
Unsupervised Learning & Generative AI

Shan-Hung Wu
shwu@cs.nthu.edu.tw

Department of Computer Science,
National Tsing Hua University, Taiwan

Machine Learning

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 1 / 132



Outline
1 Unsupervised Learning

Text Models
Image Models

2 ChatGPT

3 Autoencoders (AE)
Manifold Learning*

4 Variational Autoencoders (VAE)

5 Flow-based Models

6 Diffusion Models

7 Generative Adversarial Networks*
Basic Architecture
Challenges
More GANs

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 2 / 132



Outline
1 Unsupervised Learning

Text Models
Image Models

2 ChatGPT

3 Autoencoders (AE)
Manifold Learning*

4 Variational Autoencoders (VAE)

5 Flow-based Models

6 Diffusion Models

7 Generative Adversarial Networks*
Basic Architecture
Challenges
More GANs

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 3 / 132



Unsupervised Learning

Dataset: X= {x(i)}i, where x(i)’s are i.i.d. samples of x
No supervision y(i) (labels)

What can we learn without labels?

The structures in X
Inter-sample structures
Intra-sample structures

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 4 / 132



Unsupervised Learning

Dataset: X= {x(i)}i, where x(i)’s are i.i.d. samples of x
No supervision y(i) (labels)

What can we learn without labels? The structures in X
Inter-sample structures
Intra-sample structures

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 4 / 132



Clustering I

Goal: to divide x(i)’s into K groups/clusters
Based on some similarity/distance measure between x(i) and x(j)

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 5 / 132



Clustering II
K-means algorithm (K fixed): iteratively move clusterheads until
convergence

Hierarchical clustering (variable K): iteratively merge two
points/groups,then cut

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 6 / 132



Clustering II
K-means algorithm (K fixed): iteratively move clusterheads until
convergence

Hierarchical clustering (variable K): iteratively merge two
points/groups,then cut

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 6 / 132



Factorization for Tabular X
Let X be a rating matrix where Xi,: = x(i)

Goal: to approximate X with a dense matrix X̂ = WH
To make recommendations based on X̂i,: for user i, known as
collaborative filtering

How?

Non-negative matrix factorization (NMF) [19, 20]:

arg min
W≥O,H≥O

‖X−WH‖F

So, positive elements in W and H can be seen as factor degrees

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 7 / 132



Factorization for Tabular X
Let X be a rating matrix where Xi,: = x(i)

Goal: to approximate X with a dense matrix X̂ = WH
To make recommendations based on X̂i,: for user i, known as
collaborative filtering

How? Non-negative matrix factorization (NMF) [19, 20]:

arg min
W≥O,H≥O

‖X−WH‖F

So, positive elements in W and H can be seen as factor degrees
Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 7 / 132



Dimension Reduction

Goal: to learn a low dimensional representation z of x
E.g., PCA

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 8 / 132



Self-Supervised Learning

Goal: to learn a model that is able to
“fill in the blanks”

Links unsupervised tasks with
supervised models

Much more training data for models
Representation learning with deep
networks

x(i) y(i)

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 9 / 132



Self-Supervised Learning

Goal: to learn a model that is able to
“fill in the blanks”
Links unsupervised tasks with
supervised models

Much more training data for models
Representation learning with deep
networks x(i) y(i)

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 9 / 132



Example I: Word2Vec

Goal: to learn a model for blank filling

E.g., word2vec [26, 25]: “... the cat sat on...”

CBOW Skip Gram

Latent representation h encodes the semantics of a word
No need for synonym dictionary; big data tell that already

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 10 / 132



Example I: Word2Vec

Goal: to learn a model for blank filling
E.g., word2vec [26, 25]: “... the cat sat on...”

CBOW Skip Gram

Latent representation h encodes the semantics of a word
No need for synonym dictionary; big data tell that already

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 10 / 132



Example I: Word2Vec

Goal: to learn a model for blank filling
E.g., word2vec [26, 25]: “... the cat sat on...”

CBOW Skip Gram

Latent representation h encodes the semantics of a word
No need for synonym dictionary; big data tell that already

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 10 / 132



Example II: Doc2Vec
How to encode a document?

Bag of words (TF-IDF), average word2vec, etc.
Do not capture the semantics due to sentence/paragraph/doc
structure

“John likes Mary” 6= “Mary likes John”

Why not apply self-supervised learning to docs?
Doc2vec [17]: to capture the context not explained by words
Transductive rather than inductive; does not work with unseen docs

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 11 / 132



Example II: Doc2Vec
How to encode a document?
Bag of words (TF-IDF), average word2vec, etc.

Do not capture the semantics due to sentence/paragraph/doc
structure

“John likes Mary” 6= “Mary likes John”

Why not apply self-supervised learning to docs?
Doc2vec [17]: to capture the context not explained by words
Transductive rather than inductive; does not work with unseen docs

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 11 / 132



Example II: Doc2Vec
How to encode a document?
Bag of words (TF-IDF), average word2vec, etc.

Do not capture the semantics due to sentence/paragraph/doc
structure

“John likes Mary” 6= “Mary likes John”

Why not apply self-supervised learning to docs?
Doc2vec [17]: to capture the context not explained by words
Transductive rather than inductive; does not work with unseen docs

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 11 / 132



Generative Models
Goal: to generate new samples of x

Can be conditioned on instructions (input)
Largely based on self-supervised learning

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 12 / 132



Outline
1 Unsupervised Learning

Text Models
Image Models

2 ChatGPT

3 Autoencoders (AE)
Manifold Learning*

4 Variational Autoencoders (VAE)

5 Flow-based Models

6 Diffusion Models

7 Generative Adversarial Networks*
Basic Architecture
Challenges
More GANs

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 13 / 132



Generating Text

With large (self-supervised) training data, transformers [46] have
shown to perform better than RNNs and CNNs

Mainly due to the O(1) point distance
Two common text models based on transformer:

BERT [7]: non-autoregressive
GPT [31]: autoregressive

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 14 / 132



BERT [7]

Massively trained encoder of the original transformer
Non-autoregressive

Pre-training tasks:
Masked language model (“Cloze” task)

“A quick brown [MASK] jumps over the lazy dog” → “fox” 11%, “ant”
5%, ...

Next sentence prediction
“[MASK] go to store [SEP] to buy a [MASK] of milk”→ True 93%,
False 7%

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 15 / 132



One Pre-training, Multiple Fine-tuning Tasks

Special input to identify downstream task: [CLS] token

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 16 / 132



GPT [31]

Massively trained decoder of the original transformer
Autoregressive

Multitask pre-training by maximizing Pr(output|input, task):
Translation: Pr(french text|en text, translation)
Question answering: Pr(answer|question, qa)
Reading comprehension: Pr(answer|document, question, reading)

Usage for downstream task: fine-tuning or prompting

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 17 / 132



Autoregressive or Not?

It’s easier for an autoregressive model to generate coherent text
In this lecture, we focus on GPT and its variants

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 18 / 132



Outline
1 Unsupervised Learning

Text Models
Image Models

2 ChatGPT

3 Autoencoders (AE)
Manifold Learning*

4 Variational Autoencoders (VAE)

5 Flow-based Models

6 Diffusion Models

7 Generative Adversarial Networks*
Basic Architecture
Challenges
More GANs

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 19 / 132



Autoregressive or Not?
Autoregressive models can still give good (if not better) performance

E.g., PixelRNN [45], PixelCNN [44], or MaskGIT [5]
But unlike in text domain, generating images pixel-by-pixel is very
slow
Speed-up?

Scheduled parallel-pixel generation (e.g., MaskGIT)
Stepwise generation of whole images (e.g., flow-based and diffusion
models)

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 20 / 132



Whole-Image Generation I
Goal: given X, to learn a generator function g such that x̂ = g(c;Θg)
looks like a real image in X

c is a code or condition
Θg represents parameters of g

Objective from Information Theory perspective:

argmin
g

D(Pdata‖Pg)

Pdata is the distribution of real data in the ground truth
Pg is the distribution of generated data
D is a divergence measure, e.g., DKL

Why not DKL(Pg‖Pdata)?

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 21 / 132



Whole-Image Generation I
Goal: given X, to learn a generator function g such that x̂ = g(c;Θg)
looks like a real image in X

c is a code or condition
Θg represents parameters of g

Objective from Information Theory perspective:

argmin
g

D(Pdata‖Pg)

Pdata is the distribution of real data in the ground truth
Pg is the distribution of generated data
D is a divergence measure, e.g., DKL

Why not DKL(Pg‖Pdata)?

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 21 / 132



Whole-Image Generation II

Minimizing DKL(Pdata‖Pg) amounts to maximizing P(X|Θg), the log
likelihood of Θg:

g∗ = argming DKL(Pdata‖Pg)
= argmaxg Ex∼Pdata [logPg(x)]+H(x∼ Pdata)
= argmaxg Ex∼Pdata [logPg(x)]
≈ argmaxg ∑x(i)∈X logPg(x(i))
= argmaxg log∏x(i)∈X Pg(x(i))

Θ∗g = argmaxΘg log∏x(i)∈X P(x(i)|Θg)

= argmaxΘg logP(X|Θg)

Other divergence measures can lead to similar results

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 22 / 132



Common Whole-Image Generation Methods
Autoencoder (single-step: x̂ = g(c))

Pros: easy
Cons: but no creativity, blurry images

Variational Autoencoder (single-step: x̂ = g(c))
Pros: creative
Cons: only maximizes a lower bound of P(X|Θg); blurry images

Flow-based methods (multi-step: x̂ = g(T)(· · ·g(2)(g(1)(c))) )
Pros: maximizes P(X|Θg) directly
Cons: limited expressiveness of g for invertibility; slow training and
inference

GANs (single-step: x̂ = g(c))
Pros: good image quality (sharp and coherent)
Cons: difficult to train (convergence issue, mode collapse, vanishing
gradients, etc.)

Diffusion models (multi-step: x̂ = g(T)(· · ·g(2)(g(1)(c))) )
Pros: good image quality; efficient & stable to train, can be made
conditional easily
Cons: slow inference

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 23 / 132



Outline
1 Unsupervised Learning

Text Models
Image Models

2 ChatGPT

3 Autoencoders (AE)
Manifold Learning*

4 Variational Autoencoders (VAE)

5 Flow-based Models

6 Diffusion Models

7 Generative Adversarial Networks*
Basic Architecture
Challenges
More GANs

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 24 / 132



Evolutions

2018 GPTv1 [31]
Self-supervised pre-training

2019 GPTv2 [32]
Multitask pre-training

2020 GPTv3 [4]
Few-shot & in-context learning

2022 GPTv3.5 [29]
Alignment using (supervised) instruction tuning + reinforcement
learning from human feedback (RLHF)

2023 GPT4: mixture of experts

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 25 / 132



GPTv1 [31]

Aims at 2-step training process:
1 Self-supervised pre-training on unlabeled data

To predict next word in a sentence (language model)
2 Discriminative fine-tuning on labeled data in downstream tasks

Here, fine-tuning could also mean training a new model based on
extracted features

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 26 / 132



Example Fine-tuning Tasks

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 27 / 132



Does Self-supervised Pre-training Help?

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 28 / 132



GPTv2 [32]

Many NLP tasks can be formulated as the problem of maximizing
Pr(output|input, task)

Translation: Pr(french text|en text, translation)
Question answering: Pr(answer|question, qa)
Reading comprehension: Pr(answer|document, question, reading)

GPTv3 [4]: few-shot & in-context learning
GPTv3.5 [29]: alignment using (supervised) instruction tuning &
reinforcement learning from human feedback (RLHF)
GPT4: mixture of experts

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 29 / 132



GPTv3 [4]
The model learns from few shots (examples), even in context

Enables prompting techniques for downstream tasks
E.g.,few shots, chain of thought (CoT), or simply “Let’s work this out
step-by-step to ensure the answer is correct”

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 30 / 132



Zero/Few Shot Prompting vs. Fine-tuning

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 31 / 132



Performance vs. Model Size

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 32 / 132



GPTv3.5 [29]
From GPT to “ChatGPT” through alignment

Supervised (multi-task) instruction tuning
Reinforcement learning from human feedback (RLHF)

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 33 / 132



Sizes of Large Language Models (LLMs)

Training costs [42]:
110M params: $2.5k–$50k
340M params: $10k–$200k
1.5B param: $80k–$1.6m

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 34 / 132



Size Does Matter!

Emerging abilities of LLMs [48]

A balance: 70B parameters + 1.4T training tokens [11]

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 35 / 132



GPT Variants

Low-rank adaptation (LoRA) [12]: to efficiently fine-tune LLMs
WebGPT [28]: GPT that can search the web
Retrieval-augmented generation (RAG) [21]: GPT to query external
knowledge (vector) base
GPTs that can reflect on their answers [2, 27]

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 36 / 132



Outline
1 Unsupervised Learning

Text Models
Image Models

2 ChatGPT

3 Autoencoders (AE)
Manifold Learning*

4 Variational Autoencoders (VAE)

5 Flow-based Models

6 Diffusion Models

7 Generative Adversarial Networks*
Basic Architecture
Challenges
More GANs

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 37 / 132



Autoencoders (AE)
Encoder: to learn a low dimensional representation c (called code) of
input x
Decoder: to reconstruct x from c
Objective: argmaxΘ logP(X |Θ) = argmaxΘ ∑i logP(x(i) |Θ)
Assuming that x∼N (µ, ·), we have linear output units
a(L) = z(L) = µ̂

logP(x(i) |Θ) ∝−‖x(i)−a(i,L)‖2

argmaxΘ ∑i logP(x(i) |Θ) = argminΘ ∑i ‖x(i)−a(i,L)‖2 (minimizing
reconstruct error)

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 38 / 132



Convolutional Autoencoders
Convolution + deconvolution layers:

Decoder is a simplified DeconvNet [49] trained from scratch:
Uppooling → upsampling (no need to remember max positions)
Deconvolution → convolution

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 39 / 132



Convolutional Autoencoders
Convolution + deconvolution layers:

Decoder is a simplified DeconvNet [49] trained from scratch:

Uppooling → upsampling (no need to remember max positions)
Deconvolution → convolution

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 39 / 132



Convolutional Autoencoders
Convolution + deconvolution layers:

Decoder is a simplified DeconvNet [49] trained from scratch:
Uppooling → upsampling (no need to remember max positions)

Deconvolution → convolution

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 39 / 132



Convolutional Autoencoders
Convolution + deconvolution layers:

Decoder is a simplified DeconvNet [49] trained from scratch:
Uppooling → upsampling (no need to remember max positions)
Deconvolution → convolution

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 39 / 132



Codes & Reconstructed x

A 32-bit code can roughly represents a 32×32 (1024 dimensional)
MNIST image

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 40 / 132



Outline
1 Unsupervised Learning

Text Models
Image Models

2 ChatGPT

3 Autoencoders (AE)
Manifold Learning*

4 Variational Autoencoders (VAE)

5 Flow-based Models

6 Diffusion Models

7 Generative Adversarial Networks*
Basic Architecture
Challenges
More GANs

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 41 / 132



Manifolds I

In many applications, data concentrate around one or more
low-dimensional manifolds

A manifold is a topological space that are linear locally

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 42 / 132



Manifolds I

In many applications, data concentrate around one or more
low-dimensional manifolds
A manifold is a topological space that are linear locally

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 42 / 132



Manifolds II

For each point x on a manifold, we have its tangent space spanned
by tangent vectors

Local directions specify how one can change x infinitesimally while
staying on the manifold

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 43 / 132



Learning Manifolds I
How to make c produced by autoencoders denote a coordinate of a
dimensional manifold?

