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CNNs for Image Data

Convolutional Neural Networks (CNNs) as regularized NNs
Incorporate image-specific prior knowledge in model design

What prior knowledge?
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Image-Specific Priors (1/2)
Patterns in an images are location independent

Drives development of convolution layers
Pruned and tied weights between neurons at successive layers
Significantly improves learning efficiency
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Image-Specific Priors (1/2)

Patterns can be zoomed (more specifically, downsampled)

Drives development of pooling layers
Reduce #neurons at deeper layers to save computation
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Typical CNN Architecture

Convolution and pooling layers learn hidden representations
Capture local image patterns

Fully connected layers in the end
Serve as classifier, regressor, etc.
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Capturing location Independent Patterns
In a fully connected layer, each neuron is connected to all pixels
A convolution layer:

Divides neurons into groups
Lets each group of neurons capture a particular local pattern at
different locations

Pruned and tied weights; zero-padding at image boundary
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Filters and Feature Maps

a(l)i = act(l)([a(l−1)
i−K(l)/2

, · · · ,a(l−1)
i , · · · ,a(l−1)

i+K(l)/2
]

 w1
· · ·

wK(l)

+b(l))

Tied weights [w1, . . . ,wK(l) ] for a group are called a filter or kernel
Activations per group are called feature map or activation map
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2D Convolution
1D input ∗ 1D filter → 1D activation map (∗ as “scanned by”)

x ∈ RD ∗w ∈ RK → a ∈ RD

2D input ∗ 2D filter → 2D activation map
X ∈ RW×H ∗W ∈ RK×K → A ∈ RW×H
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Why Called Convolution? (1/2)

Suppose we are tracking the location y(t) of a car with a GPS sensor
at time t

Let x(t) be a GPS reading at time t

If GPS sensor is noisy, we can obtain an estimate of y(t) by the
convolution of the function x(·) with a weighting function w(·):1

y(t) ≈ (x∗w)(t)
=
∫

x(s)w(t− s)ds (continous time), or
= ∑s x(s)w(t− s) (discrete time),

x(·) is called input
w(·) is called kernel

1In this example, w should satisfy
∫

w(t− s)ds = 1 and w(t− s) = 0 if s < 0
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Why Called Convolution? (2/2)

Given discrete time and 2D input, we have

(x∗w)(i, j) = ∑
u

∑
v

x(u,v)w(i−u, j− v)

Convolution is commutative, thus

(x∗w)(i, j) = ∑
u

∑
v

x(i−u, j− v)w(u,v)

2D convolution in CNNs:
x(i−u, j− v) as image pixels
w(u,v) as a filter dimension Wu,v
(x∗w)(i, j) as an activation Ai,j in a feature map
Operator ∗ as a scanning step
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Supporting Color Images

A color image has multiple channels
How to extend 2D convolution?

1 3D input ∗ 2D filter → 3D activation map
X ∈ RW×H×3 ∗W ∈ RK×K → A ∈ RW×H×3

X

2 3D input ∗ 3D filter → 2D activation map
X ∈ RW×H×3 ∗W ∈ RK×K×3→ A ∈ RW×H

!

Because humans see through channels
Still called 2D convolution because the scanning moves in 2D
When to use 3D convolution? E.g., videos as 4D input

To detect spatially & temporally local pattern
4D input ∗ 4D filter → 3D activation map
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Detecting Multiple Local Patterns
Suppose we use C(l) filters to detect local patterns at layer l
After convolution, we have C(l) feature maps: {A(l,1), · · · ,A(l,C)}
How to form the input for the next layer l+1?

