Unsupervised Learning & Generative AI

Shan-Hung Wu shwu@cs.nthu.edu.tw

Department of Computer Science, National Tsing Hua University, Taiwan

Machine Learning

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 1 / 132

Outline

1 Unsupervised Learning

- Text Models
- Image Models
- 2 ChatGPT
- 3 Autoencoders (AE)
 - Manifold Learning*
- 4 Variational Autoencoders (VAE)
- 5 Flow-based Models
- 6 Diffusion Models
- 7 Generative Adversarial Networks*
 - Basic Architecture
 - Challenges
 - More GANs

Shan-Hung Wu (CS, NTHU)

Outline

Unsupervised Learning Text Models

Image Models

2 ChatGPT

- Autoencoders (AE)
 Manifold Learning*
- 4 Variational Autoencoders (VAE)
- 5 Flow-based Models
- 6 Diffusion Models
- 7 Generative Adversarial Networks*
 - Basic Architecture
 - Challenges
 - More GANs

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning

- Dataset: $\mathbb{X} = \{\mathbf{x}^{(i)}\}_{i}$, where $\mathbf{x}^{(i)}$'s are i.i.d. samples of \mathbf{x}
 - No supervision $y^{(i)}$ (labels)
- What can we learn without labels?

Unsupervised Learning

- Dataset: $\mathbb{X} = \{ \mathbf{x}^{(i)} \}_i$, where $\mathbf{x}^{(i)}$'s are i.i.d. samples of \mathbf{x}
 - No supervision $y^{(i)}$ (labels)
- What can we learn without labels? The structures in $\mathbb X$
 - Inter-sample structures
 - Intra-sample structures

Clustering I

• Goal: to divide $x^{(i)}$'s into K groups/*clusters*

• Based on some similarity/distance measure between $\pmb{x}^{(i)}$ and $\pmb{x}^{(j)}$

Shan-Hung Wu (CS, NTHU)

Clustering II

• *K*-means algorithm (*K* fixed): iteratively move clusterheads until convergence

Clustering II

• *K*-means algorithm (*K* fixed): iteratively move clusterheads until convergence

• Hierarchical clustering (variable *K*): iteratively merge two points/groups,then cut

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI

Factorization for Tabular $\mathbb X$

• Let X be a rating matrix where $X_{i,:} = x^{(i)}$

• Goal: to approximate X with a dense matrix $\hat{X} = WH$

- To make recommendations based on $\hat{X}_{i,:}$ for user i, known as **collaborative filtering**
- How?

Factorization for Tabular $\mathbb X$

• Let X be a rating matrix where $X_{i,:} = x^{(i)}$

• Goal: to approximate X with a dense matrix $\hat{X} = WH$

- To make recommendations based on $\hat{X}_{i,:}$ for user *i*, known as *collaborative filtering*
- How? Non-negative matrix factorization (NMF) [19, 20]:

$$\arg\min_{W\geq O, H\geq O} \|X-WH\|_F$$

7/132

• So, positive elements in *W* and *H* can be seen as *factor* degrees Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning

Dimension Reduction

Goal: to learn a low dimensional representation z of x
 E.g., PCA

Shan-Hung Wu (CS, NTHU)

Self-Supervised Learning

• Goal: to learn a model that is able to "fill in the blanks"

Self-Supervised Learning

- Goal: to learn a model that is able to "fill in the blanks"
- Links unsupervised tasks with supervised models
 - Much more training data for models
 - Representation learning with deep networks

Example I: Word2Vec

• Goal: to learn a model for blank filling

Example I: Word2Vec

• Goal: to learn a model for blank filling

• E.g., word2vec [26, 25]: "... the cat sat <u>on</u>..."

Shan-Hung Wu (CS, NTHU)

Example I: Word2Vec

- Goal: to learn a model for blank filling
 - E.g., word2vec [26, 25]: "... the cat sat <u>on</u>..."

- Latent representation h encodes the semantics of a word
 - No need for synonym dictionary; big data tell that already

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 10 / 132

Example II: Doc2Vec

• How to encode a document?

Example II: Doc2Vec

- How to encode a document?
- Bag of words (TF-IDF), average word2vec, etc.
 - Do *not* capture the semantics due to sentence/paragraph/doc structure
 - "John likes Mary" ≠ "Mary likes John"

Example II: Doc2Vec

- How to encode a document?
- Bag of words (TF-IDF), average word2vec, etc.
 - Do *not* capture the semantics due to sentence/paragraph/doc structure
 - "John likes Mary" ≠ "Mary likes John"
- Why not apply self-supervised learning to docs?
 - Doc2vec [17]: to capture the *context* not explained by words
 - Transductive rather than inductive; does not work with unseen docs

Shan-Hung Wu (CS, NTHU)

Generative Models

- ullet Goal: to generate new samples of $oldsymbol{x}$
 - Can be conditioned on instructions (input)
- Largely based on self-supervised learning

Shan-Hung Wu (CS, NTHU)

Outline

Unsupervised Learning Text Models

- Image Models
- 2 ChatGPT
- Autoencoders (AE)
 Manifold Learning*
- 4 Variational Autoencoders (VAE)
- 5 Flow-based Models
- 6 Diffusion Models
- 7 Generative Adversarial Networks*
 - Basic Architecture
 - Challenges
 - More GANs

Shan-Hung Wu (CS, NTHU)

Generating Text

- With large (self-supervised) training data, *transformers* [46] have shown to perform better than RNNs and CNNs
 - Mainly due to the O(1) point distance
- Two common text models based on transformer:
 - BERT [7]: non-autoregressive
 - GPT [31]: autoregressive

BERT [7]

- Massively trained *encoder* of the original transformer
 - Non-autoregressive
- Pre-training tasks:
 - Masked language model ("Cloze" task)
 - "A quick brown [MASK] jumps over the lazy dog" \rightarrow "fox" 11%, "ant" 5%, ...
 - Next sentence prediction
 - "[MASK] go to store [SEP] to buy a [MASK] of milk" \rightarrow True 93%, False 7%

One Pre-training, Multiple Fine-tuning Tasks

• Special input to identify downstream task: [CLS] token

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architectures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating questions/answers).

