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Unsupervised Learning

Dataset: X= {x(i)}i, where x(i)’s are i.i.d. samples of x
No supervision y(i) (labels)

What can we learn without labels?

The structures in X
Inter-sample structures
Intra-sample structures

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 4 / 132



Unsupervised Learning

Dataset: X= {x(i)}i, where x(i)’s are i.i.d. samples of x
No supervision y(i) (labels)

What can we learn without labels? The structures in X
Inter-sample structures
Intra-sample structures

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 4 / 132



Clustering I

Goal: to divide x(i)’s into K groups/clusters
Based on some similarity/distance measure between x(i) and x(j)

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 5 / 132



Clustering II
K-means algorithm (K fixed): iteratively move clusterheads until
convergence

Hierarchical clustering (variable K): iteratively merge two
points/groups,then cut
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Factorization for Tabular X
Let X be a rating matrix where Xi,: = x(i)

Goal: to approximate X with a dense matrix X̂ = WH
To make recommendations based on X̂i,: for user i, known as
collaborative filtering

How?

Non-negative matrix factorization (NMF) [19, 20]:

arg min
W≥O,H≥O

‖X−WH‖F

So, positive elements in W and H can be seen as factor degrees
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Dimension Reduction

Goal: to learn a low dimensional representation z of x
E.g., PCA
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Self-Supervised Learning

Goal: to learn a model that is able to
“fill in the blanks”

Links unsupervised tasks with
supervised models

Much more training data for models
Representation learning with deep
networks

x(i) y(i)
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Example I: Word2Vec

Goal: to learn a model for blank filling

E.g., word2vec [26, 25]: “... the cat sat on...”

CBOW Skip Gram

Latent representation h encodes the semantics of a word
No need for synonym dictionary; big data tell that already
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Example II: Doc2Vec
How to encode a document?

Bag of words (TF-IDF), average word2vec, etc.
Do not capture the semantics due to sentence/paragraph/doc
structure

“John likes Mary” 6= “Mary likes John”

Why not apply self-supervised learning to docs?
Doc2vec [17]: to capture the context not explained by words
Transductive rather than inductive; does not work with unseen docs
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Generative Models
Goal: to generate new samples of x

Can be conditioned on instructions (input)
Largely based on self-supervised learning

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 12 / 132



Outline
1 Unsupervised Learning

Text Models
Image Models

2 ChatGPT

3 Autoencoders (AE)
Manifold Learning*

4 Variational Autoencoders (VAE)

5 Flow-based Models

6 Diffusion Models

7 Generative Adversarial Networks*
Basic Architecture
Challenges
More GANs

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 13 / 132



Generating Text

With large (self-supervised) training data, transformers [46] have
shown to perform better than RNNs and CNNs

Mainly due to the O(1) point distance
Two common text models based on transformer:

BERT [7]: non-autoregressive
GPT [31]: autoregressive
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BERT [7]

Massively trained encoder of the original transformer
Non-autoregressive

Pre-training tasks:
Masked language model (“Cloze” task)

“A quick brown [MASK] jumps over the lazy dog” → “fox” 11%, “ant”
5%, ...

Next sentence prediction
“[MASK] go to store [SEP] to buy a [MASK] of milk”→ True 93%,
False 7%

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 15 / 132



One Pre-training, Multiple Fine-tuning Tasks

Special input to identify downstream task: [CLS] token
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GPT [31]

Massively trained decoder of the original transformer
Autoregressive

Multitask pre-training by maximizing Pr(output|input, task):
Translation: Pr(french text|en text, translation)
Question answering: Pr(answer|question, qa)
Reading comprehension: Pr(answer|document, question, reading)

Usage for downstream task: fine-tuning or prompting
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Autoregressive or Not?

It’s easier for an autoregressive model to generate coherent text
In this lecture, we focus on GPT and its variants
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Autoregressive or Not?
Autoregressive models can still give good (if not better) performance

E.g., PixelRNN [45], PixelCNN [44], or MaskGIT [5]
But unlike in text domain, generating images pixel-by-pixel is very
slow
Speed-up?

Scheduled parallel-pixel generation (e.g., MaskGIT)
Stepwise generation of whole images (e.g., flow-based and diffusion
models)
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Whole-Image Generation I
Goal: given X, to learn a generator function g such that x̂ = g(c;Θg)
looks like a real image in X

c is a code or condition
Θg represents parameters of g

Objective from Information Theory perspective:

argmin
g

D(Pdata‖Pg)

Pdata is the distribution of real data in the ground truth
Pg is the distribution of generated data
D is a divergence measure, e.g., DKL

Why not DKL(Pg‖Pdata)?
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Whole-Image Generation II

Minimizing DKL(Pdata‖Pg) amounts to maximizing P(X|Θg), the log
likelihood of Θg:

g∗ = argming DKL(Pdata‖Pg)
= argmaxg Ex∼Pdata [logPg(x)]+H(x∼ Pdata)
= argmaxg Ex∼Pdata [logPg(x)]
≈ argmaxg ∑x(i)∈X logPg(x(i))
= argmaxg log∏x(i)∈X Pg(x(i))

Θ∗g = argmaxΘg log∏x(i)∈X P(x(i)|Θg)

= argmaxΘg logP(X|Θg)

Other divergence measures can lead to similar results
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Common Whole-Image Generation Methods
Autoencoder (single-step: x̂ = g(c))

Pros: easy
Cons: but no creativity, blurry images

Variational Autoencoder (single-step: x̂ = g(c))
Pros: creative
Cons: only maximizes a lower bound of P(X|Θg); blurry images

Flow-based methods (multi-step: x̂ = g(T)(· · ·g(2)(g(1)(c))) )
Pros: maximizes P(X|Θg) directly
Cons: limited expressiveness of g for invertibility; slow training and
inference

GANs (single-step: x̂ = g(c))
Pros: good image quality (sharp and coherent)
Cons: difficult to train (convergence issue, mode collapse, vanishing
gradients, etc.)