Contractive autoencoder [35]: regularizes the code c such that it is
invariant to local changes of x:

Ω(c) = ∑
i

∥∥∥∥∥∂c(i)

∂x(i)

∥∥∥∥∥
2

F

∂c(i)/∂x(i) is a Jacobian matrix
Hence, c represents only the variations needed to reconstruct x

I.e., c changes most along tangent vectors

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 44 / 132



Learning Manifolds I
How to make c produced by autoencoders denote a coordinate of a
dimensional manifold?
Contractive autoencoder [35]: regularizes the code c such that it is
invariant to local changes of x:

Ω(c) = ∑
i

∥∥∥∥∥∂c(i)

∂x(i)

∥∥∥∥∥
2

F

∂c(i)/∂x(i) is a Jacobian matrix

Hence, c represents only the variations needed to reconstruct x
I.e., c changes most along tangent vectors

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 44 / 132



Learning Manifolds I
How to make c produced by autoencoders denote a coordinate of a
dimensional manifold?
Contractive autoencoder [35]: regularizes the code c such that it is
invariant to local changes of x:

Ω(c) = ∑
i

∥∥∥∥∥∂c(i)

∂x(i)

∥∥∥∥∥
2

F

∂c(i)/∂x(i) is a Jacobian matrix
Hence, c represents only the variations needed to reconstruct x

I.e., c changes most along tangent vectors

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 44 / 132



Learning Manifolds II

In practice, it is easier to train a denoising autoencoder [47]:

Encoder: to encode x with random noises
Decoder: to reconstruct x without noises

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 45 / 132



Learning Manifolds II

In practice, it is easier to train a denoising autoencoder [47]:
Encoder: to encode x with random noises
Decoder: to reconstruct x without noises

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 45 / 132



Getting Tangent Vectors I

The code c represents a coordinate on a low dimensional manifold
E.g., the blue line

How to get the tangent vectors of a given c?

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 46 / 132



Getting Tangent Vectors II

Recall: directions in the input space that changes c most should be
tangent vectors

Given a point x, let c be the
code of x and J(x) = ∂c

∂x be the
Jacobian matrix of c at x

J(x) summarizes how c
changes in terms of x

1 Decompose J(x) using SVD
such that J(x) = UDV>

2 Let tangent vectors be rows of
V corresponding to the
largest singular values in D

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 47 / 132



Getting Tangent Vectors II

Recall: directions in the input space that changes c most should be
tangent vectors

Given a point x, let c be the
code of x and J(x) = ∂c

∂x be the
Jacobian matrix of c at x

J(x) summarizes how c
changes in terms of x

1 Decompose J(x) using SVD
such that J(x) = UDV>

2 Let tangent vectors be rows of
V corresponding to the
largest singular values in D

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 47 / 132



Getting Tangent Vectors II

Recall: directions in the input space that changes c most should be
tangent vectors

Given a point x, let c be the
code of x and J(x) = ∂c

∂x be the
Jacobian matrix of c at x

J(x) summarizes how c
changes in terms of x

1 Decompose J(x) using SVD
such that J(x) = UDV>

2 Let tangent vectors be rows of
V corresponding to the
largest singular values in D

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 47 / 132



Getting Tangent Vectors II

Recall: directions in the input space that changes c most should be
tangent vectors

Given a point x, let c be the
code of x and J(x) = ∂c

∂x be the
Jacobian matrix of c at x

J(x) summarizes how c
changes in terms of x

1 Decompose J(x) using SVD
such that J(x) = UDV>

2 Let tangent vectors be rows of
V corresponding to the
largest singular values in D

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 47 / 132



Getting Tangent Vectors III

In practice, J(x) usually has few large singular values
Tangent vectors found by contractive/denoising autoencoders:

Can be used by Tangent Prop [43]:
Let {v(i,j)}j be tangent vectors of each example x(i)

Trains an NN classifier f with cost penalty: Ω[f ] = ∑i,j ∇xf (x(i))>v(i,j)

Points in the same manifold share the same label

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 48 / 132



Getting Tangent Vectors III

In practice, J(x) usually has few large singular values
Tangent vectors found by contractive/denoising autoencoders:

Can be used by Tangent Prop [43]:
Let {v(i,j)}j be tangent vectors of each example x(i)

Trains an NN classifier f with cost penalty: Ω[f ] = ∑i,j ∇xf (x(i))>v(i,j)

Points in the same manifold share the same label

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 48 / 132



Outline
1 Unsupervised Learning

Text Models
Image Models

2 ChatGPT

3 Autoencoders (AE)
Manifold Learning*

4 Variational Autoencoders (VAE)

5 Flow-based Models

6 Diffusion Models

7 Generative Adversarial Networks*
Basic Architecture
Challenges
More GANs

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 49 / 132



Problems of Autoencoder I

Ideally, the decoder of an autoencoder can be used to generate images
even with synthetic codes

c

In reality, the learnt c in code space has many “holes” that fail to map
to images

More complex image patterns
Training data are never enough

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 50 / 132



Problems of Autoencoder I

Ideally, the decoder of an autoencoder can be used to generate images
even with synthetic codes

c
In reality, the learnt c in code space has many “holes” that fail to map
to images

More complex image patterns
Training data are never enough

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 50 / 132



Problems of Autoencoder II

Blurry images: the objective

argmax
Θ

∑
i

logP(x(i) |Θ) = argmin
Θ

∑
i
‖x(i)−a(i,L)‖2

does not panelize Gaussian pixel noises in a(i,L)

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 51 / 132



Variational Autoencoders (VAE) [15]

Encoder f (· ;Θf ): maps each sample of x (i.e., x(i) ∈ X) to an
axis-aligned normal distribution N (µ,σ)

Each code dimension is independent with each other
f (x) = (µ,σ)

Decoder g(· ;Θg): same as that of AE
How to minimize the objective argmaxΘf ,Θg logP(X |Θf ,Θg))?

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 52 / 132



VAE Objective
Objective:
argmaxΘf ,Θg logP(X |Θf ,Θg) = argmaxΘf ,Θg ∑i logP(x(i) |Θf ,Θg)

Considering logP(x) for any sample x, we have

logP(x) =
∫

c Q(c|x) logP(x)dc // Q can be any distribution
=
∫

c Q(c|x) log
(

P(c,x)
P(c|x)

)
dc =

∫
c Q(c|x) log

(
P(c,x)
Q(c|x)

Q(c|x)
P(c|x)

)
dc

=
∫

c Q(c|x) log
(

P(c,x)
Q(c|x)

)
dc+

∫
c Q(c|x) log

(
Q(c|x)
P(c|x)

)
dc

=
∫

c Q(c|x) log
(

P(c,x)
Q(c|x)

)
dc+DKL (Q(c|x)‖P(c|x))

≥
∫

c Q(c|x) log
(

P(c,x)
Q(c|x)

)
dc // lower bound

=
∫

c Q(c|x) log
(

P(x|c)P(c)
Q(c|x)

)
dc

VAE lets Q(· |x) = N (f (x;Θf )) and P(· |c) = N (g(c;Θg))
So Q(c|x) = Q(c|x,Θf ) and P(x|c) = P(x|c,Θg)

New objective: finds Θf and Θg that maximize the lower bound
Not necessarily maximize logP(x|Θf ,Θg)

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 53 / 132



Maximizing Lower Bound

∫
c Q(c|x) log

(
P(x|c)P(c)

Q(c|x)

)
dc

=
∫

c Q(c|x,Θf ) log
(

P(x|c,Θg)P(c)
Q(c|x,Θf )

)
dc

=
∫

c Q(c|x,Θf ) log
(

P(c)
Q(c|x,Θf )

)
dc+

∫
c Q(c|x,Θf ) logP(x|c,Θg)dc

=−DKL (Q(c|x,Θf )‖P(c))+E(c|x,Θf )∼Q [logP(x|c,Θg)]

For P(c) = N (0,I):
To minimize the first term, the encoder f (x;Θf ) = (µ,σ) has a loss
term [15]

exp(σ)− (1+σ)+‖µ‖2

To maximize the second term, the decoder
1 Samples c from N (µ,σ) to get g(c;Θg), the mean of output N
2 Minimizes a loss term ‖x−a(L)‖2 as in AE

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 54 / 132



Outline
1 Unsupervised Learning

Text Models
Image Models

2 ChatGPT

3 Autoencoders (AE)
Manifold Learning*

4 Variational Autoencoders (VAE)

5 Flow-based Models

6 Diffusion Models

7 Generative Adversarial Networks*
Basic Architecture
Challenges
More GANs

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 55 / 132



Problems of VAE

Only maximize a lower bound of the likelihood P(X|Θf ,Θg)

Θf and Θg are encoder and decoder weights, respectively
Still blurry images

The decoder’s loss is the same with that of AE

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 56 / 132



Flow-based Models
Idea: let the decoder g(· ;Θg) be a deterministic invertible function

Given c∼N (0,I), we have x = g(c;Θg) of complex distribution
Conversely, given x, we have c = g−1(x;Θg)

The likelihood can be maximize directly:

argmaxg logPg(X)
= argmaxg ∑i logPx(g(c(i)))
= argmaxg ∑i log

[
Pc(g−1(x(i)))|det

(
J(g−1)(x(i))

)
|
]

= argmaxg ∑i logPc(g−1(x(i)))+ log |det
(
J(g−1)(x(i))

)
|

First term: finds g (Θg) that maps all x(i) to 0

Second term: prevents g (Θg) from mapping all x(i) to 0
log |det(O)|=− inf

But how to ensure the followings during training?
g is invertible
det
(
J(g−1)( ·)

)
can be easily computed

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 57 / 132



Flow-based Models
Idea: let the decoder g(· ;Θg) be a deterministic invertible function

Given c∼N (0,I), we have x = g(c;Θg) of complex distribution
Conversely, given x, we have c = g−1(x;Θg)

The likelihood can be maximize directly:

argmaxg logPg(X)
= argmaxg ∑i logPx(g(c(i)))
= argmaxg ∑i log

[
Pc(g−1(x(i)))|det

(
J(g−1)(x(i))

)
|
]

= argmaxg ∑i logPc(g−1(x(i)))+ log |det
(
J(g−1)(x(i))

)
|

First term: finds g (Θg) that maps all x(i) to 0

Second term: prevents g (Θg) from mapping all x(i) to 0
log |det(O)|=− inf

But how to ensure the followings during training?
g is invertible
det
(
J(g−1)( ·)

)
can be easily computed

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 57 / 132



Ensuring Invertibility

Glow [16]: make g−1 an 1×1 convolution layer

xi,j,: =

 xi,j,1
xi,j,2
xi,j,3

, g−1 = W3×3,

g−1(xi,j,:) = W3×3

 xi,j,1
xi,j,2
xi,j,3

=

 ci,j,1
ci,j,2
ci,j,3


At training time, initialize W3×3 as an invertible matrix

g−1 = W3×3 is likely to be invertible after SGD updates
Determinant is easy to compute: det

(
J(g−1)(x(i))

)
= det(W3×3)

W×H

At inference time, use g = W−1
3×3 to generate images

Problem: g has limited expressiveness

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 58 / 132



Ensuring Invertibility

Glow [16]: make g−1 an 1×1 convolution layer

xi,j,: =

 xi,j,1
xi,j,2
xi,j,3

, g−1 = W3×3,

g−1(xi,j,:) = W3×3

 xi,j,1
xi,j,2
xi,j,3

=

 ci,j,1
ci,j,2
ci,j,3


At training time, initialize W3×3 as an invertible matrix

g−1 = W3×3 is likely to be invertible after SGD updates
Determinant is easy to compute: det

(
J(g−1)(x(i))

)
= det(W3×3)

W×H

At inference time, use g = W−1
3×3 to generate images

Problem: g has limited expressiveness

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 58 / 132



Step-wise Generation

Cascade multiple invertible g to have a more complex one:

x = g(T)(· · ·g(2)(g(1)(c)))

Result: sharp images

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 59 / 132



Step-wise Generation

Cascade multiple invertible g to have a more complex one:

x = g(T)(· · ·g(2)(g(1)(c)))

Result: sharp images

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 59 / 132



Outline
1 Unsupervised Learning

Text Models
Image Models

2 ChatGPT

3 Autoencoders (AE)
Manifold Learning*

4 Variational Autoencoders (VAE)

5 Flow-based Models

6 Diffusion Models

7 Generative Adversarial Networks*
Basic Architecture
Challenges
More GANs

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 60 / 132



Problems of Flow-based Models

Limited model expressiveness
Slow training and inference

#steps can be large

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 61 / 132



Denoising Diffusion Probabilistic Models (DDPM)
[10]