Stack up the activation maps along the channel dimension
AW×H×C(l)

as the input
Dimension of a filter in the next layer? K(l+1)×K(l+1)×C(l)

What does the filter in the next layer learn?
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Learning Deep Local Patterns (1/3)
Feature map is equivariant to translation

A function f is equivariant to a function g if f (g(x)) = g(f (x))
g(x) as translated input
f (x) as feature map

Stacking up feature maps along channel dimension allows a deep filter
to see through patterns in the same local region to detect new
patterns

Shan-Hung Wu (CS, NTHU) CNNs Machine Learning 16 / 115



Learning Deep Local Patterns (2/3)

Deep filter has larger receptive
field than shallow filter

Receptive field of a neuron is
the pixels that can activate
the neuron

I.e., deep filter sees (indirectly)
more pixels
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Learning Deep Local Patterns (3/3)

A deep filter
sees through patterns in the
same region
has enlarged receptive field

to detect new patterns
Together, these capabilities
allow more complex patterns
such as objects to be detected

Shan-Hung Wu (CS, NTHU) CNNs Machine Learning 18 / 115



Outline

1 Design
Convolution Layers
Pooling Layers
Variants & Case Studies

2 Visualization
Visualizing Activations
Visualizing Filters/Kernels
Visualizing Gradients
Dreaming and Style Transfer

3 Beyond Image Classification
Segmentation and Localization
Object Detection
More Applications

Shan-Hung Wu (CS, NTHU) CNNs Machine Learning 19 / 115



Downsampling Feature Maps

Idea: to add a max pooling layer after each feature map
ãi,j = max{activation values scanned by a filter each time}
Usually with a large stride (i.e., amount of filter shift during scanning)

A max pooling layer downsamples a feature map without
significantly changing “how it looks”

Reduces #neurons (input of the next layer) and speeds up scanning

Max pooling vs. average pooling?
Max: better for detecting edges or textures
Average: better for detection brightness or contrast
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How to Train CNNs with Max Pooling Layers?
A (max) pooling layer does not introduce new weights to learn
However, the max function is non-differentiable
How to backprop trough a max pooling layer?

1 During forward pass, remember the index of max
2 Then backprop only through the index
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Side Effect: Translation Invariance

Max pooling makes feature map
invariant to input translation

Every value in the bottom row
has changed
But only half of the values in
the top row have changed
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Equivariance vs. Invariance (1/2)

Raw feature map: equivariant to input translations
Max pooled feature map: invariant to input translations
How does it impact the learning?

Given a face recognition task:
Humans: left !, right X
CNNs with max pooling layers: left !, right !
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Equivariance vs. Invariance (2/2)

Use max pooling only when you care more about whether some
feature is present than exactly where it is

Enough for CNNs to perform many image tasks well

However, there are also many opposite cases:
Image segmentation: weighted average pooling in Mask R-CNNs [6]
Predicting class labels of objects from unseen angles: Capsule Net
[19, 8]
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Exercise: #weights and #neurons at each layer?

Softmax output: 10 classes
↑

Fully connected
↑

Flatten
↑

Max pooling: K = 4, stride= 4
↑

Convolution: 32 filters, K = 4, zero padding
↑

Max pooling: K = 4, stride= 4
↑

Convolution: 16 filters, K = 4, zero padding
↑

Input image: 256×256×3

#units: 10
#weights: 0
#units: 10
#weights: 8192×10
#units: 8192
#weights: 0
#units: 16×16×32
#weights: 0
#units: 64×64×32
#weights: 4×4×16×32
#units: 64×64×16
#weights: 0
#units: 256×256×16
#weights: 4×4×3×16
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Variants of Convolution

No padding, stride=1. Zero padding, stride=1. Zero padding, stride=2.

No padding, stride=1, dilation=2.

