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Sequential Data
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o So far, we assume that data points (x,y)’s in a dataset are i.i.d
o Does not hold in many applications
o Sequential data: data points come in order and successive points
may be dependent, e.g.,
o Letters in a word
o Words in a sentence/document
o Phonemes in a spoken word utterance
o Page clicks in a Web session
o Frames in a video, etc.
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So far, we assume that data points (x,y)’s in a dataset are i.i.d

©

Does not hold in many applications
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Sequential data: data points come in order and successive points
may be dependent, e.g.,

o Letters in a word

o Words in a sentence/document

o Phonemes in a spoken word utterance

o Page clicks in a Web session

o Frames in a video, etc.

Dataset: X = {X"}, € RN*(D:K)xT

o X = {(x(n1) y(nD)}, a sequence, where the superscript n can be
omitted for simplicity

o T is call the horizon and may be different between x(® and y(® and
across data points n's

(]
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Sequence Modeling |

o How to model sequential data?
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Sequence Modeling |

o How to model sequential data?

o Recurrent neural networks
(vanilla RNNs):

o y depends on x(I) ... x{0)

(L.1)

o Output a'~") depends on hidden

activations:

ak) = act(z*1)
= aCt(U(k)a(/‘f’*l) + W(k)a(kfl,z))

o Bias term omitted
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Sequence Modeling |

o How to model sequential data?

o Recurrent neural networks
(vanilla RNNs):

o y depends on x(I) ... x{0)

(L.1)

o Output a'~") depends on hidden

activations:

ak) = act(z*1)
= aCt(U(k)a(/‘f’*l) + W(k)a(kfl,z))

o Bias term omitted
o al*) summarizes x®,... x(1)
o Earlier points are less
important

o a!’s at deeper layers give more
abstract summarizations
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Sequence Modeling Il

= aCt(U(k)a(kvffl) + W(k)a(kflg))

o Weights are shared across time
instances
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o Weights are shared across time
instances

o Assumes that the “transition
functions” are time invariant
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Sequence Modeling Il

alkt) — aCt(z(k,z))
= act(UMakr—1) 4 wkalk-1.))

o Weights are shared across time
instances

o Assumes that the “transition
functions” are time invariant

o Our goal is to learn UM’s and
wh's fork=1,---,L
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RNNs have Memory

o The computational graph of an RNN can be folded in time
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RNNs have Memory

o The computational graph of an RNN can be folded in time

o Black squares denotes memory access
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Output Layer (1/2)

o With multi-class y(’),
o all?) represents the probability of each class

o C1 is cross entropy

o How to obtain § rom all) at inference time?
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Output Layer (2/2)

o Output sampling for multi-class tasks:
o Greedy: sample §) from a(L+)
o Bean search: sample y<f> from the most probable paths of the join
distribution (alk) allr=1 ...alli=b)) ‘where b is bean size

o Noisy: sample y@) based on all) + noise
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o Bean search: sample 9(’) from the most probable paths of the join

distribution (alk) allr=1 ...alli=b)) ‘where b is bean size
o Noisy: sample §*) based on al) + noise

o Problem: out of vocabulary or high dimensional a(%+)
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o Greedy: sample y<’> from a(L)
o Bean search: sample 37(’) from the most probable paths of the join
distribution (alk) allr=1 ...alli=b)) ‘where b is bean size
o Noisy: sample §*) based on al) + noise

o Problem: out of vocabulary or high dimensional a(%+)

/,Q»_ HALLO ?_l‘lt_;
AT

-« HELLO
Z Al IE npvser

BONJOUR 1_,;)_0"“‘

o Solution? Subword tokenization (to be discussed later)
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RNNs vs CNNs for Sequential Data

o On processing a sequence of length T at each layer with
o D-dimensional point input and output
o F = the CNN filter/kernel size
o #CNN filters = D

#Weights Computation Autoregressive Point Distance

CNN  O(FD?) O(TFD?) No o(L)
RNN  0O(D?) O(TD?) Yes o(T)
Shan-Hung Wu (CS, NTHU) RNNs & Transformers

Machine Learning 11 /90



Outline

@ RNNs

o Design Alternatives
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Input and Output

o x's and y('s do not need to have one-to-one correspondence:

S

NN One to Many Many to One Many to Many Many to Many
(Synced) (Unsynced)
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One2Many: Image Captioning

“A little girl sitting on a bed with a
teddy bear.”
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One2Many: Image Captioning
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IV NIINSS

“A little girl sitting on a bed with a
teddy bear.”

A1)
=
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Many20One: Sentiment Analysis
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Many20One: Sentiment Analysis

o A single word (e.g., “Razzie") can negate the entire input sentence
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Many2Many (Synced): Language Modeling

o Language modeling: predicting the next/nearby word based on the
context
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Many2Many (Synced): Language Modeling

o Language modeling: predicting the next/nearby word based on the
context

o Latent representations of RNN provide the context
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Many2Many (Synced): Video Keyframe Tagging

o Video frame annotation:
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Many2Many (Synced): Video Keyframe Tagging

o Video frame annotation:

o Latent representations summarize “what's going on”
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Many2Many (Unsynced): Machine Translation

o Latent representations support encoding first, and then decoding

o RNN learns the structure difference
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Many2Many (Unsynced): Machine Translation

o Latent representations support encoding first, and then decoding
o RNN learns the structure difference

o Also called sequence to sequence learning
o Also used in other applications, e.g., chat bots
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Bidirectional RNNs

k) — act(U®a®1) 4 w®ak-11)

o Each at") summarizes
X ... x(D
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Bidirectional RNNs

o Each at") summarizes
X ... x(D

o A prediction is made by
considering previous frames

o Can we take future frames into
account?