Borrow some good ideas from previous works
Probabilistic formulation of VAE that models encoder in the objective
Step-wise encoding/decoding in generative flows

But, unlike flows, the encoding steps
Are predefined; no parameter to learn
Can be simplified to one encoding step

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 62 / 132



Encoding

Predefined encoding functions f (t)( · ;β (t)), t = 1, · · · ,T:
β (t), ∀t, are hyperparameters; no learning needed

Let each sample x = x(0)

x(1) = f (1)(x(0);β (1)) =
√

1−β (1)x(0)+
√

β (1)ε , ε ∼N (0,I)
So, (x(1)|x(0) = x(0))∼N (

√
1−β (1)x(0),β (1)I)

x(2) = f (2)(x(1);β (t)) =
√

1−β (2)x(1)+
√

β (2)ε

=
√

1−β (2)
√

1−β (1)x(0)+
√

1− (1−β (2))(1−β (1))ε

=
√

α(2)α(1)x(0)+
√

1−α(2)α(1)ε√
1−β (1)

√
β (2)ε +

√
β (2)ε ∼N (0,((1−β (1))β (2)+β (2))I)

Let α(t) = 1−β (t) (derived hyperparameter)
Only one ε is added

x(t) =
√

ᾱ(t)x(t−1)+
√

1− ᾱ(t)ε

Let ᾱ(t) = α(t)α(t−1) · · ·α(1) (derived hyperparameter)

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 63 / 132



Encoding

Predefined encoding functions f (t)( · ;β (t)), t = 1, · · · ,T:
β (t), ∀t, are hyperparameters; no learning needed

Let each sample x = x(0)

x(1) = f (1)(x(0);β (1)) =
√

1−β (1)x(0)+
√

β (1)ε , ε ∼N (0,I)
So, (x(1)|x(0) = x(0))∼N (

√
1−β (1)x(0),β (1)I)

x(2) = f (2)(x(1);β (t)) =
√

1−β (2)x(1)+
√

β (2)ε

=
√

1−β (2)
√

1−β (1)x(0)+
√

1− (1−β (2))(1−β (1))ε

=
√

α(2)α(1)x(0)+
√

1−α(2)α(1)ε√
1−β (1)

√
β (2)ε +

√
β (2)ε ∼N (0,((1−β (1))β (2)+β (2))I)

Let α(t) = 1−β (t) (derived hyperparameter)
Only one ε is added

x(t) =
√

ᾱ(t)x(t−1)+
√

1− ᾱ(t)ε

Let ᾱ(t) = α(t)α(t−1) · · ·α(1) (derived hyperparameter)

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 63 / 132



Encoding

Predefined encoding functions f (t)( · ;β (t)), t = 1, · · · ,T:
β (t), ∀t, are hyperparameters; no learning needed

Let each sample x = x(0)

x(1) = f (1)(x(0);β (1)) =
√

1−β (1)x(0)+
√

β (1)ε , ε ∼N (0,I)
So, (x(1)|x(0) = x(0))∼N (

√
1−β (1)x(0),β (1)I)

x(2) = f (2)(x(1);β (t)) =
√

1−β (2)x(1)+
√

β (2)ε

=
√

1−β (2)
√

1−β (1)x(0)+
√

1− (1−β (2))(1−β (1))ε

=
√

α(2)α(1)x(0)+
√

1−α(2)α(1)ε√
1−β (1)

√
β (2)ε +

√
β (2)ε ∼N (0,((1−β (1))β (2)+β (2))I)

Let α(t) = 1−β (t) (derived hyperparameter)
Only one ε is added

x(t) =
√

ᾱ(t)x(t−1)+
√

1− ᾱ(t)ε

Let ᾱ(t) = α(t)α(t−1) · · ·α(1) (derived hyperparameter)

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 63 / 132



Objective
As VAE, DDPM maximizes a lower bound of P(X)
VAE: for each x, where P(x) =

∫
c Q(c|x) logP(x)dc, maximize:∫

c

Q(c|x) log
(

P(x,c)
Q(c|x)

)
dc = Ec|x∼Q

[
log
(

P(x,c)
Q(c|x)

)]
≤ P(x)

DDPM: for each x where
P(x(0)) =

∫
x(1),··· ,x(T) Q(x(1), · · · ,x(T)|x(0)) logP(x(0))dx(1) · · ·dx(T),

maximize:

E(x(1),··· ,x(T)|x(0))∼Q

[
log

(
P(x(0),x(1), · · · ,x(T))
Q(x(1), · · · ,x(T)|x(0))

)]
,

which can be simplified to [23]:

−DKL
(
Q(x(T)|x(0))‖P(x(T))

)
+Ex(1)|x(0)∼Q

[
logP(x(0)|x(1))

]
+

−∑
T
t=2 Ex(t)|x(0)∼Q

[
DKL

(
Q(x(t−1)|x(t),x(0))‖P(x(t−1)|x(t))

)]
First term controlled by encoding process (predefined)
Second & third term controlled by denoising process (learnable)

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 64 / 132



Objective
As VAE, DDPM maximizes a lower bound of P(X)
VAE: for each x, where P(x) =

∫
c Q(c|x) logP(x)dc, maximize:∫

c

Q(c|x) log
(

P(x,c)
Q(c|x)

)
dc = Ec|x∼Q

[
log
(

P(x,c)
Q(c|x)

)]
≤ P(x)

DDPM: for each x where
P(x(0)) =

∫
x(1),··· ,x(T) Q(x(1), · · · ,x(T)|x(0)) logP(x(0))dx(1) · · ·dx(T),

maximize:

E(x(1),··· ,x(T)|x(0))∼Q

[
log

(
P(x(0),x(1), · · · ,x(T))
Q(x(1), · · · ,x(T)|x(0))

)]
,

which can be simplified to [23]:

−DKL
(
Q(x(T)|x(0))‖P(x(T))

)
+Ex(1)|x(0)∼Q

[
logP(x(0)|x(1))

]
+

−∑
T
t=2 Ex(t)|x(0)∼Q

[
DKL

(
Q(x(t−1)|x(t),x(0))‖P(x(t−1)|x(t))

)]
First term controlled by encoding process (predefined)
Second & third term controlled by denoising process (learnable)

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 64 / 132



Denoising I
For simplicity, we focus on maximizing the third term:

−
T

∑
t=2

Ex(t)|x(0)∼Q

[
DKL

(
Q(x(t−1)|x(t),x(0))‖P(x(t−1)|x(t))

)]
Goal: for each observed x(t), minimize

DKL

(
Q(x(t−1)|x(t),x(0))‖P(x(t−1)|x(t))

)
Note that

Q(x(t−1)|x(t),x(0)) = Q(x(t−1),x(t),x(0))
Q(x(t),x(0))

= Q(x(t)|x(t−1))Q(x(t−1)|x(0))Q(x(0))
Q(x(t)|x(0))Q(x(0))

= Q(x(t)|x(t−1))Q(x(t−1)|x(0))
Q(x(t)|x(0))

Since Q(x(t)|x(t−1)) & Q(x(t−1)|x(0)) are Gaussian, we have [23]:

Q(x(t−1)|x(t),x(0)) = N
(√

α(t)(1−α(t−1))x(t)+
√

ᾱ(t−1)β (t)x(0)

1−ᾱ(t) , 1−ᾱ(t−1)

1−ᾱ(t) β (t)I
)

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 65 / 132



Denoising II

Goal: for each observed x(t), minimize

DKL

(
Q(x(t−1)|x(t),x(0))‖P(x(t−1)|x(t))

)
,

where Q(· · ·) = N
(√

α(t)(1−α(t−1))x(t)+
√

ᾱ(t−1)β (t)x(0)

1−ᾱ(t) , · · ·
)
is fixed

DDPM finds Θ that move the mean of P(x(t−1)|x(t),Θ) (also Gaussian)
toward Q(· · ·)’s mean:

√
α(t)(1−α(t−1))x(t)+

√
ᾱ(t−1)β (t)x(0)

1− ᾱ(t)

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 66 / 132



Noise Predictor

Θ moves P(x(t−1)|x(t),Θ)’s mean toward
√

α(t)(1−α(t−1))x(t)+
√

ᾱ(t−1)β (t)x(0)

1−ᾱ(t)

=

√
α(t)(1−α(t−1))x(t)+

√
ᾱ(t−1)β (t) x(t)−

√
1− ᾱ(t)ε√
ᾱ(t)

1−ᾱ(t)

= 1√
α(t)

(
x(t)− 1−α(t)√

1−ᾱ(t)
ε

)
What’s its corresponding network?

By definition: let Θ parametrize a network outputting x(t−1) given x(t)

But the input x(t) also resides in the output target
DDPM: let Θ parametrize a noise predictor outputting ε given x(t)

Objective: argminΘ ‖ε− e(x(t), t;Θ)‖2

Of U-Net [37] architecture
Shared between all t

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 67 / 132



Noise Predictor

Θ moves P(x(t−1)|x(t),Θ)’s mean toward
√

α(t)(1−α(t−1))x(t)+
√

ᾱ(t−1)β (t)x(0)

1−ᾱ(t)

=

√
α(t)(1−α(t−1))x(t)+

√
ᾱ(t−1)β (t) x(t)−

√
1− ᾱ(t)ε√
ᾱ(t)

1−ᾱ(t)

= 1√
α(t)

(
x(t)− 1−α(t)√

1−ᾱ(t)
ε

)
What’s its corresponding network?
By definition: let Θ parametrize a network outputting x(t−1) given x(t)

But the input x(t) also resides in the output target

DDPM: let Θ parametrize a noise predictor outputting ε given x(t)

Objective: argminΘ ‖ε− e(x(t), t;Θ)‖2

Of U-Net [37] architecture
Shared between all t

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 67 / 132



Noise Predictor

Θ moves P(x(t−1)|x(t),Θ)’s mean toward
√

α(t)(1−α(t−1))x(t)+
√

ᾱ(t−1)β (t)x(0)

1−ᾱ(t)

=

√
α(t)(1−α(t−1))x(t)+

√
ᾱ(t−1)β (t) x(t)−

√
1− ᾱ(t)ε√
ᾱ(t)

1−ᾱ(t)

= 1√
α(t)

(
x(t)− 1−α(t)√

1−ᾱ(t)
ε

)
What’s its corresponding network?
By definition: let Θ parametrize a network outputting x(t−1) given x(t)

But the input x(t) also resides in the output target
DDPM: let Θ parametrize a noise predictor outputting ε given x(t)

Objective: argminΘ ‖ε− e(x(t), t;Θ)‖2

Of U-Net [37] architecture
Shared between all t

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 67 / 132



Training & Inference Algorithms

One-step encoding during training time
Muti-step inference (sampling), with each intermediate decoding step
t, t > 1, comes with extra noise σ (t)z

Similar to output token sampling in GPT
Improves performance empirically

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 68 / 132



Results

Sharp and coherent

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 69 / 132



Conditioning & Scaling
Stable Diffusion [36]: separately train 3 networks

Text/condition embedding: only needs text data
Diffusion: needs paired (text-image) data but works at latent (low
dimensional) space
Image encoder/decoder: only needs image data

Text embedding as extra input for denoising net
Other models like DALL-E [33] also use similar strategies

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 70 / 132



Results

Even the smallest text-image training set (LAION [41, 40]) has
>400M samples!

MS COCO [22] “only” has 328K images

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 71 / 132



Outline
1 Unsupervised Learning

Text Models
Image Models

2 ChatGPT

3 Autoencoders (AE)
Manifold Learning*

4 Variational Autoencoders (VAE)

5 Flow-based Models

6 Diffusion Models

7 Generative Adversarial Networks*
Basic Architecture
Challenges
More GANs

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 72 / 132



Why Do AE and VAE Give Blurry Images?

Objective argmaxΘ logP(X|Θ) = argminΘ ∑n ‖x(n)−a(n,L)‖2 does not
panelize Gaussian pixel noises in a(i,L)

Root cause: assumption that x∼N

Fix 1: maximizing the likelihood P(X|Θ) without assuming x∼N
Flow-based methods, diffusion models

Fix 2: maximizing the chance that a(L) is a true image from
another NN point of view

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 73 / 132



Why Do AE and VAE Give Blurry Images?

Objective argmaxΘ logP(X|Θ) = argminΘ ∑n ‖x(n)−a(n,L)‖2 does not
panelize Gaussian pixel noises in a(i,L)

Root cause: assumption that x∼N

Fix 1: maximizing the likelihood P(X|Θ) without assuming x∼N
Flow-based methods, diffusion models

Fix 2: maximizing the chance that a(L) is a true image from
another NN point of view

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 73 / 132



Why Do AE and VAE Give Blurry Images?

