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Sequential Data

So far, we assume that data points (x,y)’s in a dataset are i.i.d

Does not hold in many applications
Sequential data: data points come in order and successive points
may be dependent, e.g.,

Letters in a word
Words in a sentence/document
Phonemes in a spoken word utterance
Page clicks in a Web session
Frames in a video, etc.

Dataset: X = {X(n)}n ∈ RN×(D,K)×T

X(n) = {(x(n,t),y(n,t))}t a sequence, where the superscript n can be
omitted for simplicity
T is call the horizon and may be different between x(n) and y(n) and
across data points n’s
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Sequence Modeling I

How to model sequential data?

Recurrent neural networks
(vanilla RNNs):
y(t) depends on x(1), · · · ,x(t)

Output a(L,t) depends on hidden
activations:

a(k,t) = act(z(k,t))
= act(U(k)a(k,t−1)+W(k)a(k−1,t))

Bias term omitted
a(·,t) summarizes x(t), · · · ,x(1)

Earlier points are less
important

a(·,t)’s at deeper layers give more
abstract summarizations
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Sequence Modeling II

a(k,t) = act(z(k,t))
= act(U(k)a(k,t−1)+W(k)a(k−1,t))

Weights are shared across time
instances

Assumes that the “transition
functions” are time invariant
Our goal is to learn U(k)’s and
W(k)’s for k = 1, · · · ,L

Shan-Hung Wu (CS, NTHU) RNNs & Transformers Machine Learning 7 / 90



Sequence Modeling II

a(k,t) = act(z(k,t))
= act(U(k)a(k,t−1)+W(k)a(k−1,t))

Weights are shared across time
instances
Assumes that the “transition
functions” are time invariant

Our goal is to learn U(k)’s and
W(k)’s for k = 1, · · · ,L

Shan-Hung Wu (CS, NTHU) RNNs & Transformers Machine Learning 7 / 90



Sequence Modeling II

a(k,t) = act(z(k,t))
= act(U(k)a(k,t−1)+W(k)a(k−1,t))

Weights are shared across time
instances
Assumes that the “transition
functions” are time invariant
Our goal is to learn U(k)’s and
W(k)’s for k = 1, · · · ,L

Shan-Hung Wu (CS, NTHU) RNNs & Transformers Machine Learning 7 / 90



RNNs have Memory

The computational graph of an RNN can be folded in time

Black squares denotes memory access
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Output Layer (1/2)
With multi-class y(t),

a(L,t) represents the probability of each class
C(t) is cross entropy

How to obtain ŷ(t) rom a(L,t) at inference time?
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Output Layer (2/2)

Output sampling for multi-class tasks:
Greedy: sample ŷ(t) from a(L,t)
Bean search: sample ŷ(t) from the most probable paths of the join
distribution (a(L,t),a(L,t−1), · · ·a(L,t−b)), where b is bean size
Noisy: sample ŷ(t) based on a(L,t) + noise

Problem: out of vocabulary or high dimensional a(L,t)

Solution? Subword tokenization (to be discussed later)
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Greedy: sample ŷ(t) from a(L,t)
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RNNs vs CNNs for Sequential Data

On processing a sequence of length T at each layer with
D-dimensional point input and output
F = the CNN filter/kernel size
#CNN filters = D

#Weights Computation Autoregressive Point Distance

CNN O(FD2) O(TFD2) No O(T
F )

RNN O(D2) O(TD2) Yes O(T)
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Input and Output

x(t)’s and y(t)’s do not need to have one-to-one correspondence:
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One2Many: Image Captioning

“A little girl sitting on a bed with a
teddy bear.”
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Many2One: Sentiment Analysis

A single word (e.g., “Razzie”) can negate the entire input sentence
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Many2Many (Synced): Language Modeling

Language modeling: predicting the next/nearby word based on the
context

Latent representations of RNN provide the context
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Many2Many (Synced): Video Keyframe Tagging

Video frame annotation:

Latent representations summarize “what’s going on”
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Many2Many (Unsynced): Machine Translation

Latent representations support encoding first, and then decoding
RNN learns the structure difference