o Bidirectional RNNs: output
all) depends on both a?)'s
and ak's

k0 — act(f](k) lkrt1) 4 W(k) ﬁ(k—l,t))
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Recursive RNNs |

o The transition of hidden representation is invariant in time
o Earlier input/representation is less important to current a")
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Recursive RNNs |

o The transition of hidden representation is invariant in time
o Earlier input/representation is less important to current a")

o “Razzie” has less effect if it is far away from the prediction

Shan-Hung Wu (CS, NTHU) RNNs & Transformers Machine Learning 20 /90



Recursive RNNs |

a(k,'t) — act(U(k)a(k[_]) + W(k>a(k_]7t))
o The transition of hidden representation is invariant in time
o Earlier input/representation is less important to current a")
o “Razzie” has less effect if it is far away from the prediction

o In some applications, transitions are invariant in terms of other
concepts
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Recursive RNNs 11

o In natural language processing
(NLP), we can parse the input

sentence X into a tree
o Following gramma rules
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o In natural language processing
(NLP), we can parse the input

sentence X into a tree
o Following gramma rules
o Recursive RNNs: “subtree
merges’ are invariant

a(k,t) — aCt(Ua(kfl’ left )
—|—Wa("*1= right ))

o U and W are shared
recursively in subtrees
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Recursive RNNs 11

o In natural language processing
(NLP), we can parse the input

sentence X into a tree
o Following gramma rules
o Recursive RNNs: “subtree
merges’ are invariant

a(k,t) — aCt(Ua(kfl’ left )
—|—Wa("*1= right ))

o U and W are shared
recursively in subtrees

o Given sentence length T, a(t)
and a(") can be O(logT) away
in the best case
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Outline

(@ RNN Training
o Backprop through Time (BPTT)
o Optimization Techniques
o Optimization-Friendly Models & LSTM
o Parallelism & Teacher Forcing
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Cost Function of Vanilla RNNs

o Parameters to learn: ® = {W® U®}, (bias terms omitted)

o Maximum likelihood:

argming C(0®)
= argming —logP(X|®)
= argming — Y., logP(y(!) |x(1) ... x(uD) @)
= argming — Y, , cn1) (©)

o y® depends only on x1) ... x()
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Cost Function of Vanilla RNNs

o Parameters to learn: ® = {W® U®}, (bias terms omitted)

o Maximum likelihood:

argming C(0®)
= argming — logP(X|®)
= argming — Y., logP(y(!) |x(1) ... x(uD) @)
= argmine — ¥, C"(®)

o y® depends only on x1) ... x()
o For example, in binary classification:
o Assuming P(y"") = 1]x("0) ... x("1D) ~ Bernoulli(p®), we have

C(n’t) (@) = (a(Lvt) )y(n.t) (1 _a(L,I))(lfy("J))

o a) = p® are based on a)'s, which summarize x(*) ... x(n1)
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Outline

(@ RNN Training
o Backprop through Time (BPTT)
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SGD-based Training

©

RNN optimization problem can be solved using SGD:

@(s+1) . @(Y) - nV@ Z C(n,t) (@(Y))
n,t

Let ") = C)(@)), our goal is to evaluate ac(';;:)) and a"(n(z,;
29 W,

ij ij

©

et
(k
i

Evaluation of

(]

; is similar to that in DNNs and omitted

©

We focus on:

dclnt)  geln) 3z 9z
N (RS (3 R A
Wiy 94" Uy IU,;

Shan-Hung Wu (CS, NTHU) RNNs & Transformers Machine Learning

25 /90



Forward Pass through Time

P} (k.t)

o The second term: —5
U,

i
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Forward Pass through Time

(k.t)

Z.
o The second term: 3‘/(1()
ij

(k—

o W have 57 = 5, W43, U an

J
©
U

k7
" _ (k1)

i
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Forward Pass through Time

(k.t)

Z.
o The second term: 3./(1()
::j

o We have z =YW k 1) +Zi Ul_(f_)a(k,t—l) and

1

k7
97" k)

©
U

i

o We can get all second terms starting from the most shallow layer and
earliest time
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Backward Pass through Time |

- . . kit dcmh)
o The first term (error signal): 5j( ) = a;"”
7

o We have

sk _ acm _ getn 94

j - azj(_k,t) - 3a](.k"> ' azj(k,a
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Backward Pass through Time |

st) _ acn

o The first term (error signal):

T ol

o We have
SED  _ac _ gdn 94 pin (k)
T o T 2 o~ aa G )
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Backward Pass through Time |

Ska) _ acm)

o The first term (error signal):

= azj(k,r)
o We have
5(k’t) L ocmn g 8afk’) o) t( (k.1)
)i = azj(_k,t) = aagk‘t) 2 & = 5 ](kt) act (g, )

. 9en) ("“’ delmt) kD) 1( (k1)
= (Zs GO +X PRI 8a}k") aCt( )

wik+1)
()=~
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Backward Pass through Time |

- . L slkt )
o The first term (error signal): 5j( ) = a;"")
7

o We have

(k1)
(kt) _ 9cm)  geln) aa, 9l (k,1)
6]' = azj(_k,t) = aagk‘t) 2 & = 5, (k,t) -act'(z % )

9e(n) M+lz 9ent) g ki) ,
e — - e 2 act Z;
Zs k+lt) ] ZS 9z, (A.r+l) aa(lht) ( j

<):‘ k+1t k+1)+2\ (kyt+1) j(ﬁ))act/(Z](k,t))

wik+1)
()=~

Shan-Hung Wu (CS, NTHU) RNNs & Transformers Machine Learning

27 /90



Backward Pass through Time II

(k+1,1) k+1 (k1) (k) (k;1)
(ZS —i—ZS U )act( )
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Backward Pass through Time II

(k+1,1) k+1 (k1) (k) (k;1)
(ZS —i—ZB U )act( )

(kyt)»

o We can evaluate all 6]
time

s starting from the deepest layer and latest

(k+1,0) k+1,
) 5§ 1)

(k)
6j k,t+1
55 Jt+1)
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Backprop through Time (BPTT)

o So far, we have discussed how to compute the gradients of Ui(f;)'s (and

Wl(j)’s) for- a s|ng|e IOSS c(n7t) — C(n’t) (®(S)) at SpeCIfIC t|me
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Backprop through Time (BPTT)
o So far, we have discussed how to compute the gradients of Ui(f;)'s (and
Wl-(p's) for a single loss ¢ = C(") (@) at specific time
o However, for each sequence n, we have multiple ¢"")’s at different 1's
o Their gradient need to be summed
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Backprop through Time (BPTT)

o So far, we have discussed how to compute the gradients of Ui(f;)'s (and
Wl-(p's) for a single loss ¢ = C(") (@) at specific time
o However, for each sequence n, we have multiple ¢"")’s at different 1's
o Their gradient need to be summed
o For different ¢(™)'s, the forward pass can be shared

o BPTT: single forward pass, multiple backward passes

SLD 5L 5L3)
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Outline

(@ RNN Training

o Optimization Techniques
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Long-Term Dependencies
o Forward pass:

Lk 0T glki=1) | k)T k=10

a®") — act(z5))

o Backward pass:

8H0) — act! (z0) @ (UW sk wiktD) glktL)y
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Long-Term Dependencies
o Forward pass:
Lk T glki1) 4 T gk 1)
a®") — act(z5))
o Backward pass:
500 act (%) @ (W k1) 4yl 510y
o The dependency between a®i) (resp. 8%} and a9 (resp. 6*)) are
maintained by (U(k))oii)

o lgnoring activation function and depth, we have a*/) = (UX) Ty ~iq

and 8*) = (u®y-igki
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Long-Term Dependencies
o Forward pass:
Lk T glki1) 4 T gk 1)
a®") — act(z5))
o Backward pass:
85 act (z0)) © (UW § 0D k) skt
o The dependency between a®i) (resp. 8%} and a9 (resp. 6*)) are

(i—i)
maintained by (U(k))

o lgnoring activation function and depth, we have a*/) = (UX) Ty ~iq
and 8*) = (u®y-igki
o If a®) and a*) are far away in time, their long-term dependency
causes optimization problems
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Exploding/Vanishing Gradient Problem

o lgnoring activation function and depth:

akd) — (UIOTYi-glkd) and §®) = (g®)6-) 54)

A e 0
o Given eigendecomposition: UX =@ | = . o'
0 - Apw
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Exploding /Vanishing Gradient Problem

o lgnoring activation function and depth:

ki) = (0TG- and 5k

A - 0
o Given eigendecomposition: UX =@ | = . o'
0 Apw
A0
o We have: (UWy~ =@ | :+ - Q'
0
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Exploding /Vanishing Gradient Problem

o lgnoring activation function and depth:

al59) — (Ui and 50D — ()6-) 5k
A - 0
o Given eigendecomposition: UX =@ | = . o'
0 - Apw
A0
o We have: (UWy~ =@ o'
oy

o When j—i is large, A" is either very large or small
o Ay = 1.01 = 11000 ~ 20,000
o Ay =099 = 2100~
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Exploding /Vanishing Gradient Problem

o lgnoring activation function and depth:

aki) = (UWTYU-gk) and 509 —

(U0 G=) 5k

A - 0
o Given eigendecomposition: UX =@ | = . o'
0 - Apw
A0
o We have: (UWy~ =@ | :+ - Q'
0 A

o When j—i is large, A" is either very large or small
o Ay = 1.01 = 11000 ~ 20,000
o Ay =099 = 2100~

o Exploding or vanishing gradients!
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Cost Surface

o The cost surface of C is either very flat or steep

o Hard for gradient-based optimization
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Cost Surface

o The cost surface of C is either very flat or steep
o Hard for gradient-based optimization

o Optimization techniques?
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Nesterov Momentum

o Use Nesterov momentum to “brake” before hitting the wall
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Gradient Clipping

o A simple way is to avoid the exploding gradient problem is to clip a
gradient if it exceeds a predefined threshold

o Very effective in practice
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RMS Prop

o Adaptive learning rate based on statistics of recent gradients:

(r+1) __ M 0
Q) +— 0 sy ©g
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RMS Prop

o Adaptive learning rate based on statistics of recent gradients:

(r+1) __ M 0
Q) +— 0 sy ©g

o Reduce A
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Outline

(@ RNN Training

o Optimization-Friendly Models & LSTM
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Sigmoid Activation Function

o Traditionally, the hidden units of RNNs use the sigmoid activation
functions
o E.g., tanh(-) the hyperbolic tangent
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Sigmoid Activation Function

o Traditionally, the hidden units of RNNs use the sigmoid activation
functions
o E.g., tanh(-) the hyperbolic tangent

o Why sigmoid activation function?
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Sigmoid Activation Function

o Traditionally, the hidden units of RNNs use the sigmoid activation
functions

o E.g., tanh(-) the hyperbolic tangent
o Why sigmoid activation function?
o Forward pass:

260 T gllt=1) | T glk=10)

a®"  act(z*)

Backward pass:

6(k,t) % aCt/(z(k’t)) o (U(k)g(kJH) + W(k+1)5(k+1,z))
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Sigmoid Activation Function

o Traditionally, the hidden units of RNNs use the sigmoid activation

functions
o E.g., tanh(-) the hyperbolic tangent
o Why sigmoid activation function?
o Forward pass:

250 gRITgki=1) 4 yk)T g (k=1.0)
a®)  act(z*)
Backward pass:
Skit) act’(z(k’t)) o (U(k)g(kﬂrl) + W(k+1)5(k+17t))

o Sigmoid activation:
o Bounded range in the forward pass
o act’(-) < 1 in the backward pass
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Sigmoid Activation Function

o Traditionally, the hidden units of RNNs use the sigmoid activation
functions

o E.g., tanh(-) the hyperbolic tangent
o Why sigmoid activation function?
o Forward pass:

250 gRITgki=1) 4 yk)T g (k=1.0)
a®)  act(z*)
Backward pass:
Skit) act’(z(k’t)) o (U(k)g(kﬂrl) + W(k+1)3(k+17t))

o Sigmoid activation:
o Bounded range in the forward pass
o act’(-) < 1 in the backward pass

o Mitigates the exploding (but not vanishing) gradient problem for v®)'s
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Sigmoid Activation Function

o Traditionally, the hidden units of RNNs use the sigmoid activation
functions

o E.g., tanh(-) the hyperbolic tangent
o Why sigmoid activation function?
o Forward pass:

260 T gllt=1) | T glk=10)

a®"  act(z*)

Backward pass:
6(k,t) % aCt/(z(k’t)) o (U(k)g(kJH) + W(k+1)8(k+1,z))

o Sigmoid activation:
o Bounded range in the forward pass
o act’(-) < 1 in the backward pass

o Mitigates the exploding (but not vanishing) gradient problem for v®)'s
o Introduces vanishing gradients of W*)'s
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Learning Unitary UX)’s