Objective argmaxΘ logP(X|Θ) = argminΘ ∑n ‖x(n)−a(n,L)‖2 does not
panelize Gaussian pixel noises in a(i,L)

Root cause: assumption that x∼N

Fix 1: maximizing the likelihood P(X|Θ) without assuming x∼N
Flow-based methods, diffusion models

Fix 2: maximizing the chance that a(L) is a true image from
another NN point of view

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 73 / 132



Outline
1 Unsupervised Learning

Text Models
Image Models

2 ChatGPT

3 Autoencoders (AE)
Manifold Learning*

4 Variational Autoencoders (VAE)

5 Flow-based Models

6 Diffusion Models

7 Generative Adversarial Networks*
Basic Architecture
Challenges
More GANs

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 74 / 132



Network Design
Generative adversarial networks (GAN) [8] consist of:

Generator g: to generate data points from random codes
No need for “encoder” since the task is data synthesis

Discriminator f : to separate generated points from real ones
Weights for x and x̂ are tied
A binary classifier with Sigmoid output unit a(L) = ρ̂ for
P(y = true point |x)∼ Bernoulli(ρ)

Goal: to train a g that tricks f into believing g(c) is real

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 75 / 132



Network Design
Generative adversarial networks (GAN) [8] consist of:
Generator g: to generate data points from random codes

No need for “encoder” since the task is data synthesis

Discriminator f : to separate generated points from real ones
Weights for x and x̂ are tied
A binary classifier with Sigmoid output unit a(L) = ρ̂ for
P(y = true point |x)∼ Bernoulli(ρ)

Goal: to train a g that tricks f into believing g(c) is real

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 75 / 132



Network Design
Generative adversarial networks (GAN) [8] consist of:
Generator g: to generate data points from random codes

No need for “encoder” since the task is data synthesis
Discriminator f : to separate generated points from real ones

Weights for x and x̂ are tied
A binary classifier with Sigmoid output unit a(L) = ρ̂ for
P(y = true point |x)∼ Bernoulli(ρ)

Goal: to train a g that tricks f into believing g(c) is real

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 75 / 132



Network Design
Generative adversarial networks (GAN) [8] consist of:
Generator g: to generate data points from random codes

No need for “encoder” since the task is data synthesis
Discriminator f : to separate generated points from real ones

Weights for x and x̂ are tied
A binary classifier with Sigmoid output unit a(L) = ρ̂ for
P(y = true point |x)∼ Bernoulli(ρ)

Goal: to train a g that tricks f into believing g(c) is real

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 75 / 132



Cost Function
Given N real training points and N generated points:

argminΘgmaxΘf logP(X |Θg,Θf )

= argminΘgmaxΘf ∑n log f (x(n))+∑m log(1− f (g(c(m))))

= argminΘgmaxΘf ∑
N
n=1 log ρ̂(n)+∑

N
m=1 log(1− ρ̂(m))

Recall that f maximizes the log likelihood
logP(X |Θ) ∝ ∑n logP(y(n) |x(n),Θ) = ∑n log

[
(ρ̂(n))y(n)(1− ρ̂(n))(1−y(n))

]

Inner max first, then outer min

ρ̂(n) depends on Θf only
ρ̂(m) depends on both Θf and Θg

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 76 / 132



Cost Function
Given N real training points and N generated points:

argminΘgmaxΘf logP(X |Θg,Θf )

= argminΘgmaxΘf ∑n log f (x(n))+∑m log(1− f (g(c(m))))

= argminΘgmaxΘf ∑
N
n=1 log ρ̂(n)+∑

N
m=1 log(1− ρ̂(m))

Recall that f maximizes the log likelihood
logP(X |Θ) ∝ ∑n logP(y(n) |x(n),Θ) = ∑n log

[
(ρ̂(n))y(n)(1− ρ̂(n))(1−y(n))

]

Inner max first, then outer min

ρ̂(n) depends on Θf only
ρ̂(m) depends on both Θf and Θg

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 76 / 132



Cost Function
Given N real training points and N generated points:

argminΘgmaxΘf logP(X |Θg,Θf )

= argminΘgmaxΘf ∑n log f (x(n))+∑m log(1− f (g(c(m))))

= argminΘgmaxΘf ∑
N
n=1 log ρ̂(n)+∑

N
m=1 log(1− ρ̂(m))

Recall that f maximizes the log likelihood
logP(X |Θ) ∝ ∑n logP(y(n) |x(n),Θ) = ∑n log

[
(ρ̂(n))y(n)(1− ρ̂(n))(1−y(n))

]

Inner max first, then outer min

ρ̂(n) depends on Θf only
ρ̂(m) depends on both Θf and Θg

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 76 / 132



Cost Function
Given N real training points and N generated points:

argminΘgmaxΘf logP(X |Θg,Θf )

= argminΘgmaxΘf ∑n log f (x(n))+∑m log(1− f (g(c(m))))

= argminΘgmaxΘf ∑
N
n=1 log ρ̂(n)+∑

N
m=1 log(1− ρ̂(m))

Recall that f maximizes the log likelihood
logP(X |Θ) ∝ ∑n logP(y(n) |x(n),Θ) = ∑n log

[
(ρ̂(n))y(n)(1− ρ̂(n))(1−y(n))

]

Inner max first, then outer min

ρ̂(n) depends on Θf only
ρ̂(m) depends on both Θf and Θg

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 76 / 132



Training: Alternative SGD

argmin
Θg

max
Θf

∑
n

log f (x(n))+∑
m

log(1− f (g(c(m))))

Initialize Θg for g and Θf for f

At each SGD step/iteration:

1 Repeat K times (with fixed Θg):
1 Sample N real points {x(n)}n from X and N codes from c∼N (0,I)
2 Θf ←Θf +η∇Θf [∑n log f (x(n))+∑m log(1− f (g(c(m))))]

2 Execute once (with fixed Θf ):
1 Sample N codes from c∼N (0,I)
2 Θg←Θg−η∇Θg [∑m log(1− f (g(c(m))))]

Why limiting the steps (K) when updating Θf ?
f may overfit data and give very different values once g is updated
Limiting K so to prevent g from being updated for “wrong” target

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 77 / 132



Training: Alternative SGD

argmin
Θg

max
Θf

∑
n

log f (x(n))+∑
m

log(1− f (g(c(m))))

Initialize Θg for g and Θf for f

At each SGD step/iteration:
1 Repeat K times (with fixed Θg):

1 Sample N real points {x(n)}n from X and N codes from c∼N (0,I)
2 Θf ←Θf +η∇Θf [∑n log f (x(n))+∑m log(1− f (g(c(m))))]

2 Execute once (with fixed Θf ):
1 Sample N codes from c∼N (0,I)
2 Θg←Θg−η∇Θg [∑m log(1− f (g(c(m))))]

Why limiting the steps (K) when updating Θf ?
f may overfit data and give very different values once g is updated
Limiting K so to prevent g from being updated for “wrong” target

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 77 / 132



Training: Alternative SGD

argmin
Θg

max
Θf

∑
n

log f (x(n))+∑
m

log(1− f (g(c(m))))

Initialize Θg for g and Θf for f

At each SGD step/iteration:
1 Repeat K times (with fixed Θg):

1 Sample N real points {x(n)}n from X and N codes from c∼N (0,I)
2 Θf ←Θf +η∇Θf [∑n log f (x(n))+∑m log(1− f (g(c(m))))]

2 Execute once (with fixed Θf ):
1 Sample N codes from c∼N (0,I)
2 Θg←Θg−η∇Θg [∑m log(1− f (g(c(m))))]

Why limiting the steps (K) when updating Θf ?
f may overfit data and give very different values once g is updated
Limiting K so to prevent g from being updated for “wrong” target

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 77 / 132



Training: Alternative SGD

argmin
Θg

max
Θf

∑
n

log f (x(n))+∑
m

log(1− f (g(c(m))))

Initialize Θg for g and Θf for f

At each SGD step/iteration:
1 Repeat K times (with fixed Θg):

1 Sample N real points {x(n)}n from X and N codes from c∼N (0,I)
2 Θf ←Θf +η∇Θf [∑n log f (x(n))+∑m log(1− f (g(c(m))))]

2 Execute once (with fixed Θf ):
1 Sample N codes from c∼N (0,I)
2 Θg←Θg−η∇Θg [∑m log(1− f (g(c(m))))]

Why limiting the steps (K) when updating Θf ?

f may overfit data and give very different values once g is updated
Limiting K so to prevent g from being updated for “wrong” target

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 77 / 132



Training: Alternative SGD

argmin
Θg

max
Θf

∑
n

log f (x(n))+∑
m

log(1− f (g(c(m))))

Initialize Θg for g and Θf for f

At each SGD step/iteration:
1 Repeat K times (with fixed Θg):

1 Sample N real points {x(n)}n from X and N codes from c∼N (0,I)
2 Θf ←Θf +η∇Θf [∑n log f (x(n))+∑m log(1− f (g(c(m))))]

2 Execute once (with fixed Θf ):
1 Sample N codes from c∼N (0,I)
2 Θg←Θg−η∇Θg [∑m log(1− f (g(c(m))))]

Why limiting the steps (K) when updating Θf ?
f may overfit data and give very different values once g is updated
Limiting K so to prevent g from being updated for “wrong” target

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 77 / 132



Results

Domain-specific architecture, e.g., DC-GAN [30]

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 78 / 132



Results

Domain-specific architecture, e.g., DC-GAN [30]

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 78 / 132



GANs Are Hard to Train!

Tips for Training Stable GANs
Keep Calm and train a GAN. Pitfalls and Tips...
10 Lessons I Learned Training GANs for one Year
GAN hacks on GitHub

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 79 / 132

https://towardsdatascience.com/10-lessons-i-learned-training-generative-adversarial-networks-gans-for-a-year-c9071159628
https://medium.com/@utk.is.here/keep-calm-and-train-a-gan-pitfalls-and-tips-on-training-generative-adversarial-networks-edd529764aa9
https://towardsdatascience.com/10-lessons-i-learned-training-generative-adversarial-networks-gans-for-a-year-c9071159628
https://github.com/soumith/ganhacks


Outline
1 Unsupervised Learning

Text Models
Image Models

2 ChatGPT

3 Autoencoders (AE)
Manifold Learning*

4 Variational Autoencoders (VAE)

5 Flow-based Models

6 Diffusion Models

7 Generative Adversarial Networks*
Basic Architecture
Challenges
More GANs

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 80 / 132



Challenge: Non-Convergence

The GAN training may not converge

The goal of GAN is to find a saddle point

argmin
Θg

max
Θf

∑
n

log f (x(n))+∑
m

log(1− f (g(c(m))))

The updated Θf and Θg may cancel each other’s progress
Requires human monitoring and termination

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 81 / 132



Challenge: Non-Convergence

The GAN training may not converge
The goal of GAN is to find a saddle point

argmin
Θg

max
Θf

∑
n

log f (x(n))+∑
m

log(1− f (g(c(m))))

The updated Θf and Θg may cancel each other’s progress
Requires human monitoring and termination

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 81 / 132



Challenge: Non-Convergence

The GAN training may not converge
The goal of GAN is to find a saddle point

argmin
Θg

max
Θf

∑
n

log f (x(n))+∑
m

log(1− f (g(c(m))))

The updated Θf and Θg may cancel each other’s progress

Requires human monitoring and termination

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 81 / 132



Challenge: Non-Convergence

The GAN training may not converge
The goal of GAN is to find a saddle point

argmin
Θg

max
Θf

∑
n

log f (x(n))+∑
m

log(1− f (g(c(m))))

The updated Θf and Θg may cancel each other’s progress
Requires human monitoring and termination

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 81 / 132



Mode Collapsing
Even worse: mode collapsing

g may oscillate from generating one kind of points to generating
another kind of points

When K is small, alternate SGD does not distinguish between
minΘgmaxΘf and maxΘf minΘg

argmin
Θg

max
Θf

∑
n

log f (x(n))+∑
m

log(1− f (g(c(m))))

maxΘf minΘg? g is encouraged to map every code to the “mode” that f
believes is most likely to be real

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 82 / 132



Mode Collapsing
Even worse: mode collapsing

g may oscillate from generating one kind of points to generating
another kind of points

When K is small, alternate SGD does not distinguish between
minΘgmaxΘf and maxΘf minΘg

argmin
Θg

max
Θf

∑
n

log f (x(n))+∑
m

log(1− f (g(c(m))))

maxΘf minΘg?

g is encouraged to map every code to the “mode” that f
believes is most likely to be real

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 82 / 132



Mode Collapsing
Even worse: mode collapsing

g may oscillate from generating one kind of points to generating
another kind of points

When K is small, alternate SGD does not distinguish between
minΘgmaxΘf and maxΘf minΘg

argmin
Θg

max
Θf

∑
n

log f (x(n))+∑
m

log(1− f (g(c(m))))

maxΘf minΘg? g is encouraged to map every code to the “mode” that f
believes is most likely to be real

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 82 / 132



Solutions
Minibatch discrimination [39]

In maxΘf minΘg case, g collapses because ∇Θf C are computed
independently for each point
Why not augment each x(n)/x̂(n) with batch features?

If g collapses, f can tell this from batch features and reject fake points
Now, g needs to generate dissimilar points to fool f

without with

Unrolled GANs [24]: to back-propagate through several max steps
when computing ∇ΘgC

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 83 / 132



Solutions
Minibatch discrimination [39]

In maxΘf minΘg case, g collapses because ∇Θf C are computed
independently for each point
Why not augment each x(n)/x̂(n) with batch features?
If g collapses, f can tell this from batch features and reject fake points
Now, g needs to generate dissimilar points to fool f

without with

Unrolled GANs [24]: to back-propagate through several max steps
when computing ∇ΘgC

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 83 / 132



Solutions
Minibatch discrimination [39]

In maxΘf minΘg case, g collapses because ∇Θf C are computed
independently for each point
Why not augment each x(n)/x̂(n) with batch features?
If g collapses, f can tell this from batch features and reject fake points
Now, g needs to generate dissimilar points to fool f

without with

Unrolled GANs [24]: to back-propagate through several max steps
when computing ∇ΘgC

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 83 / 132



Solutions
Minibatch discrimination [39]

In maxΘf minΘg case, g collapses because ∇Θf C are computed
independently for each point
Why not augment each x(n)/x̂(n) with batch features?
If g collapses, f can tell this from batch features and reject fake points
Now, g needs to generate dissimilar points to fool f

without with

Unrolled GANs [24]: to back-propagate through several max steps
when computing ∇ΘgC

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 83 / 132



Challenge: Balance between g and f

argmin
Θg

max
Θf

∑
n

log f (x(n))+∑
m

log(1− f (g(c(m))))

Alternate SGD:
Θf ←Θf +η∇Θf [∑n log f (x(n))+∑m log(1− f (g(c(m))))] for K times
Θg←Θg−η∇Θg [∑m log(1− f (g(c(m))))]

Why limiting K when updating Θf ?
Too large K:

f may overfit data, making g updated for “wrong” target f
Vanishing gradients: ∇Θg [∑m log(1− f (g(c(m))))] too small to learn

Too small K:
g updated for “meaningless” f

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 84 / 132



Challenge: Balance between g and f

argmin
Θg

max
Θf

∑
n

log f (x(n))+∑
m

log(1− f (g(c(m))))

Alternate SGD:
Θf ←Θf +η∇Θf [∑n log f (x(n))+∑m log(1− f (g(c(m))))] for K times
Θg←Θg−η∇Θg [∑m log(1− f (g(c(m))))]

Why limiting K when updating Θf ?
Too large K:

f may overfit data, making g updated for “wrong” target f
Vanishing gradients: ∇Θg [∑m log(1− f (g(c(m))))] too small to learn