Shan-Hung Wu (CS, NTHU) CNNs Machine Learning 27 / 115



Cross-Filter Feature Pooling

We may apply max pooling to features of different filters
Creates invariance to other transformations of the input

E.g., rotations
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Channel Grouping

An output channel may
only connect to few input
channels
Limits #sub-patterns in a
pattern (a prior)

May improve learning
efficiency

Further reduces #weights
and computation
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Input and Output

Left: for images with fixed
size

Center: for images with
variable size
Right: classes as local
patterns

Called fully
convolutional
networks (FCNs)
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Layer Terminology
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Case Study: LeNet (1998)

Developed by Yann LeCun [12]
Lays fundamentals of modern CNNs

Convolution → Pooling → Convolution → Pooling → ...
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Arrival of Big Visual Data (2009)
ImageNet [1] is an image database organized according to the
WordNet [15] nouns hierarchy

Over five hundred images per word
Each image is labeled multiple words
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ImageNet Large Scale Visual Recognition
Competition (ILSVRC)

Drives AlexNet, VGG, GoogleLeNet, ResNet, DenseNet...
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Case Study: AlexNet (2012) [11]

Scales up LeNet
Use of rectified linear units (ReLU)
Use of dropout technique to avoid overfitting
Uses GPU to get 10x faster training time
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Case Study: VGG (2014) [21]

Replace a filter with a large K (9 or 11) with a sequence of filters
with smaller K (3)
Take advantage of enlarged receptive fields at deep layers
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Case Study: GoogleLeNet (2015) [22]

Proposes inception module consisting of filters of different K’s
Learns patterns from sub-patterns of different sizes

Use 1×1 convolution as bottleneck layer to save computing
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Bottleneck layer
Conventional:

Input (W×H×256) ∗ 256 filters (3×3×256×256)
→ Feature maps (W×H×256)
#multiplies: (W×H)× (3×3×256)×256≈ (W×H)×590K

Bottleneck layer:
1 Input (W×H×256) ∗ 64 filters (1×1×256×64)
→ Feature maps (W×H×64)

2 Input (W×H×64) ∗ 64 filters (3×3×64×64)
→ Feature maps (W×H×64)

3 Input (W×H×64) ∗ 256 filters (1×1×64×256)
→ Feature maps (W×H×256)

#multiplies:
(W×H)× [(1×1×256)×64+(3×3×64)×64+(1×1×64)×256]≈
(W×H)×70K

At little cost of performance drop!
It helps by combining the features at the same position before
learning new patterns from their relative positions
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Case Study: ResNet (2016) [7]

Use of batch normalization
An FCN: omits fully-connected layers at the end
Very deep—152 layers
Shortcut from current to the next-2 layer (or next bottleneck layer)

Idea: let a deeper CNN perform as least as well as a shallower one
Can “skip” layers if they are not helpful

Shan-Hung Wu (CS, NTHU) CNNs Machine Learning 39 / 115



Case Study: ResNet (2016) [7]

Use of batch normalization
An FCN: omits fully-connected layers at the end
Very deep—152 layers
Shortcut from current to the next-2 layer (or next bottleneck layer)
Idea: let a deeper CNN perform as least as well as a shallower one

Can “skip” layers if they are not helpful
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Unraveled ResNet

Why to the next-2 layer?

Empirically, does not improve performance in case of 1
One layer is not enough to learn “residual” patterns

ResNet can also be seen as an ensemble of small networks [25]
ResNet usually operates on blocks of relatively low depth (20–30
layers)

Blocks act in parallel, rather than serially
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Case Study: DenseNet (2017) [9]

Idea: let a filter in a block see through features in all previous blocks
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What does a CNN lean?

Common criticism: the decisions of NNs are not interpretable

Modeling image priors also helps people understand CNNs!
Two common approaches:

Given f and input x, find out parts of x
Given f , synthesis input x

that mostly activate ŷj = f (L)j (· · · f (1)(x)) or a(l)i,j,c = f (l)i,j,c(· · · f (1)(x))
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Retrieving Raw Images

On simple way to understand how ŷj or ai,j,c is made is to retrieve
(from external database) the images that mostly activate it

Images can be cropped by the receptive field of ai,j,c

E.g., maximally activating patches for neurons in AlexNet
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Conditioned Retrieval