GPT [31]

- Massively trained *decoder* of the original transformer
 - Autoregressive
- Multitask pre-training by maximizing Pr(output|input, task):
 - Translation: Pr(french text|en text, translation)
 - $\bullet~$ Question answering: $Pr(answer|question, \ensuremath{\mathsf{qa}})$
 - Reading comprehension: Pr(answer|document, question, reading)
- Usage for downstream task: fine-tuning or *prompting*

Autoregressive or Not?

It's easier for an autoregressive model to generate coherent textIn this lecture, we focus on GPT and its variants

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 18 / 132

Outline

1 Unsupervised Learning

- Text Models
- Image Models
- 2 ChatGPT
- Autoencoders (AE)
 Manifold Learning*
- 4 Variational Autoencoders (VAE)
- 5 Flow-based Models
- 6 Diffusion Models
- 7 Generative Adversarial Networks*
 - Basic Architecture
 - Challenges
 - More GANs

Shan-Hung Wu (CS, NTHU)

Autoregressive or Not?

- Autoregressive models can still give good (if not better) performance
 E.g., PixelRNN [45], PixelCNN [44], or MaskGIT [5]
- But unlike in text domain, generating images pixel-by-pixel is very slow
- Speed-up?
 - Scheduled *parallel-pixel* generation (e.g., MaskGIT)
 - **Stepwise** generation of **whole** images (e.g., flow-based and diffusion models)

20 / 132

Whole-Image Generation I

- Goal: given X, to learn a *generator function* g such that $\hat{x} = g(c; \Theta_g)$ looks like a real image in X
 - c is a code or condition
 - Θ_g represents parameters of g
- Objective from Information Theory perspective:

$$\arg\min_{g} \mathbf{D}(\mathbf{P}_{\mathsf{data}} \| \mathbf{P}_{g})$$

- ${\ensuremath{\,\circ\,}} \ P_{\text{data}}$ is the distribution of real data in the ground truth
- $\bullet~{\bf P}_g$ is the distribution of generated data
- $\bullet~D$ is a divergence measure, e.g., D_{KL}

Whole-Image Generation I

- Goal: given X, to learn a *generator function* g such that $\hat{x} = g(c; \Theta_g)$ looks like a real image in X
 - c is a code or condition
 - Θ_g represents parameters of g
- Objective from Information Theory perspective:

$$\arg\min_{g} \mathbf{D}(\mathbf{P}_{\mathsf{data}} \| \mathbf{P}_{g})$$

- ${\ensuremath{\,\circ\,}} \ P_{\text{data}}$ is the distribution of real data in the ground truth
- $\bullet~{\bf P}_g$ is the distribution of generated data
- $\bullet~D$ is a divergence measure, e.g., D_{KL}
- Why not $D_{\mathsf{KL}}(\mathbf{P}_g \| \mathbf{P}_{\mathsf{data}})$?

Whole-Image Generation II

• Minimizing $D_{\mathsf{KL}}(P_{\mathsf{data}} \| P_g)$ amounts to maximizing $P(\mathbb{X} | \Theta_g)$, the log likelihood of Θ_g :

$$\begin{array}{lll} g^{*} &=& \arg\min_{g} D_{\mathsf{KL}}(\mathsf{P}_{\mathsf{data}} \| \mathsf{P}_{g}) \\ &=& \arg\max_{g} \mathsf{E}_{\mathbf{x} \sim \mathsf{P}_{\mathsf{data}}}[\log \mathsf{P}_{g}(\mathbf{x})] + \mathsf{H}(\mathbf{x} \sim \mathsf{P}_{\mathsf{data}}) \\ &=& \arg\max_{g} \mathsf{E}_{\mathbf{x} \sim \mathsf{P}_{\mathsf{data}}}[\log \mathsf{P}_{g}(\mathbf{x})] \\ &\approx& \arg\max_{g} \sum_{\mathbf{x}^{(i)} \in \mathbb{X}} \log \mathsf{P}_{g}(\mathbf{x}^{(i)}) \\ &=& \arg\max_{g} \log \prod_{\mathbf{x}^{(i)} \in \mathbb{X}} \mathsf{P}_{g}(\mathbf{x}^{(i)}) \end{array}$$

$$\begin{aligned} \Theta_g^* &= \arg \max_{\Theta_g} \log \prod_{\mathbf{x}^{(i)} \in \mathbb{X}} \mathrm{P}(\mathbf{x}^{(i)} | \Theta_g) \\ &= \arg \max_{\Theta_g} \log \mathrm{P}(\mathbb{X} | \Theta_g) \end{aligned}$$

• Other divergence measures can lead to similar results

Shan-Hung Wu (CS, NTHU)

Common Whole-Image Generation Methods

• Autoencoder (single-step: $\hat{x} = g(c)$)