Also called sequence to sequence learning
Also used in other applications, e.g., chat bots
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Bidirectional RNNs

a(k,t) = act(U(k)a(k,t−1)+W(k)a(k−1,t))

Each a(·,t) summarizes
x(t), · · · ,x(1)

A prediction is made by
considering previous frames
Can we take future frames into
account?
Bidirectional RNNs: output
a(L,t) depends on both a(k,t)’s
and ã(k,t)’s

ã(k,t) = act(Ũ(k)ã(k,t+1)+ W̃(k)ã(k−1,t))
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Recursive RNNs I

a(k,t) = act(U(k)a(k,t−1)+W(k)a(k−1,t))

The transition of hidden representation is invariant in time
Earlier input/representation is less important to current a(·,t)

“Razzie” has less effect if it is far away from the prediction
In some applications, transitions are invariant in terms of other
concepts
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Recursive RNNs II

In natural language processing
(NLP), we can parse the input
sentence X(n) into a tree

Following gramma rules

Recursive RNNs: “subtree
merges” are invariant

a(k,t) = act(Ua(k−1, left )

+Wa(k−1, right ))

U and W are shared
recursively in subtrees

Given sentence length T, a(L)
and a(1,·) can be O(logT) away
in the best case
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Cost Function of Vanilla RNNs

Parameters to learn: Θ = {W(k),U(k)}k (bias terms omitted)
Maximum likelihood:

argminΘ C(Θ)
= argminΘ− logP(X |Θ)

= argminΘ−∑n,t logP(y(n,t) |x(n,t), · · · ,x(n,1),Θ)

= argminΘ−∑n,t C(n,t)(Θ)

y(t) depends only on x(1), · · · ,x(t)

For example, in binary classification:
Assuming P(y(n,t) = 1 |x(n,t), · · · ,x(n,1))∼ Bernoulli(ρ(t)), we have

C(n,t)(Θ) = (a(L,t))y(n,t)(1−a(L,t))(1−y(n,t))

a(L,t) = ρ(t) are based on a(·,t)’s, which summarize x(n,t), · · · ,x(n,1)
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SGD-based Training

RNN optimization problem can be solved using SGD:

Θ
(s+1)←Θ

(s)−η∇Θ ∑
n,t

C(n,t)(Θ(s))

Let c(n,t) = C(n,t)(Θ(s)), our goal is to evaluate ∂c(n,t)

∂U(k)
i,j

and ∂c(n,t)

∂W(k)
i,j

Evaluation of ∂c(n,t)

∂W(k)
i,j

is similar to that in DNNs and omitted

We focus on:

∂c(n,t)

∂U(k)
i,j

=
∂c(n,t)

∂ z(k,t)j

·
∂ z(k,t)j

∂U(k)
i,j

= δ
(k,t)
j

∂ z(k,t)j

∂U(k)
i,j
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Forward Pass through Time

The second term:
∂ z(k,t)j

∂U(k)
i,j

We have z(k,t)j = ∑i W(k)
i,j a(k−1,t)

i +∑i U(k)
i,j a(k,t−1)

i and

∂ z(k,t)j

∂U(k)
i,j

= a(k,t−1)
i

We can get all second terms starting from the most shallow layer and
earliest time
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Backward Pass through Time I

The first term (error signal): δ
(k,t)
j = ∂c(n,t)

∂ z(k,t)j

We have

δ
(k,t)
j = ∂c(n,t)

∂ z(k,t)j

= ∂c(n,t)

∂a(k,t)j

· ∂a(k,t)j

∂ z(k,t)j

= ∂c(n,t)

∂a(k,t)j

· act′(z(k,t)j )

=

(
∑s

∂c(n,t)

∂ z(k+1,t)
s
· ∂ z(k+1,t)

s

∂a(k,t)j

+∑s
∂c(n,t)

∂ z(k,t+1)
s
· ∂ z(k,t+1)

s

∂a(k,t)j

)
act′(z(k,t)j )

=
(

∑s δ
(k+1,t)
s W(k+1)

j,s +∑s δ
(k,t+1)
s U(k)

j,s

)
act′(z(k,t)j )
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Backward Pass through Time II