Given an input x, we can find images most similar to x in feature
space

E.g., NNs at the deepest fully-connected layer of AlexNet
Semantically consistent; despite pixel-level diversity
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Clustering Raw Images
Cluster images (e.g., using t-SNE [14]) based on their similarity in
feature space

E.g., 2D t-SNE space reduced from the activation space of the deepest
fully-connected layer of AlexNet
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Occluding Parts of an Image

Mask part of a given image x before feeding to f
Occlusion area corresponds to the receptive field of a neuron

Draw heatmap of neuron activation at each mask location
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Visualizing Activation Maps as Images

Treat each feature map as a grayscale image
Smaller at deeper layers

E.g., feature maps of AlexNet at 1st and 5th layers
A feature map at layer 1 detects verticals
Another at layer 5 detects faces
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Visualizing Filters
The filters (K×K×3) at the first layer can be viewed as a color
image

Help us understand what pixels are detected
Not specific to an image

E.g., 64 first-layer filters in different CNNs

However, this method cannot be applied to filters at deep layers
Filters scan sub-patterns, not pixels
We need a way to recursively map patterns to sub-patterns... to pixels
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Deconvolution Network (DeconvNet) [28, 27]

Given an activation value at deep layer
Goal: to “undo” the effect of convolution, ReLU, and max pooling to
synthesis image
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Undoing Pooling

If x is available: remember which element was max during the forward
pass (called max unpooling)
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Undoing ReLU

If x is available: rectify using the
binary mask remembered during
the feed-forward ReLU operation
DeconvNet [27]: simply use
ordinary ReLU

Feature maps (and final
pixels) are always positive
Gives more clear results
empirically
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Undoing Convolution (1/2)

Denoting a convolution op by ∗, we have (K = 2):[
a b
c d

]
∗
[

x y
z w

]
= ax+by+ cz+dw
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Undoing Convolution (2/2)

Denoting a transposed convolution op by ∗>, we have (K = 2):

a′ ∗>
[

w z
y x

]
=

[
a′w a′z
a′y a′x

]
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Why Called Transposed Convolution? (1/2)

Example: 1D convolution with K = 3, stride=1, and padding=1
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Why Called Transposed Convolution? (2/2)
1D convolution (K = 3, stride=1, padding=1):

a∗w = Wa =


x y z 0 0 0
0 x y z 0 0
0 0 x y z 0
0 0 0 x y z




0
a
b
c
d
0

=


ay+bz

ax+by+ cz
bx+ cy+dz

cx+dy



1D transposed convolution (K = 3, stride=1, padding=0):
W> denotes a regular convolution with reversed filter weights

a′ ∗>w = W>a =



x 0 0 0
y x 0 0
z y x 0
0 z y x
0 0 z y
0 0 0 z




a′

b′

c′

d′

=



a′x
a′y+b′x

a′z+b′y+ c′x
b′z+ c′y+d′x

c′z+d′y
d′z
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General Cases
1D convolution (K = 3, stride=2, padding=1):

a∗w = Wa =

[
x y z 0 0 0
0 0 x y z 0

]


0
a
b
c
d
0

=

[
ay+bz

bx+ cy+dz

]

1D transposed convolution:
W> does not represent a convolution any more

a∗>w = W>a =



x 0
y 0
z x
0 y
0 z
0 0


[

a
b

]
=



ax
ay

az+bx
by
bz
0
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DeconvNet Visualization: Layer 2

Input image x is given
Uses max unpooling
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DeconvNet Visualization: Layers 4 and 5
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Saliency Maps

1 Given an image x, compute gradient of unnormalized class score (the
logit) with respect to image pixels at x:

∂ ŷj

∂x
=

∂ fj(x;Θ)

∂x

Network weights Θ are fixed now
2 Take absolute value and max over RGB channels

Shan-Hung Wu (CS, NTHU) CNNs Machine Learning 63 / 115



Guided Backprop (1/2)