- Pros: easy
- Cons: but no creativity, blurry images
- Variational Autoencoder (single-step: $\hat{x} = g(c)$)
 - Pros: creative
 - Cons: only maximizes a lower bound of $P(\mathbb{X}|\Theta_g)$; blurry images
- ${}$ Flow-based methods (multi-step: $\hat{\pmb{x}}=g^{(T)}(\cdots g^{(2)}(g^{(1)}(\pmb{c})))$)
 - Pros: maximizes $P(\mathbb{X}|\Theta_g)$ directly
 - $\bullet\,$ Cons: limited expressiveness of g for invertibility; slow training and inference
- GANs (single-step: $\hat{x} = g(c)$)
 - Pros: good image quality (sharp and coherent)
 - Cons: difficult to train (convergence issue, mode collapse, vanishing gradients, etc.)
- \bullet Diffusion models (multi-step: $\hat{\pmb{x}}=g^{(T)}(\cdots g^{(2)}(g^{(1)}(\pmb{c})))$)
 - Pros: good image quality; efficient & stable to train, can be made conditional easily
 - Cons: slow inference

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI

Machine Learning 23 / 132

Outline

Unsupervised Learning

 Text Models

Image Models

2 ChatGPT

- Autoencoders (AE)
 Manifold Learning*
- 4 Variational Autoencoders (VAE)
- 5 Flow-based Models
- 6 Diffusion Models
- 7 Generative Adversarial Networks*
 - Basic Architecture
 - Challenges
 - More GANs

Shan-Hung Wu (CS, NTHU)

Evolutions

• 2018 GPTv1 [31]

- Self-supervised pre-training
- 2019 GPTv2 [32]
 - Multitask pre-training
- 2020 GPTv3 [4]
 - Few-shot & in-context learning
- 2022 GPTv3.5 [29]
 - Alignment using (supervised) instruction tuning + reinforcement learning from human feedback (RLHF)
- 2023 GPT4: mixture of experts

GPTv1 [31]

- Aims at 2-step training process:
 - Self-supervised pre-training on unlabeled data
 - To predict next word in a sentence (language model)
 - 2 Discriminative fine-tuning on labeled data in downstream tasks
 - Here, fine-tuning could also mean training a new model based on extracted features

Example Fine-tuning Tasks

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 27 / 132
Does Self-supervised Pre-training Help?

Table 5: Analysis of various model ablations on different tasks. Avg. score is a unweighted average of all the results. (*mc*= Mathews correlation, *acc*=Accuracy, *pc*=Pearson correlation)

Method	Avg. Score	CoLA (mc)	SST2 (acc)	MRPC (F1)	STSB (pc)	QQP (F1)	MNLI (acc)	QNLI (acc)	RTE (acc)
Transformer w/ aux LM (full)	74.7	45.4	91.3	82.3	82.0	70.3	81.8	88.1	56.0
Transformer w/o pre-training Transformer w/o aux LM LSTM w/ aux LM	59.9 75.0 69.1	18.9 47.9 30.3	84.0 92.0 90.5	79.4 84.9 83.2	30.9 83.2 71.8	65.5 69.8 68.1	75.7 81.1 73.7	71.2 86.9 81.1	53.8 54.4 54.6

GPTv2 [32]

- Many NLP tasks can be formulated as the problem of maximizing Pr(output|input, task)
 - Translation: Pr(french text|en text, translation)
 - Question answering: Pr(answer|question, qa)
 - Reading comprehension: Pr(answer|document, question, reading)
- GPTv3 [4]: few-shot & in-context learning
- GPTv3.5 [29]: *alignment* using (supervised) instruction tuning & reinforcement learning from human feedback (RLHF)
- GPT4: mixture of experts

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 29 / 132

GPTv3 [4]

- The model learns from few shots (examples), even *in context*
 - Enables *prompting* techniques for downstream tasks
 - E.g., few shots, chain of thought (CoT), or simply "Let's work this out step-by-step to ensure the answer is correct"

Figure 1.1: Language model meta-learning. During unsupervised pre-training, a language model develops a broad set of skills and pattern recognition abilities. It then uses these abilities at inference time to rapidly adapt to or recognize the desired task. We use the term "in-context learning" to describe the inner loop of this process, which occurs within the forward-pass upon each sequence. The sequences in this diagram are not intended to be representative of the data a model would see during pre-training, but are intended to show that there are sometimes repeated sub-tasks embedded within a single sequence.

Shan-Hung Wu (CS, NTHU)

Zero/Few Shot Prompting vs. Fine-tuning

Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

Translate English to French:	← task description
cheese =>	← prompt

One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 31 / 132

Performance vs. Model Size

Figure 3.3: On TriviaQA GPT3's performance grows smoothly with model size, suggesting that language models continue to absorb knowledge as their capacity increases. One-shot and few-shot performance make significant gains over zero-shot behavior, matching and exceeding the performance of the SOTA fine-tuned open-domain model, RAG [LPP⁺20]

Shan-Hung Wu (CS, NTHU)

GPTv3.5 [29]

- From GPT to "ChatGPT" through *alignment*
 - Supervised (multi-task) instruction tuning
 - Reinforcement learning from human feedback (RLHF)

Step 1 Collect demonstration data, and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Step 2

Collect comparison data, and train a reward model.

This data is used to train our reward model.

0.0.0.0

Step 3

Optimize a policy against the reward model using reinforcement learning.

Shan-Hung Wu (CS, NTHU)

Sizes of Large Language Models (LLMs)

• Training costs [42]:

- 110M params: \$2.5k-\$50k
- 340M params: \$10k-\$200k
- 1.5B param: \$80k-\$1.6m

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 34 / 132

Size Does Matter!