δ
(k,t)
j =

(
∑

s
δ
(k+1,t)
s W(k+1)

j,s +∑
s

δ
(k,t+1)
s U(k)

j,s

)
act′(z(k,t)j )

We can evaluate all δ
(k,t)
j ’s starting from the deepest layer and latest

time
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Backprop through Time (BPTT)
So far, we have discussed how to compute the gradients of U(k)

i,j ’s (and

W(k)
i,j ’s) for a single loss c(n,t) = C(n,t)(Θ(s)) at specific time

However, for each sequence n, we have multiple c(n,t)’s at different t’s
Their gradient need to be summed

For different c(n,·)’s, the forward pass can be shared
BPTT: single forward pass, multiple backward passes
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Outline

1 RNNs
Vanilla RNNs
Design Alternatives

2 RNN Training
Backprop through Time (BPTT)
Optimization Techniques
Optimization-Friendly Models & LSTM
Parallelism & Teacher Forcing

3 RNNs with Attention Mechanism
Attention for Image Captioning
Attention for Neural Machine Translation (NMT)

4 Transformers

5 Subword Tokenization
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Long-Term Dependencies

Forward pass:

z(k,t)← U(k)>a(k,t−1)+W(k)>a(k−1,t)

a(k,t)← act(z(k,t))

Backward pass:

δ
(k,t)← act′(z(k,t))� (U(k)

δ
(k,t+1)+W(k+1)

δ
(k+1,t))

The dependency between a(k,i) (resp. δ
(k,i)) and a(k,j) (resp. δ

(k,j)) are

maintained by
(

U(k)
)(j−i)

Ignoring activation function and depth, we have a(k,j) = (U(k)>)j−ia(k,i)

and δ
(k,i) = (U(k))j−iδ

(k,j)

If a(k,i) and a(k,j) are far away in time, their long-term dependency
causes optimization problems
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Exploding/Vanishing Gradient Problem

Ignoring activation function and depth:

a(k,j) = (U(k)>)(j−i)a(k,i) and δ
(k,i) = (U(k))(j−i)

δ
(k,j)

Given eigendecomposition: U(k) = Q

 λ1 · · · 0
...

. . .
...

0 · · · λD(k)

Q>

We have: (U(k))j−i = Q

 λ
j−i
1 · · · 0
...

. . .
...

0 · · · λ
j−i
D(k)

Q>

When j− i is large, λ
j−i
s is either very large or small

λs = 1.01⇒ λ 1000
s ≈ 20,000

λs = 0.99⇒ λ 1000
s ≈ 0

Exploding or vanishing gradients!
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Cost Surface

The cost surface of C is either very flat or steep
Hard for gradient-based optimization

Optimization techniques?
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Nesterov Momentum

Use Nesterov momentum to “brake” before hitting the wall
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Gradient Clipping

A simple way is to avoid the exploding gradient problem is to clip a
gradient if it exceeds a predefined threshold
Very effective in practice
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RMS Prop
Adaptive learning rate based on statistics of recent gradients:

r(t+1)← λ r(t)+(1−λ )g(t)�g(t)

Θ
(t+1)←Θ

(t)− η√
r(t+1)

�g(t)

Reduce λ
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Outline

1 RNNs
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Sigmoid Activation Function
Traditionally, the hidden units of RNNs use the sigmoid activation
functions

E.g., tanh(·) the hyperbolic tangent

Why sigmoid activation function?
Forward pass:

z(k,t)← U(k)>a(k,t−1)+W(k)>a(k−1,t)

a(k,t)← act(z(k,t))

Backward pass:

δ
(k,t)← act′(z(k,t))� (U(k)

δ
(k,t+1)+W(k+1)

δ
(k+1,t))

Sigmoid activation:
Bounded range in the forward pass
act′(·)< 1 in the backward pass

Mitigates the exploding (but not vanishing) gradient problem for U(k)’s
Introduces vanishing gradients of W(k)’s
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Learning Unitary U(k)’s

Long-term dependency: (U(k))j−i = Q

 λ
j−i
1 · · · 0
...

. . .
...