A 0
o Long-term dependency: (UMY~ =@ e o'
0 At
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o Long-term dependency: (UMY~ =@ : o Q'
0 i
o Why not make U%)’s unitary (i.e., A, =1 for all 5)?
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Learning Unitary UX)’s

A{—i e 0
o Long-term dependency: (UMY~ =@ : o Q'
o .- ;LIJ:;]:)
o Why not make U%)’s unitary (i.e., A, =1 for all 5)?

o Hinton et al. [8] propose IRNN:

o Initializes U%) =1 in SGD
o Uses RelLU hidden units
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Learning Unitary UX)’s

A{—i e 0
o Long-term dependency: (UMy-=@| : - : |Q"
0 A
o Why not make U%)’s unitary (i.e., A, =1 for all 5)?

o Hinton et al. [8] propose IRNN:

o Initializes UY) = in SGD

o Uses RelU hidden units

o Empirically, requires a very small learning rate (e.g., 107%) to work well
o Simple, but very slow
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Learning Unitary UX)’s

A{—‘ 0

Long-term dependency: (UMY~ =Q o'

(]

0 A
Why not make U®)’s unitary (i.e., A, =1 for all 5)?
Hinton et al. [8] propose IRNN:

Initializes UX) = I in SGD

Uses ReLU hidden units

Qo
Q
o Empirically, requires a very small learning rate (e.g., 107%) to work well
o Simple, but very slow

©

©

(*]

Krueger et al. [5] add a term X (|l || — [la®*=1 )2 to IRNN cost
to stabilize the norms of a**)'s in time
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Learning Unitary UX)’s

A{—‘ 0

Long-term dependency: (UMY~ =Q o'

(]

0 A
Why not make U®)’s unitary (i.e., A, =1 for all 5)?
Hinton et al. [8] propose IRNN:

Initializes UX) = I in SGD

Uses ReLU hidden units

Qo
Q
o Empirically, requires a very small learning rate (e.g., 107%) to work well
o Simple, but very slow

©

©

(*]

Krueger et al. [5] add a term X (|l || — [la®*=1 )2 to IRNN cost
to stabilize the norms of a**)'s in time

Bengio et al. [1] propose uRNN that learns unitary U®)'s explicitly

©
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Long Short-Term Memory (LSTM)

o ldea: to create shortcut in each neuron for the error signals to flow
backward more smoothly
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Long Short-Term Memory (LSTM)

o ldea: to create shortcut in each neuron for the error signals to flow

backward more smoothly
o The j-th LSTM unit at depth k and time

aj(k.r)
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Long Short-Term Memory (LSTM)

o ldea: to create shortcut in each neuron for the error signals to flow

backward more smoothly
o The j-th LSTM unit at depth k and time

o First tanh activation to be added into the memory cell m*)
(k1)

o Second tanh activation as the final activation a;

aj(k.r)
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o Forget gate of: whether to forget m*/—1)
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Long Short-Term Memory (LSTM)

o ldea: to create shortcut in each neuron for the error signals to flow

backward more smoothly
o The j-th LSTM unit at depth k and time

o First tanh activation to be added into the memory cell m*)
(k1)

o Second tanh activation as the final activation a;

o Forget gate of: whether to forget m*/—1)

o Input gate o4: whether to store the first activation into m!

k.t)

aj(k.r)
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Long Short-Term Memory (LSTM)

o ldea: to create shortcut in each neuron for the error signals to flow

backward more smoothly
o The j-th LSTM unit at depth k and time
o First tanh activation to be added into the memory cell m**)
o Second tanh activation as the final activation a](k’t)

Forget gate of: whether to forget m®*+—1)

Input gate 04: whether to store the first activation into m(
o Output gate 0,: whether to output the second activation

©

k.t)

©

aj(k.r)
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Error Signals

o Error signals now have a second path
o If the forget gate is open, error signals won't decay (blue arrows)

(k1)
________________________af ~(kt+1)
met-1) md)
(kt-1)
a U](k) 5(k,t+1)
akt1) uj(k,t)
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Error Signals

o Error signals now have a second path

o If the forget gate is open, error signals won't decay (blue arrows)
o Avoids the vanishing gradients (but not exploding ones)

m

(kyt-1)
a U](k) §(k,z+1)

ok
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Error Signals

o Error signals now have a second path

o If the forget gate is open, error signals won't decay (blue arrows)
o Avoids the vanishing gradients (but not exploding ones)

o When NN decides to close the forget gate, the vanishing gradient
problem is irrelevant

o In practice, LSTM + gradient clipping works well together

~(k,t+1)
1-0

md

U](k) §lt+D)

ok
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Dynamic Representations for Sentiment Analysis

o LSTM units learn dynamic representations
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Dynamic Representations for Sentiment Analysis

o LSTM units learn dynamic representations
o Closing forget gate for “Razzie”
o To correct previous summarization and/or shift focus
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Dynamic Representations for Sentiment Analysis

X -3 X
& N & S
N @ & &
K & NS

o LSTM units learn dynamic representations
o Closing forget gate for “Razzie”

o To correct previous summarization and/or shift focus
o Closing input gate for “movie”

o Not to learn, to keep the same summarization
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Dynamic Representations for Sentiment Analysis

& & &5@5 \ v&@
o LSTM units learn dynamic representations
o Closing forget gate for “Razzie”
o To correct previous summarization and/or shift focus
o Closing input gate for “movie”
o Not to learn, to keep the same summarization
o Closing output gate for “that”

o To let the next neuron decide the activation/gate values by its own
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Dynamic Representations for Language Models
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http://lstm.seas.harvard.edu/

Dynamic Representations for Language Models

o Neuron activations for language modeling [4]

Cell sensitive to posmon in Ilne

the Berezina lies in the fact
the fallacy of all the plans for
soundness of the only possible
general mass of the arm

v/
up. The French crowd fled

the bridges. When the bri

om Moscow and women with children
carried on by vis inertiae--
ice-covered water and did oy

Cell that turns on inside quotes:
Cell that robustly activates inside if statements:

—

pending, mask);

]
—
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Learning Process of LSTMs

o Output at epoch 100:

. tyntd-iathatawiaoihrdemot lytdws e ,tfti, astai f ogoh..."