Too small K:

g updated for “meaningless” f

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 84 / 132



Challenge: Balance between g and f

argmin
Θg

max
Θf

∑
n

log f (x(n))+∑
m

log(1− f (g(c(m))))

Alternate SGD:
Θf ←Θf +η∇Θf [∑n log f (x(n))+∑m log(1− f (g(c(m))))] for K times
Θg←Θg−η∇Θg [∑m log(1− f (g(c(m))))]

Why limiting K when updating Θf ?
Too large K:

f may overfit data, making g updated for “wrong” target f

Vanishing gradients: ∇Θg [∑m log(1− f (g(c(m))))] too small to learn

Too small K:

g updated for “meaningless” f

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 84 / 132



Challenge: Balance between g and f

argmin
Θg

max
Θf

∑
n

log f (x(n))+∑
m

log(1− f (g(c(m))))

Alternate SGD:
Θf ←Θf +η∇Θf [∑n log f (x(n))+∑m log(1− f (g(c(m))))] for K times
Θg←Θg−η∇Θg [∑m log(1− f (g(c(m))))]

Why limiting K when updating Θf ?
Too large K:

f may overfit data, making g updated for “wrong” target f
Vanishing gradients: ∇Θg [∑m log(1− f (g(c(m))))] too small to learn

Too small K:

g updated for “meaningless” f

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 84 / 132



Challenge: Balance between g and f

argmin
Θg

max
Θf

∑
n

log f (x(n))+∑
m

log(1− f (g(c(m))))

Alternate SGD:
Θf ←Θf +η∇Θf [∑n log f (x(n))+∑m log(1− f (g(c(m))))] for K times
Θg←Θg−η∇Θg [∑m log(1− f (g(c(m))))]

Why limiting K when updating Θf ?
Too large K:

f may overfit data, making g updated for “wrong” target f
Vanishing gradients: ∇Θg [∑m log(1− f (g(c(m))))] too small to learn

Too small K:
g updated for “meaningless” f

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 84 / 132



Solution: Wasserstein GAN [1]

Let f be a regressor without the sigmoid output layer
Cost function:

argmin
Θg

max
Θf

∑
n

f (x(n))−∑
m

f (g(c(m)))

Initialize Θg for g and Θf for f

At each SGD step/iteration:

1 Repeat K times (with fixed Θg):
1 Sample N real points {x(n)}n from X and N codes from c∼N (0,I)
2 Θf ←Θf +η clip(∇Θf [∑n f (x(n))−∑m f (g(c(m)))])

2 Execute once (with fixed Θf ):
1 Sample N codes from c∼N (0,I)
2 Θg←Θg−η∇Θg [−∑m f (g(c(m)))]

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 85 / 132



Solution: Wasserstein GAN [1]

Let f be a regressor without the sigmoid output layer
Cost function:

argmin
Θg

max
Θf

∑
n

f (x(n))−∑
m

f (g(c(m)))

Initialize Θg for g and Θf for f

At each SGD step/iteration:
1 Repeat K times (with fixed Θg):

1 Sample N real points {x(n)}n from X and N codes from c∼N (0,I)
2 Θf ←Θf +η clip(∇Θf [∑n f (x(n))−∑m f (g(c(m)))])

2 Execute once (with fixed Θf ):
1 Sample N codes from c∼N (0,I)
2 Θg←Θg−η∇Θg [−∑m f (g(c(m)))]

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 85 / 132



Solution: Wasserstein GAN [1]

Let f be a regressor without the sigmoid output layer
Cost function:

argmin
Θg

max
Θf

∑
n

f (x(n))−∑
m

f (g(c(m)))

Initialize Θg for g and Θf for f

At each SGD step/iteration:
1 Repeat K times (with fixed Θg):

1 Sample N real points {x(n)}n from X and N codes from c∼N (0,I)
2 Θf ←Θf +η clip(∇Θf [∑n f (x(n))−∑m f (g(c(m)))])

2 Execute once (with fixed Θf ):
1 Sample N codes from c∼N (0,I)
2 Θg←Θg−η∇Θg [−∑m f (g(c(m)))]

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 85 / 132



GANs from Information Theory Perspective
Review the Information Theory first!

Let Pdata / Pg be distribution of x / x̂ = g(c)
A way to find g: argminΘg DKL(Pdata‖Pg)

Why not argminΘg DKL(Pg‖Pdata)?

GAN: argminΘg maxΘf ∑n log f (x(n))+∑m log(1− f (g(c(m))))

Actually, the max term measures Jensen-Shannon divergence (a.k.a.
symmetric KL divergence):

DJS(Pdata‖Pg) =
1
2

DKL(Pdata‖Q)+
1
2

DKL(Pg‖Q), where Q =
1
2
(Pg +Pdata)

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 86 / 132



GANs from Information Theory Perspective
Review the Information Theory first!
Let Pdata / Pg be distribution of x / x̂ = g(c)

A way to find g: argminΘg DKL(Pdata‖Pg)

Why not argminΘg DKL(Pg‖Pdata)?

GAN: argminΘg maxΘf ∑n log f (x(n))+∑m log(1− f (g(c(m))))

Actually, the max term measures Jensen-Shannon divergence (a.k.a.
symmetric KL divergence):

DJS(Pdata‖Pg) =
1
2

DKL(Pdata‖Q)+
1
2

DKL(Pg‖Q), where Q =
1
2
(Pg +Pdata)

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 86 / 132



GANs from Information Theory Perspective
Review the Information Theory first!
Let Pdata / Pg be distribution of x / x̂ = g(c)
A way to find g: argminΘg DKL(Pdata‖Pg)

Why not argminΘg DKL(Pg‖Pdata)?

GAN: argminΘg maxΘf ∑n log f (x(n))+∑m log(1− f (g(c(m))))

Actually, the max term measures Jensen-Shannon divergence (a.k.a.
symmetric KL divergence):

DJS(Pdata‖Pg) =
1
2

DKL(Pdata‖Q)+
1
2

DKL(Pg‖Q), where Q =
1
2
(Pg +Pdata)

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 86 / 132



GANs from Information Theory Perspective
Review the Information Theory first!
Let Pdata / Pg be distribution of x / x̂ = g(c)
A way to find g: argminΘg DKL(Pdata‖Pg)

Why not argminΘg DKL(Pg‖Pdata)?

GAN: argminΘg maxΘf ∑n log f (x(n))+∑m log(1− f (g(c(m))))

Actually, the max term measures Jensen-Shannon divergence (a.k.a.
symmetric KL divergence):

DJS(Pdata‖Pg) =
1
2

DKL(Pdata‖Q)+
1
2

DKL(Pg‖Q), where Q =
1
2
(Pg +Pdata)

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 86 / 132



GANs from Information Theory Perspective
Review the Information Theory first!
Let Pdata / Pg be distribution of x / x̂ = g(c)
A way to find g: argminΘg DKL(Pdata‖Pg)

Why not argminΘg DKL(Pg‖Pdata)?

GAN: argminΘg maxΘf ∑n log f (x(n))+∑m log(1− f (g(c(m))))

Actually, the max term measures Jensen-Shannon divergence (a.k.a.
symmetric KL divergence):

DJS(Pdata‖Pg) =
1
2

DKL(Pdata‖Q)+
1
2

DKL(Pg‖Q), where Q =
1
2
(Pg +Pdata)

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 86 / 132



GANs from Information Theory Perspective
Review the Information Theory first!
Let Pdata / Pg be distribution of x / x̂ = g(c)
A way to find g: argminΘg DKL(Pdata‖Pg)

Why not argminΘg DKL(Pg‖Pdata)?

GAN: argminΘg maxΘf ∑n log f (x(n))+∑m log(1− f (g(c(m))))

Actually, the max term measures Jensen-Shannon divergence (a.k.a.
symmetric KL divergence):

DJS(Pdata‖Pg) =
1
2

DKL(Pdata‖Q)+
1
2

DKL(Pg‖Q), where Q =
1
2
(Pg +Pdata)

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 86 / 132



GANs from Information Theory Perspective
Review the Information Theory first!
Let Pdata / Pg be distribution of x / x̂ = g(c)
A way to find g: argminΘg DKL(Pdata‖Pg)

Why not argminΘg DKL(Pg‖Pdata)?

GAN: argminΘg maxΘf ∑n log f (x(n))+∑m log(1− f (g(c(m))))

Actually, the max term measures Jensen-Shannon divergence (a.k.a.
symmetric KL divergence):

DJS(Pdata‖Pg) =
1
2

DKL(Pdata‖Q)+
1
2

DKL(Pg‖Q), where Q =
1
2
(Pg +Pdata)

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 86 / 132



Why Jensen-Shannon Divergence? I

Given a fixed g, we have

C∗ = maxΘf ∑n log f (x(n))+∑m log(1− f (g(c(m))))

= maxΘf
1
N ∑n log f (x(n))+ 1

N ∑m log(1− f (x̂(m)))

≈maxΘf Ex∼Pdata [log f (x)]+Ex∼Pg [log(1− f (x))]
= maxΘf

∫
x Pdata(x) log f (x)dx+

∫
x Pg(x) log(1− f (x))dx

= maxΘf

∫
x[Pdata(x) log f (x)+Pg(x) log(1− f (x))]dx

To have C∗, we can find f maximizing

Pdata(x) log f (x)+Pg(x) log(1− f (x))

for each x
Assuming that f has infinite capacity

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 87 / 132



Why Jensen-Shannon Divergence? I

Given a fixed g, we have

C∗ = maxΘf ∑n log f (x(n))+∑m log(1− f (g(c(m))))

= maxΘf
1
N ∑n log f (x(n))+ 1

N ∑m log(1− f (x̂(m)))

≈maxΘf Ex∼Pdata [log f (x)]+Ex∼Pg [log(1− f (x))]
= maxΘf

∫
x Pdata(x) log f (x)dx+

∫
x Pg(x) log(1− f (x))dx

= maxΘf

∫
x[Pdata(x) log f (x)+Pg(x) log(1− f (x))]dx

To have C∗, we can find f maximizing

Pdata(x) log f (x)+Pg(x) log(1− f (x))

for each x
Assuming that f has infinite capacity

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 87 / 132



Why Jensen-Shannon Divergence? I

Given a fixed g, we have

C∗ = maxΘf ∑n log f (x(n))+∑m log(1− f (g(c(m))))

= maxΘf
1
N ∑n log f (x(n))+ 1

N ∑m log(1− f (x̂(m)))

≈maxΘf Ex∼Pdata [log f (x)]+Ex∼Pg [log(1− f (x))]

= maxΘf

∫
x Pdata(x) log f (x)dx+

∫
x Pg(x) log(1− f (x))dx

= maxΘf

∫
x[Pdata(x) log f (x)+Pg(x) log(1− f (x))]dx

To have C∗, we can find f maximizing

Pdata(x) log f (x)+Pg(x) log(1− f (x))

for each x
Assuming that f has infinite capacity

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 87 / 132



Why Jensen-Shannon Divergence? I

Given a fixed g, we have

C∗ = maxΘf ∑n log f (x(n))+∑m log(1− f (g(c(m))))

= maxΘf
1
N ∑n log f (x(n))+ 1

N ∑m log(1− f (x̂(m)))

≈maxΘf Ex∼Pdata [log f (x)]+Ex∼Pg [log(1− f (x))]
= maxΘf

∫
x Pdata(x) log f (x)dx+

∫
x Pg(x) log(1− f (x))dx

= maxΘf

∫
x[Pdata(x) log f (x)+Pg(x) log(1− f (x))]dx

To have C∗, we can find f maximizing

Pdata(x) log f (x)+Pg(x) log(1− f (x))

for each x
Assuming that f has infinite capacity

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 87 / 132



Why Jensen-Shannon Divergence? I

Given a fixed g, we have

C∗ = maxΘf ∑n log f (x(n))+∑m log(1− f (g(c(m))))

= maxΘf
1
N ∑n log f (x(n))+ 1

N ∑m log(1− f (x̂(m)))

≈maxΘf Ex∼Pdata [log f (x)]+Ex∼Pg [log(1− f (x))]
= maxΘf

∫
x Pdata(x) log f (x)dx+

∫
x Pg(x) log(1− f (x))dx

= maxΘf

∫
x[Pdata(x) log f (x)+Pg(x) log(1− f (x))]dx

To have C∗, we can find f maximizing

Pdata(x) log f (x)+Pg(x) log(1− f (x))

for each x
Assuming that f has infinite capacity

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 87 / 132



Why Jensen-Shannon Divergence? I

Given a fixed g, we have

C∗ = maxΘf ∑n log f (x(n))+∑m log(1− f (g(c(m))))

= maxΘf
1
N ∑n log f (x(n))+ 1

N ∑m log(1− f (x̂(m)))

≈maxΘf Ex∼Pdata [log f (x)]+Ex∼Pg [log(1− f (x))]
= maxΘf

∫
x Pdata(x) log f (x)dx+

∫
x Pg(x) log(1− f (x))dx

= maxΘf

∫
x[Pdata(x) log f (x)+Pg(x) log(1− f (x))]dx

To have C∗, we can find f maximizing

Pdata(x) log f (x)+Pg(x) log(1− f (x))

for each x
Assuming that f has infinite capacity

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 87 / 132



Why Jensen-Shannon Divergence? II

Given Pdata, Pg, and x, what is the f (x) that maximizes

Pdata(x) log f (x)+Pg(x) log(1− f (x))?

f ∗(x) = Pdata(x)
Pdata(x)+Pg(x) ∈ [0,1] [Proof]

That is,

C∗ = maxΘf

∫
x[Pdata(x) log f (x)+Pg(x) log(1− f (x))]dx

=
∫

x Pdata(x) log Pdata(x)
Pdata(x)+Pg(x)dx

+
∫

x Pg(x) log( Pg(x)
Pdata(x)+Pg(x))dx

=−2log2+
∫

x Pdata(x) log Pdata(x)
(Pdata(x)+Pg(x))/2 dx

+
∫

x Pg(x) log( Pg(x)
(Pdata(x)+Pg(x))/2)dx

=−2log2+2DJS(Pdata‖Pg)