• Emerging abilities of LLMs [48]

• A balance: 70B parameters + 1.4T training tokens [11]

Shan-Hung Wu (CS, NTHU)

GPT Variants

- Low-rank adaptation (LoRA) [12]: to efficiently fine-tune LLMs
- WebGPT [28]: GPT that can search the web
- Retrieval-augmented generation (RAG) [21]: GPT to query external knowledge (vector) base
- GPTs that can reflect on their answers [2, 27]

Outline

- 1 Unsupervised Learning
 - Text Models
 - Image Models
- 2 ChatGPT

Autoencoders (AE) Manifold Learning*

4 Variational Autoencoders (VAE)

- 5 Flow-based Models
- 6 Diffusion Models
- 7 Generative Adversarial Networks*
 - Basic Architecture
 - Challenges
 - More GANs

Shan-Hung Wu (CS, NTHU)

Autoencoders (AE)

- **Encoder**: to learn a low dimensional representation \mathbf{c} (called **code**) of input \mathbf{x}
- **Decoder**: to reconstruct \mathbf{x} from \mathbf{c}
- Objective: $\arg \max_{\Theta} \log P(\mathbb{X} | \Theta) = \arg \max_{\Theta} \sum_{i} \log P(\mathbf{x}^{(i)} | \Theta)$
- Assuming that $\mathbf{x} \sim \mathcal{N}(\mu, \cdot)$, we have linear output units $a^{(L)} = z^{(L)} = \hat{\mu}$
 - $\log P(\mathbf{x}^{(i)} | \Theta) \propto \|\mathbf{x}^{(i)} \mathbf{a}^{(i,L)}\|^2$
 - $\arg \max_{\Theta} \sum_{i} \log P(\mathbf{x}^{(i)} | \Theta) = \arg \min_{\Theta} \sum_{i} ||\mathbf{x}^{(i)} \mathbf{a}^{(i,L)}||^2$ (minimizing reconstruct error)

• Convolution + deconvolution layers:

• Convolution + deconvolution layers:

• Decoder is a simplified DeconvNet [49] trained from scratch:

• Convolution + deconvolution layers:

• Decoder is a simplified DeconvNet [49] trained from scratch:

 $\, \bullet \,$ Uppooling $\, \rightarrow \,$ upsampling (no need to remember max positions)

• Convolution + deconvolution layers:

- Decoder is a simplified DeconvNet [49] trained from scratch:
 - Uppooling ightarrow upsampling (no need to remember max positions)
 - $\bullet \ \ \mathsf{Deconvolution} \rightarrow \mathsf{convolution}$

Shan-Hung Wu (CS, NTHU)

Codes & Reconstructed x

• A 32-bit code can roughly represents a 32×32 (1024 dimensional) MNIST image

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning

40 / 132

Outline

- 1 Unsupervised Learning
 - Text Models
 - Image Models
- 2 ChatGPT

Autoencoders (AE) Manifold Learning*

4 Variational Autoencoders (VAE)

- 5 Flow-based Models
- 6 Diffusion Models
- 7 Generative Adversarial Networks*
 - Basic Architecture
 - Challenges
 - More GANs

Shan-Hung Wu (CS, NTHU)

Manifolds I

 In many applications, data concentrate around one or more low-dimensional *manifolds*

Manifolds I

- In many applications, data concentrate around one or more low-dimensional *manifolds*
- A manifold is a topological space that are *linear locally*

Manifolds II

- For each point *x* on a manifold, we have its *tangent space* spanned by *tangent vectors*
 - Local directions specify how one can change x infinitesimally while staying on the manifold

Learning Manifolds I

• How to make **c** produced by autoencoders denote a *coordinate* of a dimensional manifold?

Learning Manifolds I

- How to make c produced by autoencoders denote a *coordinate* of a dimensional manifold?
- Contractive autoencoder [35]: regularizes the code c such that it is invariant to local changes of x:

$$\Omega(\mathbf{c}) = \sum_{i} \left\| \frac{\partial \boldsymbol{c}^{(i)}}{\partial \boldsymbol{x}^{(i)}} \right\|_{F}^{2}$$

• $\partial m{c}^{(i)}/\partial m{x}^{(i)}$ is a Jacobian matrix

Learning Manifolds I

- How to make c produced by autoencoders denote a *coordinate* of a dimensional manifold?
- Contractive autoencoder [35]: regularizes the code c such that it is invariant to local changes of x:

$$\Omega(\mathbf{c}) = \sum_{i} \left\| \frac{\partial \boldsymbol{c}^{(i)}}{\partial \boldsymbol{x}^{(i)}} \right\|_{F}^{2}$$

• $\partial m{c}^{(i)}/\partial m{x}^{(i)}$ is a Jacobian matrix

- ${\ensuremath{\,\circ\,}}$ Hence, c represents only the variations needed to reconstruct x
 - $\bullet\,$ I.e., c changes most along tangent vectors

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI Mac

Machine Learning 44 / 132

Learning Manifolds II

• In practice, it is easier to train a denoising autoencoder [47]:

Learning Manifolds II

• In practice, it is easier to train a denoising autoencoder [47]:

- Encoder: to encode x with random noises
- Decoder: to reconstruct x without noises

- The code c represents a coordinate on a low dimensional manifold
 E.g., the blue line
- How to get the tangent vectors of a given c?