Shan-Hung Wu (CS, NTHU) RNNs & Transformers Machine Learning 44 /90



Learning Process of LSTMs

o Output at epoch 100:

. tyntd-iathatawiaoihrdemot lytdws e ,tfti, astai f ogoh..."

o At 300 (spaces and periods):

... Phe lism thond hon at. MeiDimorotion in ther..."
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Learning Process of LSTMs

o Output at epoch 100:

. tyntd-iathatawiaoihrdemot lytdws e ,tfti, astai f ogoh..."

o At 300 (spaces and periods):
... Phe lism thond hon at. MeiDimorotion in ther..."
o At 500 (common words “we,” “he,” etc.):

. we counter. He stutn co des. His stanted out one...”
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Learning Process of LSTMs

o Output at epoch 100:

. tyntd-iathatawiaoihrdemot lytdws e ,tfti, astai f ogoh..."

o At 300 (spaces and periods):
... Phe lism thond hon at. MeiDimorotion in ther..."

o At 500 (common words “we,” “he,” etc.):
... we counter. He stutn co des. His stanted out one..."
o At 700 (English-like structure):

“... Aftair fall unsuch that the hall for Prince Velzonski's..."
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Learning Process of LSTMs

o Output at epoch 100:

. tyntd-iathatawiaoihrdemot lytdws e ,tfti, astai f ogoh..."

©

At 300 (spaces and periods):

... Phe lism thond hon at. MeiDimorotion in ther..."

At 500 (common words “we,” “he,” etc.):

©

. we counter. He stutn co des. His stanted out one...”
At 700 (English-like structure):
“... Aftair fall unsuch that the hall for Prince Velzonski's..."

©

(]

At 1200 (quotations and longer words):
“... "Kite vouch!" he repeated by her door..."
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Learning Process of LSTMs

o Output at epoch 100:

. tyntd-iathatawiaoihrdemot lytdws e ,tfti, astai f ogoh..."

©

At 300 (spaces and periods):

... Phe lism thond hon at. MeiDimorotion in ther..."

At 500 (common words “we,” “he,” etc.):

©

. we counter. He stutn co des. His stanted out one...”

©

At 700 (English-like structure):
“... Aftair fall unsuch that the hall for Prince Velzonski's..."

(]

At 1200 (quotations and longer words):
“... "Kite vouch!" he repeated by her door..."

©

At 2000 (topics and longer-term dependencies):
“... "Why do what that day,” replied Natasha, ..."
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Outline

(@ RNN Training

o Parallelism & Teacher Forcing
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Parallelism

o A forward/backward pass through time in BPTT cannot be parallelized

P 5L 5L
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Parallelism

o A forward/backward pass through time in BPTT cannot be parallelized

o The hidden-to-hidden recurrent connections in a vanilla RNN create
dependency between

k)

o a*"'s in forward pass

o 8%"'s in backward pass

P 5L 5L

Shan-Hung Wu (CS, NTHU) RNNs & Transformers Machine Learning 46 /90



Output Recurrence and Teacher Forcing

o Teacher forcing: replace hidden-to-hidden recurrence with
output-to-hidden or output-to-input recurrence
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Output Recurrence and Teacher Forcing
o Teacher forcing: replace hidden-to-hidden recurrence with
output-to-hidden or output-to-input recurrence
o At training time, use correct labels y'')'s to train the model
o So, the forward/backward pass through time can be parallelized

o At test time, switch back to using model output $()'s
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Cost: Exposure Bias

o Mismatch between y()'s and $()'s hurts RNN performance

o Solution?
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Cost: Exposure Bias

o Mismatch between y()'s and $()'s hurts RNN performance
o Solution? Scheduled sampling
o At training time,

@ Use y()'s initially

@ Gradually mix in $()'s later
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Cost: Reduced Expressiveness

o The vanilla RNNs are universal in the sense that they can simulate
Turing machines [11]
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Cost: Reduced Expressiveness

o The vanilla RNNs are universal in the sense that they can simulate
Turing machines [11]

o Output-recurrent RNNs cannot simulate Turing machines and are
strictly less powerful
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Cost: Reduced Expressiveness

o The vanilla RNNs are universal in the sense that they can simulate
Turing machines [11]
o Output-recurrent RNNs cannot simulate Turing machines and are
strictly less powerful
o The output al)'s are explicitly trained to match training targets
o Cannot capture all required information in the past to predict the future
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Outline

(3 RNNs with Attention Mechanism
o Attention for Image Captioning
o Attention for Neural Machine Translation (NMT)
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Outline

(3 RNNs with Attention Mechanism
o Attention for Image Captioning
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Limited Representation Size

o In some RNNs, a hidden representation al"") needs to support:

o Current prediction a“"), and

o All future predictions alLr1) ... a(L.T)

“A little girl sitting on a bed
with a teddy bear.”
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Limited Representation Size
o In some RNNs, a hidden representation al"") needs to support:
o Current prediction a“"), and
o All future predictions allrt1) ... (L)
o The fixed-size a¥) faces a trade-off between:
o Representing face features for current prediction (“girl”)
o Representing other features for future predictions (“bear”)

“A little girl sitting on a bed
with a teddy bear.”
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Limited Representation Size

o In some RNNs, a hidden representation al"") needs to support:
o Current prediction a“"), and
o All future predictions allrt1) ... (L)
o The fixed-size a¥) faces a trade-off between:
o Representing face features for current prediction (“girl”)
o Representing other features for future predictions (“bear”)

o Can we ease the job of al"!)?

“A little girl sitting on a bed
with a teddy bear.”