Diffusion models (multi-step: x̂ = g(T)(· · ·g(2)(g(1)(c))) )
Pros: good image quality; efficient & stable to train, can be made
conditional easily
Cons: slow inference
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Evolutions

2018 GPTv1 [31]
Self-supervised pre-training

2019 GPTv2 [32]
Multitask pre-training

2020 GPTv3 [4]
Few-shot & in-context learning

2022 GPTv3.5 [29]
Alignment using (supervised) instruction tuning + reinforcement
learning from human feedback (RLHF)

2023 GPT4: mixture of experts
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GPTv1 [31]

Aims at 2-step training process:
1 Self-supervised pre-training on unlabeled data

To predict next word in a sentence (language model)
2 Discriminative fine-tuning on labeled data in downstream tasks

Here, fine-tuning could also mean training a new model based on
extracted features
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Example Fine-tuning Tasks

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 27 / 132



Does Self-supervised Pre-training Help?
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GPTv2 [32]

Many NLP tasks can be formulated as the problem of maximizing
Pr(output|input, task)

Translation: Pr(french text|en text, translation)
Question answering: Pr(answer|question, qa)
Reading comprehension: Pr(answer|document, question, reading)

GPTv3 [4]: few-shot & in-context learning
GPTv3.5 [29]: alignment using (supervised) instruction tuning &
reinforcement learning from human feedback (RLHF)
GPT4: mixture of experts
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GPTv3 [4]
The model learns from few shots (examples), even in context

Enables prompting techniques for downstream tasks
E.g.,few shots, chain of thought (CoT), or simply “Let’s work this out
step-by-step to ensure the answer is correct”
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Zero/Few Shot Prompting vs. Fine-tuning
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Performance vs. Model Size
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GPTv3.5 [29]
From GPT to “ChatGPT” through alignment

Supervised (multi-task) instruction tuning
Reinforcement learning from human feedback (RLHF)
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Sizes of Large Language Models (LLMs)

Training costs [42]:
110M params: $2.5k–$50k
340M params: $10k–$200k
1.5B param: $80k–$1.6m
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Size Does Matter!

Emerging abilities of LLMs [48]

A balance: 70B parameters + 1.4T training tokens [11]
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GPT Variants

Low-rank adaptation (LoRA) [12]: to efficiently fine-tune LLMs
WebGPT [28]: GPT that can search the web
Retrieval-augmented generation (RAG) [21]: GPT to query external
knowledge (vector) base
GPTs that can reflect on their answers [2, 27]
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Autoencoders (AE)
Encoder: to learn a low dimensional representation c (called code) of
input x
Decoder: to reconstruct x from c
Objective: argmaxΘ logP(X |Θ) = argmaxΘ ∑i logP(x(i) |Θ)
Assuming that x∼N (µ, ·), we have linear output units
a(L) = z(L) = µ̂

logP(x(i) |Θ) ∝−‖x(i)−a(i,L)‖2

argmaxΘ ∑i logP(x(i) |Θ) = argminΘ ∑i ‖x(i)−a(i,L)‖2 (minimizing
reconstruct error)
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Convolutional Autoencoders
Convolution + deconvolution layers:

Decoder is a simplified DeconvNet [49] trained from scratch:
Uppooling → upsampling (no need to remember max positions)
Deconvolution → convolution
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Codes & Reconstructed x

A 32-bit code can roughly represents a 32×32 (1024 dimensional)
MNIST image
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Manifolds I

In many applications, data concentrate around one or more
low-dimensional manifolds

A manifold is a topological space that are linear locally
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Manifolds II

For each point x on a manifold, we have its tangent space spanned
by tangent vectors

Local directions specify how one can change x infinitesimally while
staying on the manifold
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Learning Manifolds I
How to make c produced by autoencoders denote a coordinate of a
dimensional manifold?

Contractive autoencoder [35]: regularizes the code c such that it is
invariant to local changes of x:

Ω(c) = ∑
i

∥∥∥∥∥∂c(i)

∂x(i)

∥∥∥∥∥
2

F

∂c(i)/∂x(i) is a Jacobian matrix
Hence, c represents only the variations needed to reconstruct x

I.e., c changes most along tangent vectors
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Learning Manifolds II

In practice, it is easier to train a denoising autoencoder [47]:

Encoder: to encode x with random noises
Decoder: to reconstruct x without noises
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Getting Tangent Vectors I

The code c represents a coordinate on a low dimensional manifold
E.g., the blue line

How to get the tangent vectors of a given c?
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Getting Tangent Vectors II

Recall: directions in the input space that changes c most should be
tangent vectors

Given a point x, let c be the
code of x and J(x) = ∂c

∂x be the
Jacobian matrix of c at x

J(x) summarizes how c
changes in terms of x

1 Decompose J(x) using SVD
such that J(x) = UDV>

2 Let tangent vectors be rows of
V corresponding to the
largest singular values in D
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Getting Tangent Vectors III