0 · · · λ
j−i
D(k)

Q>

Why not make U(k)’s unitary (i.e., λs = 1 for all s)?
Hinton et al. [8] propose IRNN:

Initializes U(k) = I in SGD
Uses ReLU hidden units
Empirically, requires a very small learning rate (e.g., 10−8) to work well
Simple, but very slow

Krueger et al. [5] add a term ∑k,t(‖a(k,t)‖−‖a(k,t−1)‖)2 to IRNN cost
to stabilize the norms of a(k,t)’s in time
Bengio et al. [1] propose uRNN that learns unitary U(k)’s explicitly
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Krueger et al. [5] add a term ∑k,t(‖a(k,t)‖−‖a(k,t−1)‖)2 to IRNN cost
to stabilize the norms of a(k,t)’s in time
Bengio et al. [1] propose uRNN that learns unitary U(k)’s explicitly
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Long Short-Term Memory (LSTM)
Idea: to create shortcut in each neuron for the error signals to flow
backward more smoothly

The j-th LSTM unit at depth k and time t:
First tanh activation to be added into the memory cell m(k,t)

Second tanh activation as the final activation a(k,t)j

Forget gate σf: whether to forget m(k,t−1)

Input gate σd: whether to store the first activation into m(k,t)

Output gate σo: whether to output the second activation
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Error Signals
Error signals now have a second path

If the forget gate is open, error signals won’t decay (blue arrows)

Avoids the vanishing gradients (but not exploding ones)

When NN decides to close the forget gate, the vanishing gradient
problem is irrelevant
In practice, LSTM + gradient clipping works well together
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Dynamic Representations for Sentiment Analysis

LSTM units learn dynamic representations

Closing forget gate for “Razzie”
To correct previous summarization and/or shift focus

Closing input gate for “movie”
Not to learn, to keep the same summarization

Closing output gate for “that”
To let the next neuron decide the activation/gate values by its own
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Dynamic Representations for Language Models

Neuron activations for language modeling [4] Interactive Tool
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Learning Process of LSTMs

Output at epoch 100:

“ ... tyntd-iafhatawiaoihrdemot lytdws e ,tfti, astai f ogoh...”

At 300 (spaces and periods):
“ ... Phe lism thond hon at. MeiDimorotion in ther...”

At 500 (common words “we,” “he,” etc.):
“ ... we counter. He stutn co des. His stanted out one...”

At 700 (English-like structure):
“ ... Aftair fall unsuch that the hall for Prince Velzonski’s...”

At 1200 (quotations and longer words):
“... “Kite vouch!” he repeated by her door...”

At 2000 (topics and longer-term dependencies):
“ ... “Why do what that day,” replied Natasha, ...”
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Outline

1 RNNs
Vanilla RNNs
Design Alternatives

2 RNN Training
Backprop through Time (BPTT)
Optimization Techniques
Optimization-Friendly Models & LSTM
Parallelism & Teacher Forcing

3 RNNs with Attention Mechanism
Attention for Image Captioning
Attention for Neural Machine Translation (NMT)

4 Transformers

5 Subword Tokenization
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Parallelism

A forward/backward pass through time in BPTT cannot be parallelized

The hidden-to-hidden recurrent connections in a vanilla RNN create
dependency between

a(k,t)’s in forward pass
δ
(k,t)’s in backward pass
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Output Recurrence and Teacher Forcing
Teacher forcing: replace hidden-to-hidden recurrence with
output-to-hidden or output-to-input recurrence

At training time, use correct labels y(·)’s to train the model
So, the forward/backward pass through time can be parallelized

At test time, switch back to using model output ŷ(·)’s
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Cost: Exposure Bias

Mismatch between y(·)’s and ŷ(·)’s hurts RNN performance
Solution?