Shan-Hung Wu (CS, NTHU)

• Recall: directions in the input space that *changes c most* should be tangent vectors

Shan-Hung Wu (CS, NTHU)

- Recall: directions in the input space that *changes c most* should be tangent vectors
- Given a point x, let c be the code of x and $J(x) = \frac{\partial c}{\partial x}$ be the Jacobian matrix of c at x

Shan-Hung Wu (CS, NTHU)

- Recall: directions in the input space that changes c most should be tangent vectors
- Given a point x, let c be the code of x and $J(x) = \frac{\partial c}{\partial x}$ be the Jacobian matrix of c at x
 - **J**(**x**) summarizes how **c** changes in terms of **x**

- Recall: directions in the input space that changes c most should be tangent vectors
- Given a point x, let c be the code of x and $J(x) = \frac{\partial c}{\partial x}$ be the Jacobian matrix of c at x
 - **J**(**x**) summarizes how **c** changes in terms of **x**
- ① Decompose J(x) using SVD such that $J(x) = UDV^{\top}$
- 2 Let tangent vectors be rows of V corresponding to the largest singular values in D

- In practice, J(x) usually has few large singular values
- Tangent vectors found by contractive/denoising autoencoders:

- In practice, J(x) usually has few large singular values
- Tangent vectors found by contractive/denoising autoencoders:

- Can be used by Tangent Prop [43]:
- Let $\{\mathbf{v}^{(i,j)}\}_j$ be tangent vectors of each example $\mathbf{x}^{(i)}$
- Trains an NN classifier f with cost penalty: $\Omega[f] = \sum_{i,j} \nabla_{\mathbf{x}} f(\mathbf{x}^{(i)})^\top \mathbf{v}^{(i,j)}$
 - Points in the same manifold share the same label

Outline

- 1 Unsupervised Learning
 - Text Models
 - Image Models
- 2 ChatGPT
- Autoencoders (AE)
 Manifold Learning*

4 Variational Autoencoders (VAE)

- 5 Flow-based Models
- 6 Diffusion Models
- 7 Generative Adversarial Networks*
 - Basic Architecture
 - Challenges
 - More GANs

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 49 / 132

Problems of Autoencoder I

• Ideally, the decoder of an autoencoder can be used to generate images even with *synthetic codes*

Problems of Autoencoder I

• Ideally, the decoder of an autoencoder can be used to generate images even with *synthetic codes*

- $\bullet\,$ In reality, the learnt c in code space has many "holes" that fail to map to images
 - More complex image patterns
 - Training data are never enough

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 50

Problems of Autoencoder II

• Blurry images: the objective

$$\arg\max_{\Theta} \sum_{i} \log P(\boldsymbol{x}^{(i)} | \Theta) = \arg\min_{\Theta} \sum_{i} \|\boldsymbol{x}^{(i)} - \boldsymbol{a}^{(i,L)}\|^2$$

does not panelize Gaussian pixel noises in $a^{(i,L)}$

Variational Autoencoders (VAE) [15]

- Encoder $f(\cdot; \Theta_f)$: maps each sample of **x** (i.e., $\mathbf{x}^{(i)} \in \mathbb{X}$) to an *axis-aligned normal distribution* $\mathcal{N}(\mu, \sigma)$
 - Each code dimension is independent with each other

•
$$f(\mathbf{x}) = (\boldsymbol{\mu}, \boldsymbol{\sigma})$$

- Decoder $g(\cdot; \Theta_g)$: same as that of AE
- How to minimize the objective $\arg \max_{\Theta_f, \Theta_g} \log P(\mathbb{X} | \Theta_f, \Theta_g))$?

VAE Objective

Objective:

 $\arg \max_{\Theta_f,\Theta_g} \log P(\mathbb{X} \mid \Theta_f,\Theta_g) = \arg \max_{\Theta_f,\Theta_g} \sum_i \log P(\boldsymbol{x}^{(i)} \mid \Theta_f,\Theta_g)$

• Considering $\log P(\mathbf{x})$ for any sample \mathbf{x} , we have

$$\begin{split} \log \mathsf{P}(\mathbf{x}) &= \int_{c} \mathsf{Q}(c|\mathbf{x}) \log \mathsf{P}(\mathbf{x}) \frac{dc}{P(c|\mathbf{x})} / \mathsf{Q} \text{ can be any distribution} \\ &= \int_{c} \mathsf{Q}(c|\mathbf{x}) \log \left(\frac{\mathsf{P}(c|\mathbf{x})}{\mathsf{P}(c|\mathbf{x})}\right) dc = \int_{c} \mathsf{Q}(c|\mathbf{x}) \log \left(\frac{\mathsf{P}(c|\mathbf{x})}{\mathsf{Q}(c|\mathbf{x})}\right) \frac{\mathbf{Q}(c|\mathbf{x})}{\mathsf{P}(c|\mathbf{x})}\right) dc \\ &= \int_{c} \mathsf{Q}(c|\mathbf{x}) \log \left(\frac{\mathsf{P}(c|\mathbf{x})}{\mathsf{Q}(c|\mathbf{x})}\right) dc + \int_{c} \mathsf{Q}(c|\mathbf{x}) \log \left(\frac{\mathsf{Q}(c|\mathbf{x})}{\mathsf{P}(c|\mathbf{x})}\right) dc \\ &= \int_{c} \mathsf{Q}(c|\mathbf{x}) \log \left(\frac{\mathsf{P}(c|\mathbf{x})}{\mathsf{Q}(c|\mathbf{x})}\right) dc + \mathsf{D}_{\mathsf{KL}} \left(\mathsf{Q}(\mathbf{c}|\mathbf{x}) ||\mathsf{P}(\mathbf{c}|\mathbf{x})\right) \\ &\geq \int_{c} \mathsf{Q}(c|\mathbf{x}) \log \left(\frac{\mathsf{P}(c|\mathbf{x})}{\mathsf{Q}(c|\mathbf{x})}\right) dc / / \text{ lower bound} \\ &= \int_{c} \mathsf{Q}(c|\mathbf{x}) \log \left(\frac{\mathsf{P}(c|\mathbf{x})}{\mathsf{Q}(c|\mathbf{x})}\right) dc \end{split}$$