In practice, J(x) usually has few large singular values
Tangent vectors found by contractive/denoising autoencoders:

Can be used by Tangent Prop [43]:
Let {v(i,j)}j be tangent vectors of each example x(i)

Trains an NN classifier f with cost penalty: Ω[f ] = ∑i,j ∇xf (x(i))>v(i,j)

Points in the same manifold share the same label

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 48 / 132



Getting Tangent Vectors III

In practice, J(x) usually has few large singular values
Tangent vectors found by contractive/denoising autoencoders:

Can be used by Tangent Prop [43]:
Let {v(i,j)}j be tangent vectors of each example x(i)

Trains an NN classifier f with cost penalty: Ω[f ] = ∑i,j ∇xf (x(i))>v(i,j)

Points in the same manifold share the same label

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 48 / 132



Outline
1 Unsupervised Learning

Text Models
Image Models

2 ChatGPT

3 Autoencoders (AE)
Manifold Learning*

4 Variational Autoencoders (VAE)

5 Flow-based Models

6 Diffusion Models

7 Generative Adversarial Networks*
Basic Architecture
Challenges
More GANs

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 49 / 132



Problems of Autoencoder I

Ideally, the decoder of an autoencoder can be used to generate images
even with synthetic codes

c

In reality, the learnt c in code space has many “holes” that fail to map
to images

More complex image patterns
Training data are never enough
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Problems of Autoencoder II

Blurry images: the objective

argmax
Θ

∑
i

logP(x(i) |Θ) = argmin
Θ

∑
i
‖x(i)−a(i,L)‖2

does not panelize Gaussian pixel noises in a(i,L)
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Variational Autoencoders (VAE) [15]

Encoder f (· ;Θf ): maps each sample of x (i.e., x(i) ∈ X) to an
axis-aligned normal distribution N (µ,σ)

Each code dimension is independent with each other
f (x) = (µ,σ)

Decoder g(· ;Θg): same as that of AE
How to minimize the objective argmaxΘf ,Θg logP(X |Θf ,Θg))?
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VAE Objective
Objective:
argmaxΘf ,Θg logP(X |Θf ,Θg) = argmaxΘf ,Θg ∑i logP(x(i) |Θf ,Θg)

Considering logP(x) for any sample x, we have

logP(x) =
∫

c Q(c|x) logP(x)dc // Q can be any distribution
=
∫

c Q(c|x) log
(

P(c,x)
P(c|x)

)
dc =

∫
c Q(c|x) log

(
P(c,x)
Q(c|x)

Q(c|x)
P(c|x)

)
dc

=
∫

c Q(c|x) log
(

P(c,x)
Q(c|x)

)
dc+

∫
c Q(c|x) log

(
Q(c|x)
P(c|x)

)
dc

=
∫

c Q(c|x) log
(

P(c,x)
Q(c|x)

)
dc+DKL (Q(c|x)‖P(c|x))

≥
∫

c Q(c|x) log
(

P(c,x)
Q(c|x)

)
dc // lower bound

=
∫

c Q(c|x) log
(

P(x|c)P(c)
Q(c|x)

)
dc

VAE lets Q(· |x) = N (f (x;Θf )) and P(· |c) = N (g(c;Θg))
So Q(c|x) = Q(c|x,Θf ) and P(x|c) = P(x|c,Θg)

New objective: finds Θf and Θg that maximize the lower bound
Not necessarily maximize logP(x|Θf ,Θg)
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Maximizing Lower Bound

∫
c Q(c|x) log

(
P(x|c)P(c)

Q(c|x)

)
dc

=
∫

c Q(c|x,Θf ) log
(

P(x|c,Θg)P(c)
Q(c|x,Θf )

)
dc

=
∫

c Q(c|x,Θf ) log
(

P(c)
Q(c|x,Θf )

)
dc+

∫
c Q(c|x,Θf ) logP(x|c,Θg)dc

=−DKL (Q(c|x,Θf )‖P(c))+E(c|x,Θf )∼Q [logP(x|c,Θg)]

For P(c) = N (0,I):
To minimize the first term, the encoder f (x;Θf ) = (µ,σ) has a loss
term [15]

exp(σ)− (1+σ)+‖µ‖2

To maximize the second term, the decoder
1 Samples c from N (µ,σ) to get g(c;Θg), the mean of output N
2 Minimizes a loss term ‖x−a(L)‖2 as in AE
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Problems of VAE

Only maximize a lower bound of the likelihood P(X|Θf ,Θg)

Θf and Θg are encoder and decoder weights, respectively
Still blurry images

The decoder’s loss is the same with that of AE

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 56 / 132



Flow-based Models
Idea: let the decoder g(· ;Θg) be a deterministic invertible function

Given c∼N (0,I), we have x = g(c;Θg) of complex distribution
Conversely, given x, we have c = g−1(x;Θg)

The likelihood can be maximize directly:

argmaxg logPg(X)
= argmaxg ∑i logPx(g(c(i)))
= argmaxg ∑i log

[
Pc(g−1(x(i)))|det

(
J(g−1)(x(i))

)
|
]

= argmaxg ∑i logPc(g−1(x(i)))+ log |det
(
J(g−1)(x(i))

)
|

First term: finds g (Θg) that maps all x(i) to 0

Second term: prevents g (Θg) from mapping all x(i) to 0
log |det(O)|=− inf

But how to ensure the followings during training?
g is invertible
det
(
J(g−1)( ·)

)
can be easily computed
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Ensuring Invertibility