Similarly, we can compute
gradient for a neuron:

∂ai,j,c

∂x

Trick to get clear visualization:
guided backprop

Gradient = forward term ×
backward term
Only keep the positive part of
the gradient
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Guided Backprop (2/2)
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Gradient Ascent

Guided backprop requires x to be given
Gradient ascent synthesizes x from scratch:

argmax
x

J(x;Θ) = argmax
x

f (x;Θ)−Ω(x)

f (x): a prediction score or activation value
Ω(x): regularizer that makes the image more natural

Solved by gradient ascent algorithm: x(t)← x(t−1)+λ
∂J(x;Θ)

∂x
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Natural Image Regularizer (1/2)

Ω(x) = ‖x‖2
2 [20]
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Natural Image Regularizer (2/2)

Ω(x) = ‖x‖2
2

During gradient ascent
optimization, periodically
do followings: [26]

Gaussian blur image
Clip pixels with small
values to 0
Clip pixels with small
gradients to 0
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Multi-Faceted Gradient Ascent (1/2)

A class or a feature may be multi-faceted [16]
Cluster images that mostly activate a neuron

Each cluster represents a facet

Set the initial x(0) as an image close to a clusterhead
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Multi-Faceted Gradient Ascent (2/2)
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DeepDream

To amplify the neuron
activations at some layer
Gradient ascent, but

Start at a given image
Maximize activations of all
neurons in a layer
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Style Transfer [3]

Given a content image p and style image a
Synthesis an image x with content in p and style in a
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Network Architecture: VGG (Fixed Weights)
Gradient descent finds x minimizing both Lcontent and Lstyle
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Content Loss

The content loss:

Lcontent = ∑
c
‖f (l)·,·,c(x)− f (l)·,·,c(p)‖2

F

aligns the feature maps of x and p at a particular layer l
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Style Loss (1/2)

The style loss:
Lstyle = ∑

l
‖G(l)

x −G(l)
p ‖2

F

aligns the Gram matrices G ∈ RC×C of x and p at all layers
G = FF>, where F ∈ RC×WH is the reshaped feature map

Cs,t = ∑i,j ai,j,mai,j,n captures the correlation of sub-patterns m and n at
different locations
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Style Loss (2/2)
The style loss:

Lstyle = ∑
l
‖G(l)

x −G(l)
p ‖2

F

Layer-by-layer effect: deeper layer → more coarse-grained texture [2]
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Fast Style Transfer

Problem: gradient descent is run to generate an image
Very slow!

Fast style transfer for, e.g., videos?

Idea: train another network to perform style transfer [10, 24]
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More Supervised Image Tasks

Semantic segmentation: label y contains segment ID of each pixel
Classification + localization: label y contains class ID and location
info (e.g., bounding box) of an object
Object detection: label y contains class IDs and location info of
multiple objects
Instance segmentation: object detection with pixel masks
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Semantic Segmentation: FCN

Use an FCN to predict the class of each pixel

However, convolutions at original image resolution are very expensive
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Semantic Segmentation: FCN + DeconvNet

Use DeconvNet to do downsampling and upsampling inside the
network

The weights of a transpose convolution can be tied with weights of a
corresponding convolution or re-trained
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Classification + Localization

Two losses:
Classification loss: l(ŷ,y)
Regression loss, e.g., ‖[x̂, ŷ, ŵ, ĥ]− [x,y,w,h]‖2

2 or (1 - IoU)
Intersection over Union (IoU) takes the size of ROI (region of interest)
into account and gives an relative error
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Pose Estimation

Just like classification + localization
Bounding boxes replaced by joint positions

Head, neck, shoulder, elbow, hand, hip, knee, foot, etc.

Regression loss for each joint position
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How to Detect Multiple Objects?