• VAE lets
$$Q(\cdot | \mathbf{x}) = \mathcal{N}(f(\mathbf{x}; \Theta_f))$$
 and $P(\cdot | \mathbf{c}) = \mathcal{N}(g(\mathbf{c}; \Theta_g))$
• So $Q(\mathbf{c} | \mathbf{x}) = Q(\mathbf{c} | \mathbf{x}, \Theta_f)$ and $P(\mathbf{x} | \mathbf{c}) = P(\mathbf{x} | \mathbf{c}, \Theta_g)$

New objective: finds Θ_f and Θ_g that maximize the lower bound
 Not necessarily maximize log P(**x** | Θ_f, Θ_g)

Maximizing Lower Bound

$$\begin{split} \int_{\boldsymbol{c}} \mathbf{Q}(\boldsymbol{c}|\boldsymbol{x}) \log \left(\frac{\mathbf{P}(\boldsymbol{x}|\boldsymbol{c})\mathbf{P}(\boldsymbol{c})}{\mathbf{Q}(\boldsymbol{c}|\boldsymbol{x})}\right) d\boldsymbol{c} \\ &= \int_{\boldsymbol{c}} \mathbf{Q}(\boldsymbol{c}|\boldsymbol{x}, \Theta_f) \log \left(\frac{\mathbf{P}(\boldsymbol{x}|\boldsymbol{c}, \Theta_g)\mathbf{P}(\boldsymbol{c})}{\mathbf{Q}(\boldsymbol{c}|\boldsymbol{x}, \Theta_f)}\right) d\boldsymbol{c} \\ &= \int_{\boldsymbol{c}} \mathbf{Q}(\boldsymbol{c}|\boldsymbol{x}, \Theta_f) \log \left(\frac{\mathbf{P}(\boldsymbol{c})}{\mathbf{Q}(\boldsymbol{c}|\boldsymbol{x}, \Theta_f)}\right) d\boldsymbol{c} + \int_{\boldsymbol{c}} \mathbf{Q}(\boldsymbol{c}|\boldsymbol{x}, \Theta_f) \log \mathbf{P}(\boldsymbol{x}|\boldsymbol{c}, \Theta_g) d\boldsymbol{c} \\ &= -\mathbf{D}_{\mathrm{KL}} \left(\mathbf{Q}(\mathbf{c}|\boldsymbol{x}, \Theta_f) \| \mathbf{P}(\mathbf{c})\right) + \mathbf{E}_{(\mathbf{c}|\boldsymbol{x}, \Theta_f) \sim \mathbf{Q}} \left[\log \mathbf{P}(\boldsymbol{x}|\mathbf{c}, \Theta_g)\right] \end{split}$$

• For
$$P(\mathbf{c}) = \mathcal{N}(\mathbf{0}, \mathbf{I})$$
:

• To minimize the first term, the encoder $f(x; \Theta_f) = (\mu, \sigma)$ has a loss term [15]

$$\exp(\sigma) - (\mathbf{1} + \sigma) + \|\boldsymbol{\mu}\|^2$$

- To maximize the second term, the decoder
 - (1) Samples c from $\mathscr{N}(\mu,\sigma)$ to get $g(c;\Theta_g)$, the mean of output \mathscr{N}
 - 2 Minimizes a loss term $\|\boldsymbol{x} \boldsymbol{a}^{(L)}\|^2$ as in AE

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 54 / 132

Outline

- 1 Unsupervised Learning
 - Text Models
 - Image Models
- 2 ChatGPT
- 3 Autoencoders (AE)
 - Manifold Learning*
- 4 Variational Autoencoders (VAE)
- 5 Flow-based Models
 - 6 Diffusion Models
- 7 Generative Adversarial Networks*
 - Basic Architecture
 - Challenges
 - More GANs

Shan-Hung Wu (CS, NTHU)

Problems of VAE

- Only maximize a lower bound of the likelihood $\mathrm{P}(\mathbb{X}|\Theta_f,\Theta_g)$
 - Θ_f and Θ_g are encoder and decoder weights, respectively
- Still blurry images
 - The decoder's loss is the same with that of AE

Flow-based Models

- Idea: let the decoder $g(\cdot; \Theta_g)$ be a *deterministic invertible* function
 - Given $\mathbf{c} \sim \mathscr{N}(\mathbf{0}, \mathbf{I})$, we have $\mathbf{x} = g(\mathbf{c}; \mathbf{\Theta}_g)$ of complex distribution
 - Conversely, given **x**, we have $\mathbf{c} = g^{-1}(\mathbf{x}; \mathbf{\Theta}_g)$
- The likelihood can be maximize directly:

$$\begin{aligned} \arg\max_{g}\log P_{g}(\mathbb{X}) \\ &= \arg\max_{g}\sum_{i}\log P_{\mathbf{x}}(g(\boldsymbol{c}^{(i)})) \\ &= \arg\max_{g}\sum_{i}\log \left[P_{\mathbf{c}}(g^{-1}(\boldsymbol{x}^{(i)})) | \det \left(\boldsymbol{J}(g^{-1})(\boldsymbol{x}^{(i)})\right)|\right] \\ &= \arg\max_{g}\sum_{i}\log P_{\mathbf{c}}(g^{-1}(\boldsymbol{x}^{(i)})) + \log |\det \left(\boldsymbol{J}(g^{-1})(\boldsymbol{x}^{(i)})\right)| \end{aligned}$$