Glow [16]: make g−1 an 1×1 convolution layer

xi,j,: =

 xi,j,1
xi,j,2
xi,j,3

, g−1 = W3×3,

g−1(xi,j,:) = W3×3

 xi,j,1
xi,j,2
xi,j,3

=

 ci,j,1
ci,j,2
ci,j,3


At training time, initialize W3×3 as an invertible matrix

g−1 = W3×3 is likely to be invertible after SGD updates
Determinant is easy to compute: det

(
J(g−1)(x(i))

)
= det(W3×3)

W×H

At inference time, use g = W−1
3×3 to generate images

Problem: g has limited expressiveness
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Step-wise Generation

Cascade multiple invertible g to have a more complex one:

x = g(T)(· · ·g(2)(g(1)(c)))

Result: sharp images
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Problems of Flow-based Models

Limited model expressiveness
Slow training and inference

#steps can be large
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Denoising Diffusion Probabilistic Models (DDPM)
[10]

Borrow some good ideas from previous works
Probabilistic formulation of VAE that models encoder in the objective
Step-wise encoding/decoding in generative flows

But, unlike flows, the encoding steps
Are predefined; no parameter to learn
Can be simplified to one encoding step
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Encoding

Predefined encoding functions f (t)( · ;β (t)), t = 1, · · · ,T:
β (t), ∀t, are hyperparameters; no learning needed

Let each sample x = x(0)

x(1) = f (1)(x(0);β (1)) =
√

1−β (1)x(0)+
√

β (1)ε , ε ∼N (0,I)
So, (x(1)|x(0) = x(0))∼N (

√
1−β (1)x(0),β (1)I)

x(2) = f (2)(x(1);β (t)) =
√

1−β (2)x(1)+
√

β (2)ε

=
√

1−β (2)
√

1−β (1)x(0)+
√

1− (1−β (2))(1−β (1))ε

=
√

α(2)α(1)x(0)+
√

1−α(2)α(1)ε√
1−β (1)

√
β (2)ε +

√
β (2)ε ∼N (0,((1−β (1))β (2)+β (2))I)

Let α(t) = 1−β (t) (derived hyperparameter)
Only one ε is added

x(t) =
√

ᾱ(t)x(t−1)+
√

1− ᾱ(t)ε

Let ᾱ(t) = α(t)α(t−1) · · ·α(1) (derived hyperparameter)
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Let ᾱ(t) = α(t)α(t−1) · · ·α(1) (derived hyperparameter)

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 63 / 132



Encoding

Predefined encoding functions f (t)( · ;β (t)), t = 1, · · · ,T:
β (t), ∀t, are hyperparameters; no learning needed

Let each sample x = x(0)

x(1) = f (1)(x(0);β (1)) =
√

1−β (1)x(0)+
√

β (1)ε , ε ∼N (0,I)
So, (x(1)|x(0) = x(0))∼N (

√
1−β (1)x(0),β (1)I)

x(2) = f (2)(x(1);β (t)) =
√

1−β (2)x(1)+
√

β (2)ε

=
√

1−β (2)
√

1−β (1)x(0)+
√

1− (1−β (2))(1−β (1))ε

=
√

α(2)α(1)x(0)+
√

1−α(2)α(1)ε√
1−β (1)

√
β (2)ε +

√
β (2)ε ∼N (0,((1−β (1))β (2)+β (2))I)

Let α(t) = 1−β (t) (derived hyperparameter)
Only one ε is added

x(t) =
√
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Objective
As VAE, DDPM maximizes a lower bound of P(X)
VAE: for each x, where P(x) =

∫
c Q(c|x) logP(x)dc, maximize:∫

c

Q(c|x) log
(

P(x,c)
Q(c|x)

)
dc = Ec|x∼Q

[
log
(

P(x,c)
Q(c|x)

)]
≤ P(x)

DDPM: for each x where
P(x(0)) =

∫
x(1),··· ,x(T) Q(x(1), · · · ,x(T)|x(0)) logP(x(0))dx(1) · · ·dx(T),

maximize:

E(x(1),··· ,x(T)|x(0))∼Q

[
log

(
P(x(0),x(1), · · · ,x(T))
Q(x(1), · · · ,x(T)|x(0))

)]
,

which can be simplified to [23]:

−DKL
(
Q(x(T)|x(0))‖P(x(T))

)
+Ex(1)|x(0)∼Q

[
logP(x(0)|x(1))

]
+

−∑
T
t=2 Ex(t)|x(0)∼Q

[
DKL

(
Q(x(t−1)|x(t),x(0))‖P(x(t−1)|x(t))

)]
First term controlled by encoding process (predefined)
Second & third term controlled by denoising process (learnable)
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Denoising I
For simplicity, we focus on maximizing the third term:

−
T

∑
t=2

Ex(t)|x(0)∼Q

[
DKL

(
Q(x(t−1)|x(t),x(0))‖P(x(t−1)|x(t))

)]
Goal: for each observed x(t), minimize

DKL

(
Q(x(t−1)|x(t),x(0))‖P(x(t−1)|x(t))

)
Note that

Q(x(t−1)|x(t),x(0)) = Q(x(t−1),x(t),x(0))
Q(x(t),x(0))

= Q(x(t)|x(t−1))Q(x(t−1)|x(0))Q(x(0))
Q(x(t)|x(0))Q(x(0))

= Q(x(t)|x(t−1))Q(x(t−1)|x(0))
Q(x(t)|x(0))

