f with respect to any two w(i) and w(j) is

∂ f
∂w(i)∂w(j)

= (w(i)+w(j)) · x ∏
k 6=i,j

w(k)

Very small if L is large and w(k) < 1 for k 6= i, j
Very large if L is large and w(k) > 1 for k 6= i, j
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Training Deep NNs III
The ill-conditioned C(Θ) makes a gradient-based optimization
algorithm (e.g., SGD) inefficient

Let Θ = [w(1),w(2), · · · ,w(L)]> and g(t) = ∇ΘC(Θ(t))

In gradient descent, we get Θ(t+1) by Θ(t+1)←Θ(t)−ηg(t) based on
the first-order Taylor approximation of C

The gradient g(t)i = ∂C
∂w(i) (Θ

(t)) is calculated individually by fixing
C(Θ(t)) in other dimensions (w(j)’s, j 6= i)
However, g(t) updates Θ(t) in all dimensions simultaneously in the
same iteration
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Batch Normalization I

ŷ = f (x) = xw(1)w(2) · · ·w(L)

Why not standardize each hidden activation a(k), k = 1, · · · ,L−1 (as
we standardized x)?

We have
ŷ = a(L−1)w(L)

When a(L−1) is standardized, g(t)L = ∂C
∂w(L) (Θ

(t)) is more likely to
decrease C

If x∼N (0,1), then still a(L−1) ∼N (0,1), no matter how
w(1), · · · ,w(L−1) change
Changes in other dimensions proposed by g(t)i ’s, i 6= L, can be zeroed
out

Similarly, if a(k−1) is standardized, g(t)k = ∂C
∂w(k) (Θ

(t)) is more likely to
decrease C
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ŷ = f (x) = xw(1)w(2) · · ·w(L)

Why not standardize each hidden activation a(k), k = 1, · · · ,L−1 (as
we standardized x)?
We have
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ŷ = f (x) = xw(1)w(2) · · ·w(L)

Why not standardize each hidden activation a(k), k = 1, · · · ,L−1 (as
we standardized x)?
We have
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ŷ = f (x) = xw(1)w(2) · · ·w(L)

Why not standardize each hidden activation a(k), k = 1, · · · ,L−1 (as
we standardized x)?
We have
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Batch Normalization II

How to standardize a(k) at training and test time?
We can standardize the input x because we see multiple examples

During training time, we see a minibatch of activations a(k) ∈ RM (M
the batch size)
Batch normalization [6]:

ã(k)i =
a(k)i −µ(k)

σ (k)
,∀i

µ(k) and σ (k) are mean and std of activations across examples in the
minibatch

At test time, µ(k) and σ (k) can be replaced by running averages that
were collected during training time
Can be readily extended to NNs having multiple neurons at each layer
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Standardizing Nonlinear Units

How to standardize a nonlinear unit a(k) = act(z(k))?

We can still zero out the effects from other layers by normalizing z(k)

Given a minibatch of z(k) ∈ RM:

z̃(k)i =
z(k)i −µ(k)

σ (k)
,∀i

A hidden unit now looks like:
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Expressiveness I

The weights W(k) at each layer is easier to train now
The “wrong assumption” of gradient-based optimization is made valid

But at the cost of expressiveness
Normalizing a(k) or z(k) limits the output range of a unit

Observe that there is no need to insist a z̃(k) to have zero mean and
unit variance

We only care about whether it is “fixed” when calculating the gradients
for other layers
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Expressiveness II

During training time, we can introduce two parameters γ and β and
back-propagate through

γ z̃(k)+β

to learn their best values

Question: γ and β can be learned to invert z̃(k) to get z(k), so what’s
the point?

z̃(k) = z(k)−µ(k)

σ (k) , so γ z̃(k)+β = σ z̃(k)+µ = z(k)

The weights W(k), γ, and β are now easier to learn with SGD
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Outline

1 Optimization
Momentum & Nesterov Momentum
AdaGrad & RMSProp
Batch Normalization
Continuation Methods & Curriculum Learning
Cyclic Learning Rates
NTK-based Initialization*

2 Regularization
Weight Decay
Data Augmentation
Contrastive Pre-training
Dropout
Manifold Regularization
More Domain-Specific Models
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Parameter Initialization

Initialization is important

How to better initialize Θ(0)?

1 Train an NN multiple times with random initial points, and then pick
the best

2 Design a series of cost functions such that a solution to one is a good
initial point of the next

Solve the “easy” problem first, and then a “harder” one, and so on
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Continuation Methods I
Continuation methods: construct easier cost functions by
smoothing the original cost function:

C̃(Θ) = E
Θ̃∼N (Θ,σ2)C(Θ̃)

In practice, we sample several Θ̃’s to approximate the expectation

Assumption: some non-convex functions become approximately convex
when smoothen
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Continuation Methods II

Problems?