- First term: finds g (Θ_g) that maps all $\pmb{x}^{(i)}$ to 0
- Second term: prevents g (Θ_g) from mapping all x⁽ⁱ⁾ to 0
 log |det(O)| = − inf

Shan-Hung Wu (CS, NTHU)

Flow-based Models

- Idea: let the decoder $g(\cdot; \Theta_g)$ be a *deterministic invertible* function
 - Given $\mathbf{c} \sim \mathscr{N}(\mathbf{0}, \mathbf{I})$, we have $\mathbf{x} = g(\mathbf{c}; \mathbf{\Theta}_g)$ of complex distribution
 - Conversely, given **x**, we have $\mathbf{c} = g^{-1}(\mathbf{x}; \mathbf{\Theta}_g)$
- The likelihood can be maximize directly:

$$\begin{aligned} \arg\max_{g}\log\mathrm{P}_{g}(\mathbb{X}) \\ &= \arg\max_{g}\sum_{i}\log\mathrm{P}_{\mathbf{x}}(g(\boldsymbol{c}^{(i)})) \\ &= \arg\max_{g}\sum_{i}\log\left[\mathrm{P}_{\mathbf{c}}(g^{-1}(\boldsymbol{x}^{(i)}))\right]\det\left(\boldsymbol{J}(g^{-1})(\boldsymbol{x}^{(i)})\right)\right] \\ &= \arg\max_{g}\sum_{i}\log\mathrm{P}_{\mathbf{c}}(g^{-1}(\boldsymbol{x}^{(i)})) + \log\left|\det\left(\boldsymbol{J}(g^{-1})(\boldsymbol{x}^{(i)})\right)\right| \end{aligned}$$

- First term: finds g (Θ_g) that maps all $\pmb{x}^{(i)}$ to 0
- Second term: prevents g (Θ_g) from mapping all x⁽ⁱ⁾ to 0
 log|det(O)| = − inf
- But how to ensure the followings during training?
 - g is invertible
 - $\det \left(\boldsymbol{J}(g^{-1})(\,\cdot\,) \right)$ can be easily computed

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machi

Ensuring Invertibility

• Glow [16]: make
$$g^{-1}$$
 an 1×1 convolution layer
• $\mathbf{x}_{i,j,:} = \begin{bmatrix} x_{i,j,1} \\ x_{i,j,2} \\ x_{i,j,3} \end{bmatrix}$, $g^{-1} = \mathbf{W}_{3 \times 3}$,
 $g^{-1}(\mathbf{x}_{i,j,:}) = \mathbf{W}_{3 \times 3} \begin{bmatrix} x_{i,j,1} \\ x_{i,j,2} \\ x_{i,j,3} \end{bmatrix} = \begin{bmatrix} c_{i,j,1} \\ c_{i,j,2} \\ c_{i,j,3} \end{bmatrix}$

• At training time, initialize $W_{3 imes 3}$ as an invertible matrix

- $g^{-1} = W_{3 \times 3}$ is likely to be invertible after SGD updates
- Determinant is easy to compute: $det(\boldsymbol{J}(g^{-1})(\boldsymbol{x}^{(i)})) = det(\boldsymbol{W}_{3\times 3})^{W\times H}$
- At inference time, use $g = W_{3 \times 3}^{-1}$ to generate images

Shan-Hung Wu (CS, NTHU)

Ensuring Invertibility

• Glow [16]: make
$$g^{-1}$$
 an 1×1 convolution layer
• $\mathbf{x}_{i,j,:} = \begin{bmatrix} \mathbf{x}_{i,j,1} \\ \mathbf{x}_{i,j,2} \\ \mathbf{x}_{i,j,3} \end{bmatrix}$, $g^{-1} = \mathbf{W}_{3 \times 3}$,
 $g^{-1}(\mathbf{x}_{i,j,:}) = \mathbf{W}_{3 \times 3} \begin{bmatrix} \mathbf{x}_{i,j,1} \\ \mathbf{x}_{i,j,2} \\ \mathbf{x}_{i,j,3} \end{bmatrix} = \begin{bmatrix} \mathbf{c}_{i,j,1} \\ \mathbf{c}_{i,j,2} \\ \mathbf{c}_{i,j,3} \end{bmatrix}$

• At training time, initialize $W_{3 imes 3}$ as an invertible matrix

- $g^{-1} = W_{3 \times 3}$ is likely to be invertible after SGD updates
- Determinant is easy to compute: $det(\boldsymbol{J}(g^{-1})(\boldsymbol{x}^{(i)})) = det(\boldsymbol{W}_{3\times 3})^{W\times H}$
- At inference time, use $g = W_{3\times 3}^{-1}$ to generate images
- Problem: g has limited expressiveness

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 58 / 132

Step-wise Generation

• Cascade multiple invertible g to have a more complex one:

$$\mathbf{x} = g^{(T)}(\cdots g^{(2)}(g^{(1)}(\mathbf{c})))$$

Step-wise Generation

• Cascade multiple invertible g to have a more complex one:

$$\mathbf{x} = g^{(T)}(\cdots g^{(2)}(g^{(1)}(\mathbf{c})))$$

• Result: sharp images

Outline

- 1 Unsupervised Learning
 - Text Models
 - Image Models
- 2 ChatGPT
- Autoencoders (AE)
 Manifold Learning*
- 4 Variational Autoencoders (VAE)
 - 5 Flow-based Models

6 Diffusion Models

- 7 Generative Adversarial Networks*
 - Basic Architecture
 - Challenges
 - More GANs

Shan-Hung Wu (CS, NTHU)

Problems of Flow-based Models

- Limited model expressiveness
- Slow training and inference
 - #steps can be large