Since Q(x(t)|x(t−1)) & Q(x(t−1)|x(0)) are Gaussian, we have [23]:

Q(x(t−1)|x(t),x(0)) = N
(√

α(t)(1−α(t−1))x(t)+
√

ᾱ(t−1)β (t)x(0)

1−ᾱ(t) , 1−ᾱ(t−1)

1−ᾱ(t) β (t)I
)
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Denoising II

Goal: for each observed x(t), minimize

DKL

(
Q(x(t−1)|x(t),x(0))‖P(x(t−1)|x(t))

)
,

where Q(· · ·) = N
(√

α(t)(1−α(t−1))x(t)+
√

ᾱ(t−1)β (t)x(0)

1−ᾱ(t) , · · ·
)
is fixed

DDPM finds Θ that move the mean of P(x(t−1)|x(t),Θ) (also Gaussian)
toward Q(· · ·)’s mean:

√
α(t)(1−α(t−1))x(t)+

√
ᾱ(t−1)β (t)x(0)

1− ᾱ(t)
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Noise Predictor

Θ moves P(x(t−1)|x(t),Θ)’s mean toward
√

α(t)(1−α(t−1))x(t)+
√

ᾱ(t−1)β (t)x(0)

1−ᾱ(t)

=

√
α(t)(1−α(t−1))x(t)+

√
ᾱ(t−1)β (t) x(t)−

√
1− ᾱ(t)ε√
ᾱ(t)

1−ᾱ(t)

= 1√
α(t)

(
x(t)− 1−α(t)√

1−ᾱ(t)
ε

)
What’s its corresponding network?

By definition: let Θ parametrize a network outputting x(t−1) given x(t)

But the input x(t) also resides in the output target
DDPM: let Θ parametrize a noise predictor outputting ε given x(t)

Objective: argminΘ ‖ε− e(x(t), t;Θ)‖2

Of U-Net [37] architecture
Shared between all t
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ᾱ(t−1)β (t) x(t)−

√
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Training & Inference Algorithms

One-step encoding during training time
Muti-step inference (sampling), with each intermediate decoding step
t, t > 1, comes with extra noise σ (t)z

Similar to output token sampling in GPT
Improves performance empirically
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Results

Sharp and coherent
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Conditioning & Scaling
Stable Diffusion [36]: separately train 3 networks

Text/condition embedding: only needs text data
Diffusion: needs paired (text-image) data but works at latent (low
dimensional) space
Image encoder/decoder: only needs image data

Text embedding as extra input for denoising net
Other models like DALL-E [33] also use similar strategies
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Results

Even the smallest text-image training set (LAION [41, 40]) has
>400M samples!

MS COCO [22] “only” has 328K images
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Why Do AE and VAE Give Blurry Images?

Objective argmaxΘ logP(X|Θ) = argminΘ ∑n ‖x(n)−a(n,L)‖2 does not
panelize Gaussian pixel noises in a(i,L)

Root cause: assumption that x∼N

Fix 1: maximizing the likelihood P(X|Θ) without assuming x∼N
Flow-based methods, diffusion models

Fix 2: maximizing the chance that a(L) is a true image from
another NN point of view
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Network Design
Generative adversarial networks (GAN) [8] consist of:

Generator g: to generate data points from random codes
No need for “encoder” since the task is data synthesis

Discriminator f : to separate generated points from real ones
Weights for x and x̂ are tied
A binary classifier with Sigmoid output unit a(L) = ρ̂ for
P(y = true point |x)∼ Bernoulli(ρ)

Goal: to train a g that tricks f into believing g(c) is real
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Cost Function
Given N real training points and N generated points:

argminΘgmaxΘf logP(X |Θg,Θf )

= argminΘgmaxΘf ∑n log f (x(n))+∑m log(1− f (g(c(m))))

= argminΘgmaxΘf ∑
N
n=1 log ρ̂(n)+∑

N
m=1 log(1− ρ̂(m))

Recall that f maximizes the log likelihood
logP(X |Θ) ∝ ∑n logP(y(n) |x(n),Θ) = ∑n log

[
(ρ̂(n))y(n)(1− ρ̂(n))(1−y(n))

]

Inner max first, then outer min

ρ̂(n) depends on Θf only
ρ̂(m) depends on both Θf and Θg
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Training: Alternative SGD

argmin
Θg

max
Θf

∑
n

log f (x(n))+∑
m

log(1− f (g(c(m))))

Initialize Θg for g and Θf for f

At each SGD step/iteration:

1 Repeat K times (with fixed Θg):
1 Sample N real points {x(n)}n from X and N codes from c∼N (0,I)
2 Θf ←Θf +η∇Θf [∑n log f (x(n))+∑m log(1− f (g(c(m))))]

2 Execute once (with fixed Θf ):
1 Sample N codes from c∼N (0,I)
2 Θg←Θg−η∇Θg [∑m log(1− f (g(c(m))))]

Why limiting the steps (K) when updating Θf ?
f may overfit data and give very different values once g is updated
Limiting K so to prevent g from being updated for “wrong” target
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Results

Domain-specific architecture, e.g., DC-GAN [30]

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 78 / 132



Results

Domain-specific architecture, e.g., DC-GAN [30]

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 78 / 132



GANs Are Hard to Train!