Cost function might not become convex, no matter how much it is
smoothen
Designed to deal with local minima; not very helpful for NNs without
minima
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Curriculum Learning

Curriculum learning (or shaping) [1]: make the cost function easier
by increasing the influence of simpler examples

E.g., by assigning them larger weights in the new cost function
Or, by sampling them more frequently

How to define “simple” examples?
Face image recognition: front view (easy) vs. side view (hard)
Sentiment analysis for movie reviews: 0-/5-star reviews (easy) vs.
1-/2-/3-/4-star reviews (hard)

Learn simple concepts first, then learn more complex concepts that
depend on these simpler concepts

Just like how humans learn
Knowing the principles, we are less likely to explain an observation
using special (but wrong) rules
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How to define “simple” examples?
Face image recognition: front view (easy) vs. side view (hard)
Sentiment analysis for movie reviews: 0-/5-star reviews (easy) vs.
1-/2-/3-/4-star reviews (hard)
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SGD Gradients are Noisy

Initialization is important
SGD gradients may not be
representative in the
beginning (and in the end)

Use a small learning rate
in the very beginning [10]
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Prior Predictions of NTK-GP

Prior (unconditioned) mean predictions for training set:

ŷN = (I− e−ηTN,N t)yN

Prior mean predictions for test set:

ŷM = TM,NT−1
N,N(I− e−ηTN,N t)yN

Given a training set, the TN,N and TM,N depends only on the network
structure and hyperparameters of initial weights

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 35 / 70



Trainability

Prior (unconditioned) mean predictions for training set:

ŷN = (I− e−ηTN,N t)yN

where η < 2
λmax+λmin

≈ 2
λmax

Goal: ŷN → yN as t→ ∞

Let TN,N = U>

 λmax
. . .

λmin

U, we have

(UŷN)i ≈ ((I− e−2 λi
λmax

t)UyN)i

It follows that if the conditioning number κ = λmax
λmin

diverges, the
NN becomes untrainable
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Generalization

Prior mean predictions for test set: ŷM = TM,NT−1
N,N(I− e−ηTN,N t)yN

As t→ ∞ (trained), we have

ŷM = TM,NT−1
N,NyN

Goal: the values of ŷM depend on data XM and X= (XN ,yN)

If TM,NT−1
N,N is a data-independent constant matrix, then the NN

will fail to generalize
Constant rows ⇒ independent with X
Constant columns ⇒ independent with XM
If yN has zero mean, this implies that TM,NT−1

N,NyN = 0
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Results

The training and test accuracy (color) of a fully-connected NN trained
with SGD

(a) The NN is untrainable because κ is too large
(b) The NN is ungeneralizable because TM,NT−1

N,NyN is too small
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Regularization

The goal of an ML algorithm is to perform well not just on the
training data, but also on new inputs

Regularization: techniques that reduce the generalization error of an
ML algorithm

But not the training error

By expressing preference to a simpler model: weight decay
By providing different perspectives on how to explain the training
data: data augmentation, contrastive pre-training
By ensembling: dropout
By encoding domain-specific knowledge: manifolds, CNNs, RNNs
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Regularization in Deep Learning I

I have big data, do I still need to regularize my NN?
The excess error is dominated by optimization error (time)

Generally, yes!
For “hard” problems, the true data generating process is almost
certainly outside the model family

E.g., problems in images, audio sequences, and text domains
The true generation process essentially involves simulating the entire
universe

In these domains, the best fitting model (with lowest generalization
error) is usually a larger model regularized appropriately
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Regularization in Deep Learning II

For “easy” problems, regularization may be necessary to make the
problems well defined

For example, when applying a logistic regression to a linearly separable
dataset:

argmaxw log∏i P(y(i) |x(i);w)
= argmaxw log∏i σ(w>(i))y(i) [1−σ(w>x(i))](1−y(i))

If a weight vector w is able to achieve perfect classification, so is 2w
Furthermore, 2w gives higher likelihood
Without regularization, SGD will continually increase w’s magnitude

A deep NN is likely to separable a dataset and has the similar issue
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Weight Decay

To add norm penalties:

argmin
Θ

C(Θ)+αΩ(Θ)

Ω can be, e.g., L1- or L2-norm

Ω(W), Ω(W(k)), Ω(W(k)
i,: ), or Ω(W(k)

:,j )?

Limiting column norms Ω(W(k)
:,j ), ∀j,k, is preferred [5]

Prevents any one hidden unit from having very large weights and z(k)j
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Explicit Weight Decay I

Explicit norm penalties:

argmin
Θ

C(Θ) subject to Ω(Θ)≤ R

To solve the problem, we can use the projective SGD:
At each step t, update Θ(t+1) as in SGD
If Θ(t+1) falls out of the feasible set, project Θ(t+1) back to the tangent
space (edge) of feasible set

Advantage?
Prevents dead units that do not contribute much to the behavior of
NN due to too small weights

Explicit constraints does not push weights to the origin
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Explicit Weight Decay II

Also prevents instability due to a large learning rate
Reprojection clips the weights and improves numeric stability

Hinton et al. [5] recommend using:

explicit constraints + reprojection + large learning rate

to allow rapid exploration of parameter space while maintaining
numeric stability
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Data Augmentation

Theoretically, the best way to improve the generalizability of a model
is to train it on more data

For some ML tasks, it is not hard to create new fake data
In classification, we can generate new (x,y) pairs by transforming an
example input x(i) given the same y(i)

E.g, scaling, translating, rotating, or flipping images (x(i)’s)

Very effective in image object recognition and speech recognition tasks

Caution
Do not to apply transformations that would change the correct class!