Naive idea: let CNN detect one object in a sliding window
Assuming fixed #classes: cat, dog, and background

Problem: too many windows!
at different locations and scales
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Region Proposals
Use a region proposal algorithm that outputs bounding boxes likely to
contain objects
E.g., selective search [23]

Low precision; high recall

Repeat:
Group adjacent pixels/segments based on similarity
Propose a bounding box for each new segment

Deterministic and fast: 1000+ region proposals in a few seconds on
CPU
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R-CNN [5]

Multi-stage training:
1 CNN (AlexNet) with softmax classifier (log loss)
2 SVMs (hinge loss)
3 Regressors (least square loss)

Storage: 2K feature tensors
Slow at test time

2K feed-forward passes in CNN
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Fast R-CNN [4]
Single network: end-to-end prediction and training
Shared CNN computation

Input: 1 entire image
Output: 1 feature tensor (storage consumption)

Then apply classification/regression network to each RoI in the
feature space

RoI pooling: warp different projected RoIs to the same 7×7 grid

Test time: 1 feed-forward pass in CNN for all predictions
So fast such that the region proposal algorithm becomes a bottleneck
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Faster R-CNN [18]

Jointly learn a region proposal network (RPN)
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Region Proposal Network (1/2)
Slides a window over the feature map of the CNN
At each window location, the network outputs for each anchor box:

A binary score: if the anchor box contains an object or not
Corrections of coordinates of the anchor box

Anchor boxes represent common aspect ratios at different scales
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Region Proposal Network (2/2)
Why anchor boxes?

Regularizing/limiting correction length allows network to learn
proposals of different sizes

How to generate training labels?
For each RoI in the ground truth, assign positive label (and corrections)
to the anchor box with the highest IoU score at a window location
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Single-Shot Detectors

Faster R-CNN gives close to real-time test performance
∼ 0.2 sec per image

Still not fast enough for detecting objects in videos
Bottleneck: repeated computation for each RoI

Single-shot object detectors:
You Only Look Once (YOLO) [17]
Single-Shot Detector (SSD) [13]
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YOLO (1/2)

In Faster R-CNN:
Region proposal network generates region proposals
Classification/regression network accepts/rejects proposals and makes
adjustments

Why not use the region proposal network to directly generate final
bounding boxes?
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YOLO (2/2)

YOLO [17] resembles to a region proposal network, except
Classifies window locations while proposing regions
Uses deterministic (non-parametric) algorithm to reject low-confidence
boxes at test time
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Network
Output dimension: S×S× (B×5+C)

S: #window locations
B: #anchor boxes
5: corrections of box coordinates (4) + object confidence (1)
C: #classes (one-hot)

End-to-end prediction and training
Each RoI in the ground truth is assigned to grid that contains RoI’s
midpoint and anchor box with highest IoU
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Reducing #Boxes at Test Time

1 Label each box by class score = class probability × object confidence
2 Discard boxes with low scores
3 Non-max suppression: repeat until there is no box left

Output the box b with highest score
Discard any remaining box of the same class having IoU≥ 0.5 with b

Shan-Hung Wu (CS, NTHU) CNNs Machine Learning 98 / 115



SSD [13]
FCN, no fully-connected layers
Scans feature maps at multiple scales
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Mask R-CNN [6]
Instance segmentation (object detection + segmentation)
Add an FCN on top of the CNN features of Faster R-CNN

Outputs segmentation mask

Replace RoI pooling with RoI align to achieve pixel-level precision in
segmentation
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RoI Align

RoI pooling in Fast/Faster R-CNNs creates translation invariance
Leads to errors in segmentation

RoI align: weighted average pooling
Computes the value of each sampling point by bilinear interpolation
from the nearby grid points on the feature map
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Results
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Mask R-CNN + Pose Estimation
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Results
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CNNs for Non-Image Tasks

Example: sentiment
analysis in NLP

Input:
sentence/document
Output: positive or
negative

1D convolution of words
Multiple filters of
different sizes
(K = 2, · · · ,D) for
2-gram, ..., D-gram

1-max pooling
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