Tips for Training Stable GANs
Keep Calm and train a GAN. Pitfalls and Tips...
10 Lessons I Learned Training GANs for one Year
GAN hacks on GitHub

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 79 / 132

https://towardsdatascience.com/10-lessons-i-learned-training-generative-adversarial-networks-gans-for-a-year-c9071159628
https://medium.com/@utk.is.here/keep-calm-and-train-a-gan-pitfalls-and-tips-on-training-generative-adversarial-networks-edd529764aa9
https://towardsdatascience.com/10-lessons-i-learned-training-generative-adversarial-networks-gans-for-a-year-c9071159628
https://github.com/soumith/ganhacks


Outline
1 Unsupervised Learning

Text Models
Image Models

2 ChatGPT

3 Autoencoders (AE)
Manifold Learning*

4 Variational Autoencoders (VAE)

5 Flow-based Models

6 Diffusion Models

7 Generative Adversarial Networks*
Basic Architecture
Challenges
More GANs
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Challenge: Non-Convergence

The GAN training may not converge

The goal of GAN is to find a saddle point

argmin
Θg

max
Θf

∑
n

log f (x(n))+∑
m

log(1− f (g(c(m))))

The updated Θf and Θg may cancel each other’s progress
Requires human monitoring and termination
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Mode Collapsing
Even worse: mode collapsing

g may oscillate from generating one kind of points to generating
another kind of points

When K is small, alternate SGD does not distinguish between
minΘgmaxΘf and maxΘf minΘg

argmin
Θg

max
Θf

∑
n

log f (x(n))+∑
m

log(1− f (g(c(m))))

maxΘf minΘg? g is encouraged to map every code to the “mode” that f
believes is most likely to be real
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Solutions
Minibatch discrimination [39]

In maxΘf minΘg case, g collapses because ∇Θf C are computed
independently for each point
Why not augment each x(n)/x̂(n) with batch features?

If g collapses, f can tell this from batch features and reject fake points
Now, g needs to generate dissimilar points to fool f

without with

Unrolled GANs [24]: to back-propagate through several max steps
when computing ∇ΘgC
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Challenge: Balance between g and f

argmin
Θg

max
Θf

∑
n

log f (x(n))+∑
m

log(1− f (g(c(m))))

Alternate SGD:
Θf ←Θf +η∇Θf [∑n log f (x(n))+∑m log(1− f (g(c(m))))] for K times
Θg←Θg−η∇Θg [∑m log(1− f (g(c(m))))]

Why limiting K when updating Θf ?
Too large K:

f may overfit data, making g updated for “wrong” target f
Vanishing gradients: ∇Θg [∑m log(1− f (g(c(m))))] too small to learn

Too small K:
g updated for “meaningless” f
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Solution: Wasserstein GAN [1]

Let f be a regressor without the sigmoid output layer
Cost function:

argmin
Θg

max
Θf

∑
n

f (x(n))−∑
m

f (g(c(m)))

Initialize Θg for g and Θf for f

At each SGD step/iteration:

1 Repeat K times (with fixed Θg):
1 Sample N real points {x(n)}n from X and N codes from c∼N (0,I)
2 Θf ←Θf +η clip(∇Θf [∑n f (x(n))−∑m f (g(c(m)))])

2 Execute once (with fixed Θf ):
1 Sample N codes from c∼N (0,I)
2 Θg←Θg−η∇Θg [−∑m f (g(c(m)))]

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 85 / 132



Solution: Wasserstein GAN [1]

Let f be a regressor without the sigmoid output layer
Cost function:

argmin
Θg

max
Θf

∑
n

f (x(n))−∑
m

f (g(c(m)))

Initialize Θg for g and Θf for f

At each SGD step/iteration:
1 Repeat K times (with fixed Θg):

1 Sample N real points {x(n)}n from X and N codes from c∼N (0,I)
2 Θf ←Θf +η clip(∇Θf [∑n f (x(n))−∑m f (g(c(m)))])

2 Execute once (with fixed Θf ):
1 Sample N codes from c∼N (0,I)
2 Θg←Θg−η∇Θg [−∑m f (g(c(m)))]

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 85 / 132



Solution: Wasserstein GAN [1]

Let f be a regressor without the sigmoid output layer
Cost function:

argmin
Θg

max
Θf

∑
n

f (x(n))−∑
m

f (g(c(m)))

Initialize Θg for g and Θf for f

At each SGD step/iteration:
1 Repeat K times (with fixed Θg):

1 Sample N real points {x(n)}n from X and N codes from c∼N (0,I)
2 Θf ←Θf +η clip(∇Θf [∑n f (x(n))−∑m f (g(c(m)))])

2 Execute once (with fixed Θf ):
1 Sample N codes from c∼N (0,I)
2 Θg←Θg−η∇Θg [−∑m f (g(c(m)))]

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 85 / 132



GANs from Information Theory Perspective
Review the Information Theory first!

Let Pdata / Pg be distribution of x / x̂ = g(c)
A way to find g: argminΘg DKL(Pdata‖Pg)

Why not argminΘg DKL(Pg‖Pdata)?