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 88 / 132



Why Jensen-Shannon Divergence? II

Given Pdata, Pg, and x, what is the f (x) that maximizes

Pdata(x) log f (x)+Pg(x) log(1− f (x))?

f ∗(x) = Pdata(x)
Pdata(x)+Pg(x) ∈ [0,1] [Proof]

That is,

C∗ = maxΘf

∫
x[Pdata(x) log f (x)+Pg(x) log(1− f (x))]dx

=
∫

x Pdata(x) log Pdata(x)
Pdata(x)+Pg(x)dx

+
∫

x Pg(x) log( Pg(x)
Pdata(x)+Pg(x))dx

=−2log2+
∫

x Pdata(x) log Pdata(x)
(Pdata(x)+Pg(x))/2 dx

+
∫

x Pg(x) log( Pg(x)
(Pdata(x)+Pg(x))/2)dx

=−2log2+2DJS(Pdata‖Pg)

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 88 / 132



Why Jensen-Shannon Divergence? II

Given Pdata, Pg, and x, what is the f (x) that maximizes

Pdata(x) log f (x)+Pg(x) log(1− f (x))?

f ∗(x) = Pdata(x)
Pdata(x)+Pg(x) ∈ [0,1] [Proof]

That is,

C∗ = maxΘf

∫
x[Pdata(x) log f (x)+Pg(x) log(1− f (x))]dx

=
∫

x Pdata(x) log Pdata(x)
Pdata(x)+Pg(x)dx

+
∫

x Pg(x) log( Pg(x)
Pdata(x)+Pg(x))dx

=−2log2+
∫

x Pdata(x) log Pdata(x)
(Pdata(x)+Pg(x))/2 dx

+
∫

x Pg(x) log( Pg(x)
(Pdata(x)+Pg(x))/2)dx

=−2log2+2DJS(Pdata‖Pg)

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 88 / 132



Why Jensen-Shannon Divergence? II

Given Pdata, Pg, and x, what is the f (x) that maximizes

Pdata(x) log f (x)+Pg(x) log(1− f (x))?

f ∗(x) = Pdata(x)
Pdata(x)+Pg(x) ∈ [0,1] [Proof]

That is,

C∗ = maxΘf

∫
x[Pdata(x) log f (x)+Pg(x) log(1− f (x))]dx

=
∫

x Pdata(x) log Pdata(x)
Pdata(x)+Pg(x)dx

+
∫

x Pg(x) log( Pg(x)
Pdata(x)+Pg(x))dx

=−2log2+
∫

x Pdata(x) log Pdata(x)
(Pdata(x)+Pg(x))/2 dx

+
∫

x Pg(x) log( Pg(x)
(Pdata(x)+Pg(x))/2)dx

=−2log2+2DJS(Pdata‖Pg)

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 88 / 132



Why Jensen-Shannon Divergence? II

Given Pdata, Pg, and x, what is the f (x) that maximizes

Pdata(x) log f (x)+Pg(x) log(1− f (x))?

f ∗(x) = Pdata(x)
Pdata(x)+Pg(x) ∈ [0,1] [Proof]

That is,

C∗ = maxΘf

∫
x[Pdata(x) log f (x)+Pg(x) log(1− f (x))]dx

=
∫

x Pdata(x) log Pdata(x)
Pdata(x)+Pg(x)dx

+
∫

x Pg(x) log( Pg(x)
Pdata(x)+Pg(x))dx

=−2log2+
∫

x Pdata(x) log Pdata(x)
(Pdata(x)+Pg(x))/2 dx

+
∫

x Pg(x) log( Pg(x)
(Pdata(x)+Pg(x))/2)dx

=−2log2+2DJS(Pdata‖Pg)

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 88 / 132



Balance between g and f , Revisited I
Cost function of GAN:

argminΘg maxΘf ∑n log f (x(n))+∑m log(1− f (g(c(m))))

= argminΘg−2log2+2DJS(Pdata‖Pg)

However, no mater how g changes, DJS(Pdata‖Pg) remains high during
the GAN training process

There’s something wrong with the design of the inner max problem!

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 89 / 132



Balance between g and f , Revisited I
Cost function of GAN:

argminΘg maxΘf ∑n log f (x(n))+∑m log(1− f (g(c(m))))

= argminΘg−2log2+2DJS(Pdata‖Pg)

However, no mater how g changes, DJS(Pdata‖Pg) remains high during
the GAN training process

There’s something wrong with the design of the inner max problem!

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 89 / 132



Balance between g and f , Revisited I
Cost function of GAN:

argminΘg maxΘf ∑n log f (x(n))+∑m log(1− f (g(c(m))))

= argminΘg−2log2+2DJS(Pdata‖Pg)

However, no mater how g changes, DJS(Pdata‖Pg) remains high during
the GAN training process

There’s something wrong with the design of the inner max problem!
Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 89 / 132



Balance between g and f , Revisited II

GAN: argminΘg DJS(Pdata‖Pg)

0≤DJS(Pdata‖Pg)≤ log2≈ 0.69

When does DJS(Pdata‖Pg) reach
its maximum value?
Let’s see the case when Pg and
Pdata are “disjointed”

Suppose Pg(x) 6= 0⇔ Pdata(x) = 0 and Pg(x) = 0⇔ Pdata(x) 6= 0, we
have

DJS(Pg‖Pdata) = 1
2 DKL(Pg‖Pg+Pdata

2 )+ 1
2 DKL(Pdata‖

Pg+Pdata
2 )

= 1
2
∫

x Pg(x) log 2Pg(x)
Pg(x)+Pdata(x)

dx

+1
2
∫

x Pdata(x) log 2Pdata(x)
Pg(x)+Pdata(x)

dx
= 1

2 log2+ 1
2 log2 = log2

Are Pg and Pdata really disjointed during the GAN training?

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 90 / 132



Balance between g and f , Revisited II

GAN: argminΘg DJS(Pdata‖Pg)

0≤DJS(Pdata‖Pg)≤ log2≈ 0.69

When does DJS(Pdata‖Pg) reach
its maximum value?
Let’s see the case when Pg and
Pdata are “disjointed”

Suppose Pg(x) 6= 0⇔ Pdata(x) = 0 and Pg(x) = 0⇔ Pdata(x) 6= 0, we
have

DJS(Pg‖Pdata) = 1
2 DKL(Pg‖Pg+Pdata

2 )+ 1
2 DKL(Pdata‖

Pg+Pdata
2 )

= 1
2
∫

x Pg(x) log 2Pg(x)
Pg(x)+Pdata(x)

dx

+1
2
∫

x Pdata(x) log 2Pdata(x)
Pg(x)+Pdata(x)

dx
= 1

2 log2+ 1
2 log2 = log2

Are Pg and Pdata really disjointed during the GAN training?

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 90 / 132



Balance between g and f , Revisited II

GAN: argminΘg DJS(Pdata‖Pg)

0≤DJS(Pdata‖Pg)≤ log2≈ 0.69

When does DJS(Pdata‖Pg) reach
its maximum value?

Let’s see the case when Pg and
Pdata are “disjointed”

Suppose Pg(x) 6= 0⇔ Pdata(x) = 0 and Pg(x) = 0⇔ Pdata(x) 6= 0, we
have

DJS(Pg‖Pdata) = 1
2 DKL(Pg‖Pg+Pdata

2 )+ 1
2 DKL(Pdata‖

Pg+Pdata
2 )

= 1
2
∫

x Pg(x) log 2Pg(x)
Pg(x)+Pdata(x)

dx

+1
2
∫

x Pdata(x) log 2Pdata(x)
Pg(x)+Pdata(x)

dx
= 1

2 log2+ 1
2 log2 = log2

Are Pg and Pdata really disjointed during the GAN training?

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 90 / 132



Balance between g and f , Revisited II

GAN: argminΘg DJS(Pdata‖Pg)

0≤DJS(Pdata‖Pg)≤ log2≈ 0.69

When does DJS(Pdata‖Pg) reach
its maximum value?
Let’s see the case when Pg and
Pdata are “disjointed”

Suppose Pg(x) 6= 0⇔ Pdata(x) = 0 and Pg(x) = 0⇔ Pdata(x) 6= 0, we
have

DJS(Pg‖Pdata) = 1
2 DKL(Pg‖Pg+Pdata

2 )+ 1
2 DKL(Pdata‖

Pg+Pdata
2 )

= 1
2
∫

x Pg(x) log 2Pg(x)
Pg(x)+Pdata(x)

dx

+1
2
∫

x Pdata(x) log 2Pdata(x)
Pg(x)+Pdata(x)

dx
= 1

2 log2+ 1
2 log2 = log2

Are Pg and Pdata really disjointed during the GAN training?

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 90 / 132



Balance between g and f , Revisited II

GAN: argminΘg DJS(Pdata‖Pg)

0≤DJS(Pdata‖Pg)≤ log2≈ 0.69

When does DJS(Pdata‖Pg) reach
its maximum value?
Let’s see the case when Pg and
Pdata are “disjointed”

Suppose Pg(x) 6= 0⇔ Pdata(x) = 0 and Pg(x) = 0⇔ Pdata(x) 6= 0, we
have

DJS(Pg‖Pdata) = 1
2 DKL(Pg‖Pg+Pdata

2 )+ 1
2 DKL(Pdata‖

Pg+Pdata
2 )

= 1
2
∫

x Pg(x) log 2Pg(x)
Pg(x)+Pdata(x)

dx

+1
2
∫

x Pdata(x) log 2Pdata(x)
Pg(x)+Pdata(x)

dx
= 1

2 log2+ 1
2 log2 = log2

Are Pg and Pdata really disjointed during the GAN training?

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 90 / 132



Balance between g and f , Revisited II

GAN: argminΘg DJS(Pdata‖Pg)

0≤DJS(Pdata‖Pg)≤ log2≈ 0.69

When does DJS(Pdata‖Pg) reach
its maximum value?
Let’s see the case when Pg and
Pdata are “disjointed”

Suppose Pg(x) 6= 0⇔ Pdata(x) = 0 and Pg(x) = 0⇔ Pdata(x) 6= 0, we
have

DJS(Pg‖Pdata) = 1
2 DKL(Pg‖Pg+Pdata

2 )+ 1
2 DKL(Pdata‖

Pg+Pdata
2 )

= 1
2
∫

x Pg(x) log 2Pg(x)
Pg(x)+Pdata(x)

dx

+1
2
∫

x Pdata(x) log 2Pdata(x)
Pg(x)+Pdata(x)

dx

= 1
2 log2+ 1

2 log2 = log2

Are Pg and Pdata really disjointed during the GAN training?

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 90 / 132



Balance between g and f , Revisited II

GAN: argminΘg DJS(Pdata‖Pg)

0≤DJS(Pdata‖Pg)≤ log2≈ 0.69

When does DJS(Pdata‖Pg) reach
its maximum value?
Let’s see the case when Pg and
Pdata are “disjointed”

Suppose Pg(x) 6= 0⇔ Pdata(x) = 0 and Pg(x) = 0⇔ Pdata(x) 6= 0, we
have

DJS(Pg‖Pdata) = 1
2 DKL(Pg‖Pg+Pdata

2 )+ 1
2 DKL(Pdata‖

Pg+Pdata
2 )

= 1
2
∫

x Pg(x) log 2Pg(x)
Pg(x)+Pdata(x)

dx

+1
2
∫

x Pdata(x) log 2Pdata(x)
Pg(x)+Pdata(x)

dx
= 1

2 log2+ 1
2 log2 = log2

Are Pg and Pdata really disjointed during the GAN training?

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 90 / 132



Balance between g and f , Revisited II

GAN: argminΘg DJS(Pdata‖Pg)

0≤DJS(Pdata‖Pg)≤ log2≈ 0.69

When does DJS(Pdata‖Pg) reach
its maximum value?
Let’s see the case when Pg and
Pdata are “disjointed”

Suppose Pg(x) 6= 0⇔ Pdata(x) = 0 and Pg(x) = 0⇔ Pdata(x) 6= 0, we
have

DJS(Pg‖Pdata) = 1
2 DKL(Pg‖Pg+Pdata

2 )+ 1
2 DKL(Pdata‖

Pg+Pdata
2 )

= 1
2
∫

x Pg(x) log 2Pg(x)
Pg(x)+Pdata(x)

dx

+1
2
∫

x Pdata(x) log 2Pdata(x)
Pg(x)+Pdata(x)

dx
= 1

2 log2+ 1
2 log2 = log2

Are Pg and Pdata really disjointed during the GAN training?
Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 90 / 132



Disjoining Pg and Pdata

In a high dimensional space, x and g(z) may resides in low dimensional
manifolds

Pg and Pdata may have values only on the manifolds

Pg and Pdata can be very different initially during GAN training
The intersections where Pg(x) 6= 0 and Pdata(x) 6= 0 can be neglected

Pg(x) 6= 0⇔ Pdata(x) = 0 and Pg(x) = 0⇔ Pdata(x) 6= 0 almost surely
Maximum JS divergence at all time

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 91 / 132



Disjoining Pg and Pdata

In a high dimensional space, x and g(z) may resides in low dimensional
manifolds

Pg and Pdata may have values only on the manifolds

Pg and Pdata can be very different initially during GAN training

The intersections where Pg(x) 6= 0 and Pdata(x) 6= 0 can be neglected
Pg(x) 6= 0⇔ Pdata(x) = 0 and Pg(x) = 0⇔ Pdata(x) 6= 0 almost surely
Maximum JS divergence at all time

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 91 / 132



Disjoining Pg and Pdata

In a high dimensional space, x and g(z) may resides in low dimensional
manifolds

Pg and Pdata may have values only on the manifolds

Pg and Pdata can be very different initially during GAN training
The intersections where Pg(x) 6= 0 and Pdata(x) 6= 0 can be neglected

Pg(x) 6= 0⇔ Pdata(x) = 0 and Pg(x) = 0⇔ Pdata(x) 6= 0 almost surely
Maximum JS divergence at all time

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 91 / 132



Better Divergence Measure?
GAN: argminΘg DJS(Pdata‖Pg)

DJS(Pdata‖Pg) does not bring Pg and Pdata closer during GAN training

Wasserstein (or earth-mover) distance:

W(Pdata,Pg) = infQ∈Γ(Pdata,Pg) E(x,x̂)∼Q[‖x− x̂‖]
= infQ∈Γ(Pdata,Pg)

∫
(x,x̂) Q(x, x̂)‖x− x̂‖d(x, x̂)

Intuitively, the minimal “cost” to
change Pdata into Pg

W(Pdata,Pg) measures the
“divergence” between Pg and
Pdata even when they are
disjointed

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 92 / 132



Better Divergence Measure?
GAN: argminΘg DJS(Pdata‖Pg)

DJS(Pdata‖Pg) does not bring Pg and Pdata closer during GAN training

Wasserstein (or earth-mover) distance:

W(Pdata,Pg) = infQ∈Γ(Pdata,Pg) E(x,x̂)∼Q[‖x− x̂‖]
= infQ∈Γ(Pdata,Pg)

∫
(x,x̂) Q(x, x̂)‖x− x̂‖d(x, x̂)

Intuitively, the minimal “cost” to
change Pdata into Pg

W(Pdata,Pg) measures the
“divergence” between Pg and
Pdata even when they are
disjointed

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 92 / 132



Better Divergence Measure?
GAN: argminΘg DJS(Pdata‖Pg)

DJS(Pdata‖Pg) does not bring Pg and Pdata closer during GAN training

Wasserstein (or earth-mover) distance:

W(Pdata,Pg) = infQ∈Γ(Pdata,Pg) E(x,x̂)∼Q[‖x− x̂‖]
= infQ∈Γ(Pdata,Pg)

∫
(x,x̂) Q(x, x̂)‖x− x̂‖d(x, x̂)

Intuitively, the minimal “cost” to
change Pdata into Pg

W(Pdata,Pg) measures the
“divergence” between Pg and
Pdata even when they are
disjointed

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 92 / 132



Better Divergence Measure?
GAN: argminΘg DJS(Pdata‖Pg)

DJS(Pdata‖Pg) does not bring Pg and Pdata closer during GAN training

Wasserstein (or earth-mover) distance:

W(Pdata,Pg) = infQ∈Γ(Pdata,Pg) E(x,x̂)∼Q[‖x− x̂‖]
= infQ∈Γ(Pdata,Pg)

∫
(x,x̂) Q(x, x̂)‖x− x̂‖d(x, x̂)

Intuitively, the minimal “cost” to
change Pdata into Pg

W(Pdata,Pg) measures the
“divergence” between Pg and
Pdata even when they are
disjointed

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 92 / 132



Wasserstein GAN I

W-GAN: argminΘg W(Pdata,Pg)

W(Pdata,Pg) = infQ∈Γ(Pdata,Pg) E(x,x̂)∼Q[‖x− x̂‖]

Unfortunately, W(Pdata,Pg) is hard to solve directly

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 93 / 132



Wasserstein GAN I

W-GAN: argminΘg W(Pdata,Pg)

W(Pdata,Pg) = infQ∈Γ(Pdata,Pg) E(x,x̂)∼Q[‖x− x̂‖]
Unfortunately, W(Pdata,Pg) is hard to solve directly

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 93 / 132



Wasserstein GAN II
Theorem
Consider f ’s that are Lipschitz continuous with constant 1, i.e.,

|f (x)− f (x̂)| ≤ 1 · ‖x− x̂‖,∀x, x̂,

we have a

W(Pdata,Pg) = supf Ex∼Pdata [f (x)]−Ex∼Pg [f (x)]

= supf
∫

x(Pdata(x)−Pg(x))f (x)dx.

ahttps://vincentherrmann.github.io/blog/wasserstein/

W-GAN [1]: argminΘg maxΘf Ex∼Pdata [f (x)]−Ex∼Pg [f (x)]

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 94 / 132



Wasserstein GAN II
Theorem
Consider f ’s that are Lipschitz continuous with constant 1, i.e.,

|f (x)− f (x̂)| ≤ 1 · ‖x− x̂‖,∀x, x̂,

we have a

W(Pdata,Pg) = supf Ex∼Pdata [f (x)]−Ex∼Pg [f (x)]
= supf

∫
x(Pdata(x)−Pg(x))f (x)dx.

ahttps://vincentherrmann.github.io/blog/wasserstein/

W-GAN [1]: argminΘg maxΘf Ex∼Pdata [f (x)]−Ex∼Pg [f (x)]

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 94 / 132



Wasserstein GAN II
Theorem
Consider f ’s that are Lipschitz continuous with constant 1, i.e.,

|f (x)− f (x̂)| ≤ 1 · ‖x− x̂‖,∀x, x̂,

we have a

W(Pdata,Pg) = supf Ex∼Pdata [f (x)]−Ex∼Pg [f (x)]
= supf

∫
x(Pdata(x)−Pg(x))f (x)dx.

ahttps://vincentherrmann.github.io/blog/wasserstein/

W-GAN [1]: argminΘg maxΘf Ex∼Pdata [f (x)]−Ex∼Pg [f (x)]
Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 94 / 132



Alternate SGD for W-GAN

argminΘg maxΘf Ex∼Pdata [f (x)]−Ex∼Pg [f (x)]
= argminΘg maxΘf ∑n f (x(n))−∑m f (g(c(m)))

f a regressor without the sigmoid output layer

Initialize Θg for g and Θf for f

At each SGD step/iteration:
1 Repeat K times (with fixed Θg):

1 Sample N real points {x(n)}n from X and N codes from c∼N (0,I)
2 Θf ←Θf +η clip(∇Θf [∑n f (x(n))−∑m f (g(c(m)))])

2 Execute once (with fixed Θf ):
1 Sample N codes from c∼N (0,I)
2 Θg←Θg−η∇Θg [−∑m f (g(c(m)))]

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 95 / 132



Alternate SGD for W-GAN

argminΘg maxΘf Ex∼Pdata [f (x)]−Ex∼Pg [f (x)]
= argminΘg maxΘf ∑n f (x(n))−∑m f (g(c(m)))

f a regressor without the sigmoid output layer
Initialize Θg for g and Θf for f

At each SGD step/iteration:
1 Repeat K times (with fixed Θg):

1 Sample N real points {x(n)}n from X and N codes from c∼N (0,I)
2 Θf ←Θf +η clip(∇Θf [∑n f (x(n))−∑m f (g(c(m)))])

2 Execute once (with fixed Θf ):
1 Sample N codes from c∼N (0,I)
2 Θg←Θg−η∇Θg [−∑m f (g(c(m)))]

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 95 / 132



Why Gradient Clipping?

Update rule for Θf :

Θf ←Θf +η clip(∇Θf [∑
n

f (x(n))−∑
m

f (g(c(m)))])

Gradient clipping: ∀w ∈Θf , clip(w) = max(min(w,τ),−τ) for some
threshold τ > 0

Why?

In W-GAN, we have :

argminΘg W(Pdata,Pg)

= argminΘg maxΘf ∑n f (x(n))−∑m f (g(c(m)))

only if f is 1-Lipschitz continuous
Heuristics for making f 1-Lipchitz

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 96 / 132



Why Gradient Clipping?

Update rule for Θf :

Θf ←Θf +η clip(∇Θf [∑
n

f (x(n))−∑
m

f (g(c(m)))])

Gradient clipping: ∀w ∈Θf , clip(w) = max(min(w,τ),−τ) for some
threshold τ > 0

Why?
In W-GAN, we have :

argminΘg W(Pdata,Pg)

= argminΘg maxΘf ∑n f (x(n))−∑m f (g(c(m)))

only if f is 1-Lipschitz continuous

Heuristics for making f 1-Lipchitz

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 96 / 132



Why Gradient Clipping?

Update rule for Θf :

Θf ←Θf +η clip(∇Θf [∑
n

f (x(n))−∑
m

f (g(c(m)))])

Gradient clipping: ∀w ∈Θf , clip(w) = max(min(w,τ),−τ) for some
threshold τ > 0

Why?
In W-GAN, we have :

argminΘg W(Pdata,Pg)

= argminΘg maxΘf ∑n f (x(n))−∑m f (g(c(m)))

only if f is 1-Lipschitz continuous
Heuristics for making f 1-Lipchitz

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 96 / 132



Advantages of W-GAN

“Corrects” the inner max problem
Wasserstein distance guides g even when Pg and Pdata “disjointed”
Training less sensitive to K (balance between g and f )

The max value can be used as a “stop” indicator
f a regressor, avoids vanishing gradients for g

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 97 / 132



Improved W-GAN I
In practice, W-GAN training converges slowly and is unstable to τ

W-GAN use a small τ to make f 1-Lipschitz continuous
However, too small a τ severely limits the capacity of f such it cannot
actually maximize

max
Θf

Ex∼Pdata [f (x)]−Ex∼Pg [f (x)]

g is not updated for minimizing W(Pdata,Pg)

Distribution of weight values of f (τ = 0.01):

Exploding and vanishing gradients

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 98 / 132



Improved W-GAN I
In practice, W-GAN training converges slowly and is unstable to τ

W-GAN use a small τ to make f 1-Lipschitz continuous
However, too small a τ severely limits the capacity of f such it cannot
actually maximize

max
Θf

Ex∼Pdata [f (x)]−Ex∼Pg [f (x)]

g is not updated for minimizing W(Pdata,Pg)

Distribution of weight values of f (τ = 0.01):

Exploding and vanishing gradients

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 98 / 132



Improved W-GAN I
In practice, W-GAN training converges slowly and is unstable to τ

W-GAN use a small τ to make f 1-Lipschitz continuous
However, too small a τ severely limits the capacity of f such it cannot
actually maximize

max
Θf

Ex∼Pdata [f (x)]−Ex∼Pg [f (x)]

g is not updated for minimizing W(Pdata,Pg)

Distribution of weight values of f (τ = 0.01):

Exploding and vanishing gradients
Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 98 / 132



Improved W-GAN II
If f is 1-Lipschitz, then ‖∇f (x)‖ ≤ 1 for all x
Why not just panelize ‖∇f (x)‖> 1 for all x?
Cost function:

argminΘg maxΘf Ex∼Pdata [f (x)]−Ex∼Pg [f (x)]
−λEx∼Ppenalty [max(0,‖∇f (x)‖−1)]

Ppenalty?

W-GAN-GP [9]:

argmin
Θg

max
Θf

∑
n

f (x(n))−∑
m

f (g(c(m)))−λ ∑
p
(‖∇f (x(p))‖−1)2

The larger f (x(p)) the better (subject to ‖∇f (x(p))‖ ≤ 1)
Faster convergence

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 99 / 132



Improved W-GAN II
If f is 1-Lipschitz, then ‖∇f (x)‖ ≤ 1 for all x
Why not just panelize ‖∇f (x)‖> 1 for all x?
Cost function:

argminΘg maxΘf Ex∼Pdata [f (x)]−Ex∼Pg [f (x)]
−λEx∼Ppenalty [max(0,‖∇f (x)‖−1)]

Ppenalty?

W-GAN-GP [9]:

argmin
Θg

max
Θf

∑
n

f (x(n))−∑
m

f (g(c(m)))−λ ∑
p
(‖∇f (x(p))‖−1)2

The larger f (x(p)) the better (subject to ‖∇f (x(p))‖ ≤ 1)
Faster convergence

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 99 / 132



Improved W-GAN II
If f is 1-Lipschitz, then ‖∇f (x)‖ ≤ 1 for all x
Why not just panelize ‖∇f (x)‖> 1 for all x?
Cost function:

argminΘg maxΘf Ex∼Pdata [f (x)]−Ex∼Pg [f (x)]
−λEx∼Ppenalty [max(0,‖∇f (x)‖−1)]

Ppenalty?

W-GAN-GP [9]:

argmin
Θg

max
Θf

∑
n

f (x(n))−∑
m

f (g(c(m)))−λ ∑
p
(‖∇f (x(p))‖−1)2

The larger f (x(p)) the better (subject to ‖∇f (x(p))‖ ≤ 1)
Faster convergence

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 99 / 132



Results

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 100 / 132



Challenge: Global Coherence

Large images generated by GANs usually lack global coherency

Counting Perspective Shape

A CNN, when used as f , detects existence of patterns more than
their relative positions

f loses track of the position of a pattern after several pooling layers
Relative position of patterns in X may change due to different view
angels

Solutions? A better f , such as the CapsuleNet [38]?

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 101 / 132



Challenge: Global Coherence

Large images generated by GANs usually lack global coherency

Counting Perspective Shape

A CNN, when used as f , detects existence of patterns more than
their relative positions

f loses track of the position of a pattern after several pooling layers
Relative position of patterns in X may change due to different view
angels

Solutions? A better f , such as the CapsuleNet [38]?

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 101 / 132



Challenge: Global Coherence

Large images generated by GANs usually lack global coherency

Counting Perspective Shape

A CNN, when used as f , detects existence of patterns more than
their relative positions

f loses track of the position of a pattern after several pooling layers
Relative position of patterns in X may change due to different view
angels

Solutions?

A better f , such as the CapsuleNet [38]?

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 101 / 132



Challenge: Global Coherence

Large images generated by GANs usually lack global coherency

Counting Perspective Shape

A CNN, when used as f , detects existence of patterns more than
their relative positions

f loses track of the position of a pattern after several pooling layers
Relative position of patterns in X may change due to different view
angels

Solutions? A better f , such as the CapsuleNet [38]?