Shan-Hung Wu (CS, NTHU) RNNs & Transformers Machine Learning
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Input Recurrence

o Input recurrence: to feed the entire
input X to all a(l9)’s, Vs
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Input Recurrence

o Input recurrence: to feed the entire
input X to all a(l9)’s, Vs
o Now, al) only needs to:

o Support current prediction all*), and
o Provide context to the next
representation al+1)
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Input Recurrence

o Input recurrence: to feed the entire
input X to all a(l9)’s, Vs
o Now, al) only needs to:

o Support current prediction all? and
o Provide context to the next
representation al+1)

o E.g., when predicting “girl,” a(*) may
pay attention to only few face-related
images features of current input X

Shan-Hung Wu (CS, NTHU) RNNs & Transformers

Machine Learning

53 /90



Input Recurrence

o Input recurrence: to feed the entire
input X to all a(l9)’s, Vs

o Now, al) only needs to:

o Support current prediction all*), and
o Provide context to the next
representation al+1)

o E.g., when predicting “girl,” a(*) may
pay attention to only few face-related
images features of current input X

o Why not model the attention
explicitly?

o So we can see where al") is “looking
At
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Attention Mechanism

o Assumes that the input X = {x(V}; can
be broken into “parts”

o E.g., with CNN, x( could be the
activation values of a filter

Shan-Hung Wu (CS, NTHU) RNNs & Transformers

AnGHe™

i () (Filter Activations)

gCNN

’
X™ (RGBs)

Machine Learning 54 /90



Attention Mechanism

o Assumes that the input X = {x(V}; can
be broken into “parts”
o E.g., with CNN, x( could be the
activation values of a filter

o For each timestamp ¢:

thl)

o Obtain from al an attention

vector b'") Zb
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Attention Mechanism

o Assumes that the input X = {x(V}; can
be broken into “parts”
o E.g., with CNN, x( could be the
activation values of a filter

o For each timestamp ¢:

(L lt 1)

o Obtain from a an attention

vectorb Zb
o Feed all") with the welghted input

(1) — Zib,@x“’
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Attention Mechanism

o Assumes that the input X = {x(V}; can
be broken into “parts”

o E.g., with CNN, x( could be the
activation values of a filter

o For each timestamp ¢:

o Obtain from a(L Lt— 1) an attention
vectorb Zb

o Feed al") with the welghted input
() — Zlbl(t)x(z)
o Reduces size of W from O(|X]- \a("f)|)
to O(|x|-]at)))

Shan-Hung Wu (CS, NTHU) RNNs & Transformers
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Attention Mechanism

o Assumes that the input X = {x(V}; can
be broken into “parts”
o E.g., with CNN, x( could be the
activation values of a filter
o For each timestamp ¢:

(L lt 1)

o Obtain from a an attention

vector b Zb
o Feed all") with the welghted input

(1) — Zlbl(t)x(z)
o Reduces size of W from O(|X]- \a("f)|)
to O(|x|-]at)))
o How to obtain b¥)?

Shan-Hung Wu (CS, NTHU) RNNs & Transformers
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Computing Attention Vector

@ Use a1~ as a “query” to get a
match score for each input part by
using, e.g., a simple NN [2, 13]:

z; =act(p a0 4 gTx( 4 p)
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Computing Attention Vector

@ Use a1~ as a “query” to get a
match score for each input part by
using, e.g., a simple NN [2, 13]:

z; =act(p a0 4 gTx( 4 p)

@ Normalize and concentrate on few
larger scores by:

exp(zi)

b; = softmax(z); = ¥ exp(z)
Jj J
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Computing Attention Vector

@ Use a1~ as a “query” to get a
match score for each input part by
using, e.g., a simple NN [2, 13]:

z; =act(p a0 4 gTx( 4 p)

o Jointly trained with the main RNN

@ Normalize and concentrate on few
larger scores by:

exp(zi)

b; = softmax(z); = ¥ exp(z)
Jj J
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Computing Attention Vector

@ Use a1~ as a “query” to get a
match score for each input part by
using, e.g., a simple NN [2, 13]:

z; =act(p a0 4 gTx( 4 p)

o Jointly trained with the main RNN
o p, q, and r are shared by different i's
and t's (weight tying)

@ Normalize and concentrate on few
larger scores by:

exp(zi)

b; = softmax(z); = ¥ exp(z)
Jj j

Shan-Hung Wu (CS, NTHU) RNNs & Transformers
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Visualizing Attention

A(0.99) little(0.47) girl(0.35)

sitting(0.29)

with(0.27)

teddy(0.31) bear(0.24)

o How to draw a mask?
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Visualizing Attention

little(0.47) girl(0.35)

sitting(0.29) on(0.23)

with(0.27) teddy(0.31) bear(0.24)

o How to draw a mask? Threat ¢() = Zibgt)x(i) as image and enlarge it
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Outline

(3 RNNs with Attention Mechanism

o Attention for Neural Machine Translation (NMT)
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GoogleNMTv1l: Encoder-Decoder

o LSTM-based RNN
o Hidden state S encodes an entire input sequence

o Then supplied to the decoder

Er liebte zu essen .

Softmax

Decodeﬁ
-------- e S s

LL Er liebte zu essen

He loved to eat

Shan-Hung Wu (CS, NTHU) RNNs & Transformers Machine Learning

58 /90



GoogleNMTv2: Attention-based Encoder-Decoder

o No feed-forward connection between the encoder and decoder
o Instead, uses previous output as query to get attention and next
output

o Allows for retrieving different parts of input sentence depending on
decoding context

Er liebte

He loved to eat
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Long Sequences

o Attention-based model generates long sequences better

30 ! !
25
g 20 |-+
15
[£a)] : . .
— . : AN : g
M 10H — RNNsearch-50 F-ooooooooi s ]
----- RNNsearch-30 |: : :
5H - - RNNenc-50 1
-+ - RNNenc-30 : Tl L.
0 I i i i i
0 10 20 30 40 50
Sentence length
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GoogleNMTv3: Bidirectional Encoder Layer

o Takes into account future words when summarizing input sequence

o Better determines the meaning/context

Er liebte

----------------------------------- . NULL Er

................