GAN: argminΘg maxΘf ∑n log f (x(n))+∑m log(1− f (g(c(m))))

Actually, the max term measures Jensen-Shannon divergence (a.k.a.
symmetric KL divergence):

DJS(Pdata‖Pg) =
1
2

DKL(Pdata‖Q)+
1
2

DKL(Pg‖Q), where Q =
1
2
(Pg +Pdata)
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Why Jensen-Shannon Divergence? I

Given a fixed g, we have

C∗ = maxΘf ∑n log f (x(n))+∑m log(1− f (g(c(m))))

= maxΘf
1
N ∑n log f (x(n))+ 1

N ∑m log(1− f (x̂(m)))

≈maxΘf Ex∼Pdata [log f (x)]+Ex∼Pg [log(1− f (x))]
= maxΘf

∫
x Pdata(x) log f (x)dx+

∫
x Pg(x) log(1− f (x))dx

= maxΘf

∫
x[Pdata(x) log f (x)+Pg(x) log(1− f (x))]dx

To have C∗, we can find f maximizing

Pdata(x) log f (x)+Pg(x) log(1− f (x))

for each x
Assuming that f has infinite capacity
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Why Jensen-Shannon Divergence? II

Given Pdata, Pg, and x, what is the f (x) that maximizes

Pdata(x) log f (x)+Pg(x) log(1− f (x))?

f ∗(x) = Pdata(x)
Pdata(x)+Pg(x) ∈ [0,1] [Proof]

That is,

C∗ = maxΘf

∫
x[Pdata(x) log f (x)+Pg(x) log(1− f (x))]dx

=
∫

x Pdata(x) log Pdata(x)
Pdata(x)+Pg(x)dx

+
∫

x Pg(x) log( Pg(x)
Pdata(x)+Pg(x))dx

=−2log2+
∫

x Pdata(x) log Pdata(x)
(Pdata(x)+Pg(x))/2 dx

+
∫

x Pg(x) log( Pg(x)
(Pdata(x)+Pg(x))/2)dx

=−2log2+2DJS(Pdata‖Pg)
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Balance between g and f , Revisited I
Cost function of GAN:

argminΘg maxΘf ∑n log f (x(n))+∑m log(1− f (g(c(m))))

= argminΘg−2log2+2DJS(Pdata‖Pg)

However, no mater how g changes, DJS(Pdata‖Pg) remains high during
the GAN training process

There’s something wrong with the design of the inner max problem!
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Balance between g and f , Revisited II

GAN: argminΘg DJS(Pdata‖Pg)

0≤DJS(Pdata‖Pg)≤ log2≈ 0.69

When does DJS(Pdata‖Pg) reach
its maximum value?
Let’s see the case when Pg and
Pdata are “disjointed”

Suppose Pg(x) 6= 0⇔ Pdata(x) = 0 and Pg(x) = 0⇔ Pdata(x) 6= 0, we
have

DJS(Pg‖Pdata) = 1
2 DKL(Pg‖Pg+Pdata

2 )+ 1
2 DKL(Pdata‖

Pg+Pdata
2 )

= 1
2
∫

x Pg(x) log 2Pg(x)
Pg(x)+Pdata(x)

dx

+1
2
∫

x Pdata(x) log 2Pdata(x)
Pg(x)+Pdata(x)

dx
= 1

2 log2+ 1
2 log2 = log2

Are Pg and Pdata really disjointed during the GAN training?
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Disjoining Pg and Pdata

In a high dimensional space, x and g(z) may resides in low dimensional
manifolds

Pg and Pdata may have values only on the manifolds

Pg and Pdata can be very different initially during GAN training
The intersections where Pg(x) 6= 0 and Pdata(x) 6= 0 can be neglected

Pg(x) 6= 0⇔ Pdata(x) = 0 and Pg(x) = 0⇔ Pdata(x) 6= 0 almost surely
Maximum JS divergence at all time
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Better Divergence Measure?
GAN: argminΘg DJS(Pdata‖Pg)

DJS(Pdata‖Pg) does not bring Pg and Pdata closer during GAN training

Wasserstein (or earth-mover) distance:

W(Pdata,Pg) = infQ∈Γ(Pdata,Pg) E(x,x̂)∼Q[‖x− x̂‖]
= infQ∈Γ(Pdata,Pg)

∫
(x,x̂) Q(x, x̂)‖x− x̂‖d(x, x̂)

Intuitively, the minimal “cost” to
change Pdata into Pg

W(Pdata,Pg) measures the
“divergence” between Pg and
Pdata even when they are
disjointed
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Wasserstein GAN I

W-GAN: argminΘg W(Pdata,Pg)

W(Pdata,Pg) = infQ∈Γ(Pdata,Pg) E(x,x̂)∼Q[‖x− x̂‖]

Unfortunately, W(Pdata,Pg) is hard to solve directly
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Wasserstein GAN II
Theorem
Consider f ’s that are Lipschitz continuous with constant 1, i.e.,

|f (x)− f (x̂)| ≤ 1 · ‖x− x̂‖,∀x, x̂,

we have a

W(Pdata,Pg) = supf Ex∼Pdata [f (x)]−Ex∼Pg [f (x)]

= supf
∫

x(Pdata(x)−Pg(x))f (x)dx.

ahttps://vincentherrmann.github.io/blog/wasserstein/

W-GAN [1]: argminΘg maxΘf Ex∼Pdata [f (x)]−Ex∼Pg [f (x)]
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Alternate SGD for W-GAN

argminΘg maxΘf Ex∼Pdata [f (x)]−Ex∼Pg [f (x)]
= argminΘg maxΘf ∑n f (x(n))−∑m f (g(c(m)))

f a regressor without the sigmoid output layer

Initialize Θg for g and Θf for f

At each SGD step/iteration:
1 Repeat K times (with fixed Θg):

1 Sample N real points {x(n)}n from X and N codes from c∼N (0,I)
2 Θf ←Θf +η clip(∇Θf [∑n f (x(n))−∑m f (g(c(m)))])

2 Execute once (with fixed Θf ):
1 Sample N codes from c∼N (0,I)
2 Θg←Θg−η∇Θg [−∑m f (g(c(m)))]
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Why Gradient Clipping?