Scheduled sampling
At training time,

1 Use y(·)’s initially
2 Gradually mix in ŷ(·)’s later
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Cost: Reduced Expressiveness
The vanilla RNNs are universal in the sense that they can simulate
Turing machines [11]

Output-recurrent RNNs cannot simulate Turing machines and are
strictly less powerful
The output a(L,·)’s are explicitly trained to match training targets

Cannot capture all required information in the past to predict the future
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Limited Representation Size
In some RNNs, a hidden representation a(·,t) needs to support:

Current prediction a(L,t), and
All future predictions a(L,t+1), · · · ,a(L,T)

The fixed-size a(t) faces a trade-off between:
Representing face features for current prediction (“girl”)
Representing other features for future predictions (“bear”)

Can we ease the job of a(·,t)?

“A little girl sitting on a bed
with a teddy bear.”
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Input Recurrence

Input recurrence: to feed the entire
input X to all a(1,t)’s, ∀t

Now, a(·,t) only needs to:
Support current prediction a(L,t), and
Provide context to the next
representation a(·,t+1)

E.g., when predicting “girl,” a(·,t) may
pay attention to only few face-related
images features of current input X(n)

Why not model the attention
explicitly?

So we can see where a(·,t) is “looking
at”

Shan-Hung Wu (CS, NTHU) RNNs & Transformers Machine Learning 53 / 90



Input Recurrence

Input recurrence: to feed the entire
input X to all a(1,t)’s, ∀t
Now, a(·,t) only needs to:

Support current prediction a(L,t), and
Provide context to the next
representation a(·,t+1)

E.g., when predicting “girl,” a(·,t) may
pay attention to only few face-related
images features of current input X(n)

Why not model the attention
explicitly?

So we can see where a(·,t) is “looking
at”

Shan-Hung Wu (CS, NTHU) RNNs & Transformers Machine Learning 53 / 90



Input Recurrence

Input recurrence: to feed the entire
input X to all a(1,t)’s, ∀t
Now, a(·,t) only needs to:

Support current prediction a(L,t), and
Provide context to the next
representation a(·,t+1)

E.g., when predicting “girl,” a(·,t) may
pay attention to only few face-related
images features of current input X(n)

Why not model the attention
explicitly?

So we can see where a(·,t) is “looking
at”

Shan-Hung Wu (CS, NTHU) RNNs & Transformers Machine Learning 53 / 90



Input Recurrence

Input recurrence: to feed the entire
input X to all a(1,t)’s, ∀t
Now, a(·,t) only needs to:

Support current prediction a(L,t), and
Provide context to the next
representation a(·,t+1)

E.g., when predicting “girl,” a(·,t) may
pay attention to only few face-related
images features of current input X(n)

Why not model the attention
explicitly?

So we can see where a(·,t) is “looking
at”

Shan-Hung Wu (CS, NTHU) RNNs & Transformers Machine Learning 53 / 90



Attention Mechanism

Assumes that the input X = {x(i)}i can
be broken into “parts”

E.g., with CNN, x(i) could be the
activation values of a filter

For each timestamp t:
Obtain from a(L−1,t−1) an attention
vector b(t), ∑b(t)i = 1
Feed a(1,t) with the weighted input
c(t) = ∑i b(t)i x(i)

Reduces size of W from O(|X| · |a(·,t)|)
to O(|x(i)| · |a(·,t)|)
How to obtain b(t)?
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Computing Attention Vector

1 Use a(L−1,t−1) as a “query” to get a
match score for each input part by
using, e.g., a simple NN [2, 13]:

zi = act(p>a(L−1,t−1)+q>x(i)+ r)

Jointly trained with the main RNN
p, q, and r are shared by different i’s
and t’s (weight tying)

2 Normalize and concentrate on few
larger scores by:

bi = softmax(z)i =
exp(zi)

∑j exp(zj)
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larger scores by:

bi = softmax(z)i =
exp(zi)

∑j exp(zj)
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Visualizing Attention

How to draw a mask?