He loved to eat
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GoogleNMTv4: Going Deep

Er liebte

o Encoder:

o 1 bi-directional layer
o 7 uni-directional layers

! (;)—»C;)«— Decoder
| C;)—»C;%— Decoder

o Decoder:
o 8 uni-directional layers
o Lowest decoder layer
for querying attention

i Encoder

SRR + ______________

Decodeﬁ

NULL Er

He loved to eat
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GoogleNMTv5: Parallelization

o Each layer trained by a GPU

o Forward pass:
o Encoder: 7 uni-directional encoder
layers trained in a pipeline
o Decoder: pipeline starts as soon as
encoder layers are ready
o Backward pass:
o Teacher forcing

Shan-Hung Wu (CS, NTHU) RNNs & Transformers

| Encoder

iEncoder
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He loved to eat
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Model Parallelism (1 Machine, 8 GPUs)

/'8 layers

GPU8

GPU3
GPU2
GPU2 |

GPUL |

Encoder LSTMs

déa[jé

3
—> Attention \

? —> ... —>Hello—><2es>—> </s>

," DgéoderLSTMs ..

Shan-Hung Wu (CS, NTHU)
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Data Parallelism (Multiple Param Servers)

-(-d - - = e - -m = -0 ® -m =
Sites: Hiem: Eiems
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GoogleNMTv6: Residuals

o Upper layer learns the delta function to the lower one

o Easier to train a deep NN

Shan-Hung Wu (CS, NTHU)
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GoogleNMTv7: Multilingual & Zero-Shot

Translation
o Training: input x augmented with task identifier (language pair)

o Eg. (eng jp), (kr, en), (jp, en)
o Inference: unknown language-pair identifier

o E.g., (kr, jp)

English Google Neural English
Machine Translation

Japanese Japanese

Korean Korean
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Outline

@ Transformers
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How Humans Process Text?

Eﬁ%% HH Aoccdrnig to a rscheearch at an Elingsh uinervtisy,
” it deosn't mttaer in waht oredr the Itteers in a wrod

5%? E/\] F?_“ Eﬁx% —ﬁE %2 E’a %Eg are, the olny iprmoetnt tihng is taht frist and Isat

Itteer is at the rghit pclae. The rset can be a toatl

tb tZD E 'T;J_{ E j‘%E /Eﬂ Eé ?ﬁ mses and you can sitll raed it wouthit porbelm. Tihs

is bcuseae we do not raed ervey lteter by itslef but

T%é%iﬁ%g E'(J ?%%%K%LE’\J the wrod as a wiohe.
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How Humans Process Text?

Eﬁ%% HH Aoccdrnig to a rscheearch at an Elingsh uinervtisy,
” it deosn't mttaer in waht oredr the Itteers in a wrod

5%? E"\] F?_“ EH\EKE‘E —ﬁE %2 E’a %Eg are, the olny iprmoetnt tihng is taht frist and Isat

Itteer is at the rghit pclae. The rset can be a toatl

tt tZD E 'fﬁ_{ E i{:% /Eﬂ Eé ?ﬁ mses and you can sitll raed it wouthit porbelm. Tihs

is bcuseae we do not raed ervey lteter by itslef but

Téé%iﬁ%g E'(J ?%%%B%LE/‘J the wrod as a wiohe.

o Not entirely sequential as in RNNs
o Not recursively based on local patterns as in CNNs

o Any other “better” architectures?
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Attention is All You Need [12]

Multilayer Perceptrons
Multi-Head Attention 4\

"' Output
SN utpul
7 probapities Generates output words one
S at atime

+Add & Norm

" Feed

' Forward
(Add & Norm }

Multi-Head
Attention

Add & Norm

Nx
Nx Add & Norm
Masked
Mult-Head Multi-Head
Attention Attention
[ - L‘
_____________ \ y,
i - Positional L Positional
Skip connection Encoding Encoding
A . Input Output
(like in ResNet) Embesiang Embecing
x + layer(x)
Inputs QOutputs
(shifted right)

o RNN layers are replaced with self- and cross-attention blocks
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Self-Attention

o Weights to learn at each layer: Wquery, Wiey: Wyalue € RP*P

o Batch, non-autoregressive processing of sequences

query of 1st
Step 1: word,
embedding of _____..--- S :X Y I b
1st word
D in
Wk
K
key of 1st word
X = y
D out
wY
X Vv
value of 1st word
X =
Shan-Hung Wu (CS, NTHU) RNNs & Transformers Machine Learning
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Self-Attention

. key of 1st word, k;

Step 2: relationship between
K _1st & 2nd word

Step 4: softmax (QKT /\ﬁ) = B}

attention of 1st word on values 1st output value of 1st word

softmax (QK"/v/D) v A
|
Hl

Step 5: Hax I I A

T F
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Self-Attention

. key of 1st word, k;

- relationship between
K st & 2nd word

Step 4: softmax (QKT /\ﬁ) = B}

attention of 1st word on values 1st output value of 1st word

softmax (QK’/\E) % _A
T S
T

o Input: A=V e RT*P (T
tokens, each with
dimension D)

o Output: AV e R™*P (T
tokens, each with
dimension D)

o Context augmented
o E.g, “train a model”
vs. “get on a train”
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Multi-head Self-Attention

R

Multi-Head Attention
X
WA
we L
k K,
X W; K, !
Wy
Wy
2 V.
A v,
X
A
A, ! concat A
R R

o Given H heads, we have ng}ery,W(h) w"  cRPX and A € RT*P

key’ "7 value
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=

Same Sequence, Different Context Augmentations
Step 4: softmax (QKT/\E)

74 /90

Machine Learning
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am am am am
Jeum 1eym 1eym 1ByM
sl sl S| m W sl
sy sy sy sy
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aq aq aq oq
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Masked Self-Attention for Autoregressive Output
output

Ich _mag™

latent embedding
of whole input ~ "-..