Update rule for Θf :

Θf ←Θf +η clip(∇Θf [∑
n

f (x(n))−∑
m

f (g(c(m)))])

Gradient clipping: ∀w ∈Θf , clip(w) = max(min(w,τ),−τ) for some
threshold τ > 0

Why?

In W-GAN, we have :

argminΘg W(Pdata,Pg)

= argminΘg maxΘf ∑n f (x(n))−∑m f (g(c(m)))

only if f is 1-Lipschitz continuous
Heuristics for making f 1-Lipchitz
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Advantages of W-GAN

“Corrects” the inner max problem
Wasserstein distance guides g even when Pg and Pdata “disjointed”
Training less sensitive to K (balance between g and f )

The max value can be used as a “stop” indicator
f a regressor, avoids vanishing gradients for g
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Improved W-GAN I
In practice, W-GAN training converges slowly and is unstable to τ

W-GAN use a small τ to make f 1-Lipschitz continuous
However, too small a τ severely limits the capacity of f such it cannot
actually maximize

max
Θf

Ex∼Pdata [f (x)]−Ex∼Pg [f (x)]

g is not updated for minimizing W(Pdata,Pg)

Distribution of weight values of f (τ = 0.01):

Exploding and vanishing gradients
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Improved W-GAN II
If f is 1-Lipschitz, then ‖∇f (x)‖ ≤ 1 for all x
Why not just panelize ‖∇f (x)‖> 1 for all x?
Cost function:

argminΘg maxΘf Ex∼Pdata [f (x)]−Ex∼Pg [f (x)]
−λEx∼Ppenalty [max(0,‖∇f (x)‖−1)]

Ppenalty?

W-GAN-GP [9]:

argmin
Θg

max
Θf

∑
n

f (x(n))−∑
m

f (g(c(m)))−λ ∑
p
(‖∇f (x(p))‖−1)2

The larger f (x(p)) the better (subject to ‖∇f (x(p))‖ ≤ 1)
Faster convergence
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Results
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Challenge: Global Coherence

Large images generated by GANs usually lack global coherency

Counting Perspective Shape

A CNN, when used as f , detects existence of patterns more than
their relative positions

f loses track of the position of a pattern after several pooling layers
Relative position of patterns in X may change due to different view
angels

Solutions? A better f , such as the CapsuleNet [38]?
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Progressive Growing of GANs [14]

Incrementally adds new layers in sequential GAN trainings
Convolution + upsampling for g each time
Convolution + downpooling for f each time

Real images are downscaled to match the current resolution of g

Goal: to let new layers add details without ruining the context
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Transition when Adding a New Layer

Gradually increases α

New convolution layer in g/f learns to generate/detect details first
Then learns the “context”
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Results

Minibatch discrimination [39] + W-GAN-GP [9] + progressive growing
[14] + other tricks
2∼ 6 times faster
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Outline
1 Unsupervised Learning

Text Models
Image Models

2 ChatGPT

3 Autoencoders (AE)
Manifold Learning*

4 Variational Autoencoders (VAE)

5 Flow-based Models

6 Diffusion Models

7 Generative Adversarial Networks*
Basic Architecture
Challenges
More GANs
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Code Space Arithmetics

DC-GAN [30] can learn to use codes in meaningful ways:

Finding codes for images with constraints [50, 3] Demo 1 Demo 2

argmin
c
‖mask(g(c))− constraint‖F
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Conditional GAN I
Text to image synthesis [34]: X= {(x(n),φ (n))}n

“This bird is completely red with black wings and pointy beak.”

How?

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 107 / 132



Conditional GAN I
Text to image synthesis [34]: X= {(x(n),φ (n))}n

“This bird is completely red with black wings and pointy beak.”

How?

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 107 / 132



Conditional GAN II
Pitfall: g and f can choose to ignore the condition φ altogether
Solution?

Conditioned labeling

(x(n),φ (n))⇒ true
(x(n),φ ′)⇒ false,∀φ ′ 6= φ

(n)

(x̂(m),φ (m))⇒ false
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Super Resolution [18]

g : low res img→ high res img
Training: c’s are downscaled images

No “creativity,” f acts as a better lose metric
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Image-to-Image Translation [13] I

Given an image xsrc in source domain, generate image(s) xtarget in
target domain

xsrc and xtarget are semantically aligned
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Image-to-Image Translation [13] II

Based on conditional GAN:
c = xsrc; g(c) = xtarget
Conditioned labels
Uses dropout layers to create diversity (if needed)

Requires paired examples X= {(x(n)src,x
(n)
target)}n
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Unpaired Image-to-Image Translation I

What if the images in different domains are unpaired?
X= {x(n)src}n∪{x(n)target}n
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Unpaired Image-to-Image Translation II
Cycle GAN [51]: to train two generators gsrc2target and gtarget2src
simultaneously in two GANs

Add a loss term ∑n ‖x
(n)
src−gtarget2src(gsrc2target(x

(n)
src))‖F and

∑n ‖x
(n)
target−gsrc2target(gtarget2src(x

(n)
target))‖F for gsrc2target and gtarget2src
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How Does Cycle GAN Work?

Ideal: gsrc2target and gtarget2src learns to translate images
Reality: gsrc2target and gtarget2src learns to hide inoformation [6]

Unsupervised DNN models, including GANs, may not work as
one may expect quality?
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