Threat c(t) = ∑i b(t)i x(i) as image and enlarge it
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GoogleNMTv1: Encoder-Decoder

LSTM-based RNN
Hidden state S encodes an entire input sequence
Then supplied to the decoder
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GoogleNMTv2: Attention-based Encoder-Decoder

No feed-forward connection between the encoder and decoder
Instead, uses previous output as query to get attention and next
output

Allows for retrieving different parts of input sentence depending on
decoding context
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Long Sequences

Attention-based model generates long sequences better
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GoogleNMTv3: Bidirectional Encoder Layer

Takes into account future words when summarizing input sequence
Better determines the meaning/context
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GoogleNMTv4: Going Deep

Encoder:
1 bi-directional layer
7 uni-directional layers

Decoder:
8 uni-directional layers
Lowest decoder layer
for querying attention
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GoogleNMTv5: Parallelization

Each layer trained by a GPU
Forward pass:

Encoder: 7 uni-directional encoder
layers trained in a pipeline
Decoder: pipeline starts as soon as
encoder layers are ready

Backward pass:
Teacher forcing
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Model Parallelism (1 Machine, 8 GPUs)
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Data Parallelism (Multiple Param Servers)
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GoogleNMTv6: Residuals

Upper layer learns the delta function to the lower one
Easier to train a deep NN
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GoogleNMTv7: Multilingual & Zero-Shot
Translation

Training: input x augmented with task identifier (language pair)
E.g., (eng, jp), (kr, en), (jp, en)

Inference: unknown language-pair identifier
E.g., (kr, jp)
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How Humans Process Text?

Not entirely sequential as in RNNs
Not recursively based on local patterns as in CNNs
Any other “better” architectures?
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Attention is All You Need [12]

RNN layers are replaced with self- and cross-attention blocks
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Self-Attention

Weights to learn at each layer: Wquery,Wkey,Wvalue ∈ RD×D

Batch, non-autoregressive processing of sequences
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Self-Attention

Input: A(l−1) ∈ RT×D (T
tokens, each with
dimension D)

Output: A(l) ∈ RT×D (T
tokens, each with
dimension D)

Context augmented
E.g, “train a model”
vs. “get on a train”
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Multi-head Self-Attention

Given H heads, we have W(h)
query,W

(h)
key,W

(h)
value ∈ RD× D

H and A ∈ RT×D
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Same Sequence, Different Context Augmentations
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Masked Self-Attention for Autoregressive Output
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Cross-Attention for Autoregressive Output
When generating each output token, attend each output token on
entire context

The last output token as query (autoregressive)
Input + previous output tokens (context) as keys and values
Dimension of attention matrix: 1× context length
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Going Deep
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Layer Normalization
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Positional Encoding

“John loves Mary” 6= “Mary loves John”
So far, augmented context does not change
when the input words change order

Each word position corresponds to multiple
sin(·) / cos(·) values of different periods

Why not linear values (e.g, 1, 2, 3, ...)?
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Remarks I: RNNs vs. CNNs vs. Transformers

On processing a sequence of length T at each layer with
D-dimensional point input and output
F = the CNN filter/kernel size
#CNN filters = D
#attention heads = H
Query, key, and value size = D

H

#Weights Computation Auto-reg. Point Dist.

CNN O(FD2) O(TFD2) No O(T
F )

RNN O(D2) O(TD2) Yes O(T)

Self-attention O(D2) O(TD2 +T2D) No O(1)
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Remarks II: Vision Transformers (ViT) [3]

Splits an image into 16×16 patches (words)
Like BERT, uses [CLS] input word to get class predictions
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Attention
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Sequence Tokenization

Word-level
High input/output dimension (D)
Out-of-vocabulary (OOV) problem
“old” 6= “older” 6= “oldest”

Char-level
Long sequence (T)

Subword-level?
How to deal with OOV problem?
How to support different languages?
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Byte Pair Encoding (BPE) [10]
Given a training set of words

1 Uses Unicode bytes as base symbols {s(1),s(2), · · ·}
2 Merge two symbol s(i) and s(j) having highest Pr(s(i)) and Pr(s(j))
3 Repeat step 2 until target #symbols is met
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Other Variants

BPE is used by GPT
WordPiece [9]:

Merge s(i) and s(j) having highest Pr(s(i),s(j))
Pr(s(i))Pr(s(j))

Used by BERT
Unigram Language Model [6]

Top-down, probabilistic
SentencePiece [7]

Treat space “_” as symbols to support difference languages
Merge algorithm: BPE or Unigram Language Model
Used by ALBERT, XLNet, Marian, T5
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