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 101 / 132



Progressive Growing of GANs [14]

Incrementally adds new layers in sequential GAN trainings
Convolution + upsampling for g each time
Convolution + downpooling for f each time

Real images are downscaled to match the current resolution of g

Goal: to let new layers add details without ruining the context

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 102 / 132



Progressive Growing of GANs [14]

Incrementally adds new layers in sequential GAN trainings
Convolution + upsampling for g each time
Convolution + downpooling for f each time

Real images are downscaled to match the current resolution of g

Goal: to let new layers add details without ruining the context

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 102 / 132



Transition when Adding a New Layer

Gradually increases α

New convolution layer in g/f learns to generate/detect details first
Then learns the “context”

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 103 / 132



Results

Minibatch discrimination [39] + W-GAN-GP [9] + progressive growing
[14] + other tricks
2∼ 6 times faster

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 104 / 132



Outline
1 Unsupervised Learning

Text Models
Image Models

2 ChatGPT

3 Autoencoders (AE)
Manifold Learning*

4 Variational Autoencoders (VAE)

5 Flow-based Models

6 Diffusion Models

7 Generative Adversarial Networks*
Basic Architecture
Challenges
More GANs

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 105 / 132



Code Space Arithmetics

DC-GAN [30] can learn to use codes in meaningful ways:

Finding codes for images with constraints [50, 3] Demo 1 Demo 2

argmin
c
‖mask(g(c))− constraint‖F

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 106 / 132

http://www.youtube.com/watch?v=9c4z6YsBGQ0
https://www.youtube.com/watch?v=FDELBFSeqQs


Code Space Arithmetics

DC-GAN [30] can learn to use codes in meaningful ways:

Finding codes for images with constraints [50, 3] Demo 1 Demo 2

argmin
c
‖mask(g(c))− constraint‖F

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 106 / 132

http://www.youtube.com/watch?v=9c4z6YsBGQ0
https://www.youtube.com/watch?v=FDELBFSeqQs


Conditional GAN I
Text to image synthesis [34]: X= {(x(n),φ (n))}n

“This bird is completely red with black wings and pointy beak.”

How?

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 107 / 132



Conditional GAN I
Text to image synthesis [34]: X= {(x(n),φ (n))}n

“This bird is completely red with black wings and pointy beak.”

How?

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 107 / 132



Conditional GAN II
Pitfall: g and f can choose to ignore the condition φ altogether
Solution?

Conditioned labeling

(x(n),φ (n))⇒ true
(x(n),φ ′)⇒ false,∀φ ′ 6= φ

(n)

(x̂(m),φ (m))⇒ false

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 108 / 132



Conditional GAN II
Pitfall: g and f can choose to ignore the condition φ altogether
Solution? Conditioned labeling

(x(n),φ (n))⇒ true
(x(n),φ ′)⇒ false,∀φ ′ 6= φ

(n)

(x̂(m),φ (m))⇒ false

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 108 / 132



Super Resolution [18]

g : low res img→ high res img
Training: c’s are downscaled images

No “creativity,” f acts as a better lose metric

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 109 / 132



Super Resolution [18]

g : low res img→ high res img
Training: c’s are downscaled images

No “creativity,” f acts as a better lose metric

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 109 / 132



Super Resolution [18]

g : low res img→ high res img
Training: c’s are downscaled images

No “creativity,” f acts as a better lose metric

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 109 / 132



Image-to-Image Translation [13] I

Given an image xsrc in source domain, generate image(s) xtarget in
target domain

xsrc and xtarget are semantically aligned

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 110 / 132



Image-to-Image Translation [13] II

Based on conditional GAN:
c = xsrc; g(c) = xtarget
Conditioned labels
Uses dropout layers to create diversity (if needed)

Requires paired examples X= {(x(n)src,x
(n)
target)}n

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 111 / 132



Image-to-Image Translation [13] II

Based on conditional GAN:
c = xsrc; g(c) = xtarget
Conditioned labels
Uses dropout layers to create diversity (if needed)

Requires paired examples X= {(x(n)src,x
(n)
target)}n

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 111 / 132



Unpaired Image-to-Image Translation I

What if the images in different domains are unpaired?
X= {x(n)src}n∪{x(n)target}n

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 112 / 132



Unpaired Image-to-Image Translation II
Cycle GAN [51]: to train two generators gsrc2target and gtarget2src
simultaneously in two GANs

Add a loss term ∑n ‖x
(n)
src−gtarget2src(gsrc2target(x

(n)
src))‖F and

∑n ‖x
(n)
target−gsrc2target(gtarget2src(x

(n)
target))‖F for gsrc2target and gtarget2src

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 113 / 132



Unpaired Image-to-Image Translation II
Cycle GAN [51]: to train two generators gsrc2target and gtarget2src
simultaneously in two GANs

Add a loss term ∑n ‖x
(n)
src−gtarget2src(gsrc2target(x

(n)
src))‖F and

∑n ‖x
(n)
target−gsrc2target(gtarget2src(x

(n)
target))‖F for gsrc2target and gtarget2src

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 113 / 132



How Does Cycle GAN Work?

Ideal: gsrc2target and gtarget2src learns to translate images
Reality: gsrc2target and gtarget2src learns to hide inoformation [6]

Unsupervised DNN models, including GANs, may not work as
one may expect quality?

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 114 / 132



How Does Cycle GAN Work?

Ideal: gsrc2target and gtarget2src learns to translate images

Reality: gsrc2target and gtarget2src learns to hide inoformation [6]

Unsupervised DNN models, including GANs, may not work as
one may expect quality?

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 114 / 132



How Does Cycle GAN Work?

Ideal: gsrc2target and gtarget2src learns to translate images
Reality: gsrc2target and gtarget2src learns to hide inoformation [6]

Unsupervised DNN models, including GANs, may not work as
one may expect quality?

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 114 / 132



How Does Cycle GAN Work?

Ideal: gsrc2target and gtarget2src learns to translate images
Reality: gsrc2target and gtarget2src learns to hide inoformation [6]

Unsupervised DNN models, including GANs, may not work as
one may expect quality?

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 114 / 132



Reference I

[1] Martin Arjovsky, Soumith Chintala, and Léon Bottou.
Wasserstein generative adversarial networks.
In International Conference on Machine Learning, pages 214–223,
2017.

[2] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell,
Jackson Kernion, Andy Jones, Anna Chen, Anna Goldie, Azalia
Mirhoseini, Cameron McKinnon, et al.
Constitutional ai: Harmlessness from ai feedback.
arXiv preprint arXiv:2212.08073, 2022.

[3] Andrew Brock, Theodore Lim, JM Ritchie, and Nick Weston.
Neural photo editing with introspective adversarial networks.
arXiv preprint arXiv:1609.07093, 2016.

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 115 / 132



Reference II

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D
Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish
Sastry, Amanda Askell, et al.
Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901,
2020.

[5] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T
Freeman.
Maskgit: Masked generative image transformer.
In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11315–11325, 2022.

[6] Casey Chu, Andrey Zhmoginov, and Mark Sandler.
Cyclegan, a master of steganography.
arXiv preprint arXiv:1712.02950, 2017.

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 116 / 132



Reference III

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language
understanding.
arXiv preprint arXiv:1810.04805, 2018.

[8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial nets.
In Advances in Neural Information Processing Systems, pages
2672–2680, 2014.

[9] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin,
and Aaron Courville.
Improved training of wasserstein gans.
arXiv preprint arXiv:1704.00028, 2017.

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 117 / 132



Reference IV

[10] Jonathan Ho, Ajay Jain, and Pieter Abbeel.
Denoising diffusion probabilistic models.
Advances in neural information processing systems, 33:6840–6851,
2020.

[11] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena
Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas,
Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models.
arXiv preprint arXiv:2203.15556, 2022.

[12] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi
Li, Shean Wang, Lu Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models.
arXiv preprint arXiv:2106.09685, 2021.

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 118 / 132



Reference V

[13] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros.
Image-to-image translation with conditional adversarial networks.
arXiv preprint arXiv:1611.07004, 2016.

[14] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.
Progressive growing of gans for improved quality, stability, and
variation.
arXiv preprint arXiv:1710.10196, 2017.

[15] Diederik P Kingma and Max Welling.
Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114, 2013.

[16] Durk P Kingma and Prafulla Dhariwal.
Glow: Generative flow with invertible 1x1 convolutions.
Advances in neural information processing systems, 31, 2018.

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 119 / 132



Reference VI

[17] Quoc V Le and Tomas Mikolov.
Distributed representations of sentences and documents.
In ICML, volume 14, pages 1188–1196, 2014.

[18] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew
Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani,
Johannes Totz, Zehan Wang, et al.
Photo-realistic single image super-resolution using a generative
adversarial network.
arXiv preprint arXiv:1609.04802, 2016.

[19] Daniel D Lee and H Sebastian Seung.
Learning the parts of objects by non-negative matrix factorization.
Nature, 401(6755):788–791, 1999.

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 120 / 132



Reference VII

[20] Daniel D Lee and H Sebastian Seung.
Algorithms for non-negative matrix factorization.
In Advances in neural information processing systems, pages 556–562,
2001.

[21] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni,
Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis,
Wen-tau Yih, Tim Rocktäschel, et al.
Retrieval-augmented generation for knowledge-intensive nlp tasks.
Advances in Neural Information Processing Systems, 33:9459–9474,
2020.

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 121 / 132



Reference VIII

[22] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro
Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick.
Microsoft coco: Common objects in context.
In Computer Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part V 13, pages
740–755. Springer, 2014.

[23] Calvin Luo.
Understanding diffusion models: A unified perspective.
arXiv preprint arXiv:2208.11970, 2022.

[24] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein.
Unrolled generative adversarial networks.
arXiv preprint arXiv:1611.02163, 2016.

[25] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781, 2013.

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 122 / 132



Reference IX

[26] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean.
Distributed representations of words and phrases and their
compositionality.
In Advances in neural information processing systems, pages
3111–3119, 2013.

[27] Varun Nair, Elliot Schumacher, Geoffrey Tso, and Anitha Kannan.
Dera: enhancing large language model completions with
dialog-enabled resolving agents.
arXiv preprint arXiv:2303.17071, 2023.

[28] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang,
Christina Kim, Christopher Hesse, Shantanu Jain, Vineet Kosaraju,
William Saunders, et al.
Webgpt: Browser-assisted question-answering with human feedback.
arXiv preprint arXiv:2112.09332, 2021.

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 123 / 132



Reference X

[29] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll
Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal,
Katarina Slama, Alex Ray, et al.
Training language models to follow instructions with human feedback.
Advances in Neural Information Processing Systems, 35:27730–27744,
2022.

[30] Alec Radford, Luke Metz, and Soumith Chintala.
Unsupervised representation learning with deep convolutional
generative adversarial networks.
arXiv preprint arXiv:1511.06434, 2015.

[31] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever,
et al.
Improving language understanding by generative pre-training.
OpenAI blog, 2018.

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 124 / 132



Reference XI

[32] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei,
Ilya Sutskever, et al.
Language models are unsupervised multitask learners.
OpenAI blog, 2019.

[33] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark
Chen.
Hierarchical text-conditional image generation with clip latents.
arXiv preprint arXiv:2204.06125, 2022.

[34] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran,
Bernt Schiele, and Honglak Lee.
Generative adversarial text to image synthesis.
arXiv preprint arXiv:1605.05396, 2016.

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 125 / 132



Reference XII

[35] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua
Bengio.
Contractive auto-encoders: Explicit invariance during feature
extraction.
In Proceedings of the 28th international conference on machine
learning (ICML-11), pages 833–840, 2011.

[36] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser,
and Björn Ommer.
High-resolution image synthesis with latent diffusion models.
In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 10684–10695, 2022.

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 126 / 132



Reference XIII

[37] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
U-net: Convolutional networks for biomedical image segmentation.
In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference, Munich,
Germany, October 5-9, 2015, Proceedings, Part III 18, pages 234–241.
Springer, 2015.

[38] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton.
Dynamic routing between capsules.
In Advances in Neural Information Processing Systems, pages
3857–3867, 2017.

[39] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec
Radford, and Xi Chen.
Improved techniques for training gans.
In Advances in Neural Information Processing Systems, pages
2226–2234, 2016.

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 127 / 132



Reference XIV

[40] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade
Gordon, Ross Wightman, Mehdi Cherti, Theo Coombes, Aarush
Katta, Clayton Mullis, Mitchell Wortsman, et al.
Laion-5b: An open large-scale dataset for training next generation
image-text models.
Advances in Neural Information Processing Systems, 35:25278–25294,
2022.

[41] Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert
Kaczmarczyk, Clayton Mullis, Aarush Katta, Theo Coombes, Jenia
Jitsev, and Aran Komatsuzaki.
Laion-400m: Open dataset of clip-filtered 400 million image-text
pairs.
arXiv preprint arXiv:2111.02114, 2021.

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 128 / 132



Reference XV

[42] Or Sharir, Barak Peleg, and Yoav Shoham.
The cost of training nlp models: A concise overview.
arXiv preprint arXiv:2004.08900, 2020.

[43] Patrice Simard, Bernard Victorri, Yann LeCun, and John S Denker.
Tangent prop-a formalism for specifying selected invariances in an
adaptive network.
In NIPS, volume 91, pages 895–903, 1991.

[44] Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals,
Alex Graves, et al.
Conditional image generation with pixelcnn decoders.
In Advances in Neural Information Processing Systems, pages
4790–4798, 2016.

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 129 / 132



Reference XVI

[45] Aaron Van Oord, Nal Kalchbrenner, and Koray Kavukcuoglu.
Pixel recurrent neural networks.
In International Conference on Machine Learning, pages 1747–1756,
2016.

[46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin.
Attention is all you need.
Advances in neural information processing systems, 30, 2017.

[47] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine
Manzagol.
Extracting and composing robust features with denoising
autoencoders.
In Proceedings of the 25th international conference on Machine
learning, pages 1096–1103. ACM, 2008.

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 130 / 132



Reference XVII

[48] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph,
Sebastian Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou,
Donald Metzler, et al.
Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

[49] Matthew D Zeiler and Rob Fergus.
Visualizing and understanding convolutional networks.
In European conference on computer vision, pages 818–833. Springer,
2014.

[50] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A Efros.
Generative visual manipulation on the natural image manifold.
In European Conference on Computer Vision, pages 597–613.
Springer, 2016.

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 131 / 132



Reference XVIII

[51] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros.
Unpaired image-to-image translation using cycle-consistent adversarial
networks.
arXiv preprint arXiv:1703.10593, 2017.

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 132 / 132


	Unsupervised Learning
	Text Models
	Image Models

	ChatGPT
	Autoencoders (AE)
	Manifold Learning*

	Variational Autoencoders (VAE)
	Flow-based Models
	Diffusion Models
	Generative Adversarial Networks*
	Basic Architecture
	Challenges
	More GANs