___________ Predicts next word
(via highest softmax probability)
in autoregressive fashion

__________________ output size

= word dictionary size

Feed
Forward
Add & Norm

Multi-Head
Attention
Nx

N f —{(A53 & Norm )

Multi-Head
Attention

Add & Norm
Masked

mask to prevent "cheating"

=

1 7

—/)

Positional
Encoding

Positional
Encoding

Input
Embedding

Output
Embedding

(L _like plants) (Ich mag Pflanzen j

input

Shan-Hung Wu (CS, NTHU)
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Cross-Attention for Autoregressive Output

o When generating each output token, attend each output token on
entire context
o The last output token as query (autoregressive)
o Input + previous output tokens (context) as keys and values
o Dimension of attention matrix: 1 x context length

Step 1:
y
embedding of X =
previous output word I:l:l:l:l Dj:l:‘
Wk
K
/
’
7
embeddings of \/'
input words \\\ WY
\ " V
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Going Deep

Output
Probabilities

Decoder
Encoder

Decoder

Encoder

Decoder
Encoder
Encoder

Decoder

R Positonal
QY Encoding

Encoder
@

Encoder
Positional Outputs
Encoding e O (shifted right)
Input
Embedding

Inputs.
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Layer Normalization

Output
Probabilities

Add & Norm
Feed
Forward
Add & Norm
Multi-Head
Attention
t Nx

Add & Norm

Add & Norm

Nx
(AsgE Nom) e
Multi-Head Multi-Head
Attention Attention
A f—
= =)
Positional Positional
Encoding Encoding
Tnput Output
Embedding Embedding
Inputs Qutputs
(shifted right)

Shan-Hung Wu (CS, NTHU)
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Positional Encoding

o “John loves Mary" # “Mary loves John"

o So far, augmented context does not change
ot when the input words change order

Probabilities

Add & Norm
Feed
Forward
Add & Norm

Multi-Head
Attention

Add & Norm
Feed

Forward Nx
N
(CAdd & Norm
Add & Norm ‘Masked
Multi-Head Multi-Head
Attention Attention
’_) L -
\ v
Positional 4 Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)
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Positional Encoding

o “John loves Mary" # “Mary loves John"

o So far, augmented context does not change
ot when the input words change order

Probabilities

v R FES EE
Fviz EMBEDDINGS i [ [ [] X2 X3

Add & Norm

Multi-Head
Attention

l v o Each word position corresponds to multiple
sin(-) / cos(-) values of different periods

Add & Norm

N | —~(Add& Norm )
Add & Norm ‘Masked
Multi-Head Multi-Head
Attention Attention
7 L -
\ v
Positional 4 Positional oo
Encoding Encoding
Input Output
Embedding Embedding
000
Inputs Outputs
(shifted right)
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Positional Encoding

o “John loves Mary" # “Mary loves John"

o So far, augmented context does not change
ot when the input words change order

Probabilities

v R FES EE
Fviz EMBEDDINGS i [ [ [] X2 X3

Add & Norm

Multi-Head
Attention

' v o Each word position corresponds to multiple
sin(-) / cos(-) values of different periods

Add & Norm

Nx
ERed]
Multi-Head Multi-Head 1
tenion Ahionion o Why not linear values (e.g, 1, 2, 3, ...)7
- L -
\ v
Positional 4 Positional oo
Encoding Encoding
Input Output
Embedding Embedding
000
Inputs Outputs
(shifted right)
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Remarks I: RNNs vs. CNNs vs. Transformers

o On processing a sequence of length T at each layer with

o D-dimensional point input and output
o F = the CNN filter/kernel size

o #CNN filters = D

o Ftattention heads = H

o Query, key, and value size = %

#Weights  Computation  Auto-reg. Point Dist.
CNN O(FD?) O(TFD?) No o(L)
RNN 0(D?) O(TD?) Yes o(T)
Self-attention 0(D?) O(TD? +T?D) No o(1)

Shan-Hung Wu (CS, NTHU) RNNs & Transformers
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Remarks Il: Vision Transformers (ViT) [3]

o Splits an image into 16 x 16 patches (words)
o Like BERT, uses [CLS] input word to get class predictions

MLP
Head

Transformer Encoder

\ !
pmmu@aiaaa@ia@

* Extra learnable
[class] embedding Llnear Pro_]ectlon of Flattened Patches

ST | T 1]
e —— RN EWE

M)
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Attention
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Outline

(8 Subword Tokenization
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Sequence Tokenization

o Word-level
o High input/output dimension (D)
o Out-of-vocabulary (OOV) problem
o “old"” # “older” # “oldest”

o Char-level
o Long sequence (T)
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Sequence Tokenization

o Word-level
o High input/output dimension (D)
o Out-of-vocabulary (OOV) problem
o “old"” # “older” # “oldest”

o Char-level
o Long sequence (T)
o Subword-level?

o How to deal with OOV problem?
o How to support different languages?
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Byte Pair Encoding (BPE) [10]

o Given a training set of words

@ Uses Unicode bytes as base symbols {s(l),s(z),---}' _
@ Merge two symbol s and s¥) having highest Pr(s\)) and Pr(s\))
@ Repeat step 2 until target #symbols is met

Vocabulary

Encoded Sentence

Initialization

['a’,’c, b, e, V', </w>", 'K, 'm’,
x']

o, 'n’,’p’, s, T, u, Y, Y,

vietnam</w> takes </w>
measures</w>to</w>bo
ost</w>rice</w>exports
</w>

After 1
merge

[/a// o, Ibr’ e, /p// '</W>', lk',
i

'1’1’1’, o, 'i’, s, rrr, ’u', ’l”, X,

vietnam </w> takes</w>
measures</w>to</w>bo

operation s</w>'] ost</w>rice</w>export
s</w>
After 10 | ['</w>", 'vi’, "as’, ‘es</w>’,|viet nam </w> takes</w> m
merge 's</w>’, ’'mam’/, ‘to, ri’,|easures</w>to</w>boos
operations | ‘t</w>’, ‘ort, ‘a’, 'c, b, ‘e, | t</w>rice</w> exports</w>
K, o, P, T, Y, X
After 34 | ['takes</w>’, ‘mea- | vietham</w> takes</w> mea-
merge sures</w>’,  ‘exports</w>’, | sures</w> to</w> boost</w>
operations "boost</w>’, ‘rice</w>’, | rice</w> exports</w>

viethnam< /w>’, ‘to</w>"]

Shan-Hung Wu (CS, NTHU)
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Other Variants

©

BPE is used by GPT

WordPiece [9]:
o Merge s and sU) having highest %
o Used by BERT

Unigram Language Model [6]
o Top-down, probabilistic

(]

©

©

SentencePiece [7]

o Treat space " " as symbols to support difference languages
o Merge algorithm: BPE or Unigram Language Model
o Used by ALBERT, XLNet, Marian, T5

Shan-Hung Wu (CS, NTHU) RNNs & Transformers Machine Learning
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