E.g., in OCR tasks, avoid:
Horizontal flips for ‘b’ and ‘d’
180◦ rotations for ‘6’ and ‘9’
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Noise and Adversarial Data

NNs are not very robust to the perturbation of input (x(i)’s)
Noises [12]
Adversarial points [3]

How to improve the robustness?
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Noise Injection

We can train an NN with artificial random noise applied to x(i)’s

Why noise injection works?
Recall that the analytic solution of Ridge regression is

w =
(

X>X+α
(t)I
)−1

X>y

In this case, weight decay = adding variance (noises)
More generally, makes the function f locally constant

Cost function C insensitive to small variations in weights
Finds solutions that are not merely minima, but minima surrounded by
flat regions
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Variants

We can also inject noise to hidden representations [8]
Highly effective provided that the magnitude of the noise can be
carefully tuned

The batch normalization, in addition to simplifying optimization, offers
similar regularization effect to noise injection

Injects noises from examples in a minibatch to an activation a(k)j

How about injecting noise to outputs (y(i)’s)?
Already done in probabilistic models
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More Domain-Specific Models

Shan-Hung Wu (CS, NTHU) NN Opt & Reg Machine Learning 52 / 70



Structured Data & Contrastive Learning

A structured x:

“I am selling these fine leather jackets”

Can we learn the grammar first to make model perform better on
targeted task?

Contrastive learning: learning the structure of x via {x(i)}i by
creating virtual labels
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Example: Word2vec Language Model
Contrastive loss for a virtual multi-lass classification task:

Positive examples: (“I”, “am”), (“am”, “selling”), (“selling”, “fine”), ...
Negative examples: (“I”, “dog”), (“I”, “cat”), ...

Models & weight tying:
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Using the Pre-trained Model

How to use the pre-trained model on the target task with actual
{y(i)}i?

Embed {x(i)}i to get {z(i)}i and train a new model on {(z(i),y(i))}i
Fine-tune the pre-trained model using {(x(i),y(i))}i
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Ensemble Methods

Ensemble methods can improve generalizability by offering different
explanations to X

Voting: reduces variance of predictions if having independent voters
Bagging: resample X to makes voters less dependent
Boosting: increase confidence (margin) of predictions, if not
overfitting

Ensemble methods in deep learning?
Voting: train multiple NNs
Bagging: train multiple NNs, each with resampled X

GoogleLeNet [11], winner of ILSVRC’14, is an ensemble of 6 NNs
Very time consuming to ensemble a large number of NNs
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Dropout I

Dropout: a feature-based
bagging

Resamples input as
well as latent features
With parameter
sharing among voters

SGD training: each time loading a minibatch, randomly sample a
binary mask to apply to all input and hidden units

Each unit has probability α to be included (a hyperparameter)
Typically, 0.8 for input units and 0.5 for hidden units

Different minibatches are used to train different parts of the NN
Similar to bagging, but much more efficient
No need to retrain unmasked units
Exponential number of voters
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Dropout II

How to vote to make a final prediction?

Mask sampling:
1 Randomly sample some (typically, 10∼ 20) masks
2 For each mask, apply it to the trained NN and get a prediction
3 Average the predictions

Weigh scaling:
Make a single prediction using the NN with all units
But weights going out from a unit is multiplied by α

Heuristic: each unit outputs the same expected amount of weight as in
training

The better one is problem dependent
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Dropout III

Dropout improves generalization beyond ensembling

For example, in face image recognition:
If there is a unit that detects nose
Dropping the unit encourages the model to learn mouth (or nose
again) in another unit
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Outline

1 Optimization
Momentum & Nesterov Momentum
AdaGrad & RMSProp
Batch Normalization
Continuation Methods & Curriculum Learning
Cyclic Learning Rates
NTK-based Initialization*

2 Regularization
Weight Decay
Data Augmentation
Contrastive Pre-training
Dropout
Manifold Regularization
More Domain-Specific Models
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Manifolds I
One way to improve the generalizability of a model is to incorporate
the prior knowledge

In many applications, data of the same class concentrate around one
or more low-dimensional manifolds
A manifold is a topological space that are linear locally
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Manifolds II

For each point x on a manifold, we have its tangent space spanned
by tangent vectors

Local directions specify how one can change x infinitesimally while
staying on the manifold
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Tangent Prop

How to incorporate the manifold prior into a model?

Suppose we have the tangent vectors {v(i,j)}j for each example x(i)

Tangent Prop [9] trains an NN classifier f with cost penalty:

Ω[f ] = ∑
i,j

∇xf (x(i))>v(i,j)

To make f local constant along tangent directions

How to obtain {v(i,j)}j ?
Manually specified based on domain knowledge

Images: scaling, translating, rotating, flipping etc.

Or learned automatically (to be discussed later)
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Domain-Specific Models
Convolutional Neural Networks (CNNs) for image processing:

Recurrent Neural Networks (RNNs) for sequential data (e.g.,
natural language) processing:
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