Denoising Diffusion Probabilistic Models (DDPM) [10]

- Borrow some good ideas from previous works
 - Probabilistic formulation of VAE that models encoder in the objective
 - Step-wise encoding/decoding in generative flows
- But, unlike flows, the encoding steps
 - Are *predefined*; no parameter to learn
 - Can be simplified to one encoding step

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 62 / 132

Encoding

- Predefined encoding functions f^(t)(·;β^(t)), t = 1,···, T:
 β^(t), ∀t, are hyperparameters; no learning needed
- Let each sample $x = x^{(0)}$

•
$$\mathbf{x}^{(1)} = f^{(1)}(\mathbf{x}^{(0)}; \boldsymbol{\beta}^{(1)}) = \sqrt{1 - \boldsymbol{\beta}^{(1)}} \mathbf{x}^{(0)} + \sqrt{\boldsymbol{\beta}^{(1)}} \boldsymbol{\varepsilon}, \ \boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$$

• So, $(\mathbf{x}^{(1)} | \mathbf{x}^{(0)} = \mathbf{x}^{(0)}) \sim \mathcal{N}(\sqrt{1 - \boldsymbol{\beta}^{(1)}} \mathbf{x}^{(0)}, \boldsymbol{\beta}^{(1)} \boldsymbol{I})$

Encoding

Predefined encoding functions f^(t)(·;β^(t)), t = 1,···, T:
 β^(t), ∀t, are hyperparameters; no learning needed

• Let each sample
$$\pmb{x} = \pmb{x}^{(0)}$$

•
$$\mathbf{x}^{(1)} = f^{(1)}(\mathbf{x}^{(0)}; \boldsymbol{\beta}^{(1)}) = \sqrt{1 - \boldsymbol{\beta}^{(1)}} \mathbf{x}^{(0)} + \sqrt{\boldsymbol{\beta}^{(1)}} \boldsymbol{\varepsilon}, \ \boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$$

• So, $(\mathbf{x}^{(1)} | \mathbf{x}^{(0)} = \mathbf{x}^{(0)}) \sim \mathcal{N}(\sqrt{1 - \boldsymbol{\beta}^{(1)}} \mathbf{x}^{(0)}, \boldsymbol{\beta}^{(1)} \boldsymbol{I})$
• $\mathbf{x}^{(2)} = f^{(2)}(\mathbf{x}^{(1)}; \boldsymbol{\beta}^{(t)}) = \sqrt{1 - \boldsymbol{\beta}^{(2)}} \mathbf{x}^{(1)} + \sqrt{\boldsymbol{\beta}^{(2)}} \boldsymbol{\varepsilon}$
• $= \sqrt{1 - \boldsymbol{\beta}^{(2)}} \sqrt{1 - \boldsymbol{\beta}^{(1)}} \mathbf{x}^{(0)} + \sqrt{1 - (1 - \boldsymbol{\beta}^{(2)})(1 - \boldsymbol{\beta}^{(1)})} \boldsymbol{\varepsilon}$
= $\sqrt{\alpha^{(2)}\alpha^{(1)}} \mathbf{x}^{(0)} + \sqrt{1 - \alpha^{(2)}\alpha^{(1)}} \boldsymbol{\varepsilon}$
• $\sqrt{1 - \boldsymbol{\beta}^{(1)}} \sqrt{\boldsymbol{\beta}^{(2)}} \boldsymbol{\varepsilon} + \sqrt{\boldsymbol{\beta}^{(2)}} \boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, ((1 - \boldsymbol{\beta}^{(1)}) \boldsymbol{\beta}^{(2)} + \boldsymbol{\beta}^{(2)}) \boldsymbol{I})$
• Let $\alpha^{(t)} = 1 - \boldsymbol{\beta}^{(t)}$ (derived hyperparameter)

• Only one ε is added

Shan-Hung Wu (CS, NTHU)

Encoding

Predefined encoding functions f^(t)(·;β^(t)), t = 1,···, T:
 β^(t), ∀t, are hyperparameters; no learning needed

• Let each sample
$$\pmb{x}=\pmb{x}^{(0)}$$

•
$$\mathbf{x}^{(1)} = f^{(1)}(\mathbf{x}^{(0)}; \boldsymbol{\beta}^{(1)}) = \sqrt{1 - \boldsymbol{\beta}^{(1)}} \mathbf{x}^{(0)} + \sqrt{\boldsymbol{\beta}^{(1)}} \boldsymbol{\varepsilon}, \ \boldsymbol{\varepsilon} \sim \mathscr{N}(\mathbf{0}, \boldsymbol{I})$$

• So, $(\mathbf{x}^{(1)} | \mathbf{x}^{(0)} = \mathbf{x}^{(0)}) \sim \mathscr{N}(\sqrt{1 - \boldsymbol{\beta}^{(1)}} \mathbf{x}^{(0)}, \boldsymbol{\beta}^{(1)} \boldsymbol{I})$
 $\mathbf{x}^{(2)} = f^{(2)}(\mathbf{x}^{(1)}; \boldsymbol{\beta}^{(t)}) = \sqrt{1 - \boldsymbol{\beta}^{(2)}} \mathbf{x}^{(1)} + \sqrt{\boldsymbol{\beta}^{(2)}} \boldsymbol{\varepsilon}$
• $= \sqrt{1 - \boldsymbol{\beta}^{(2)}} \sqrt{1 - \boldsymbol{\beta}^{(1)}} \mathbf{x}^{(0)} + \sqrt{1 - (1 - \boldsymbol{\beta}^{(2)})(1 - \boldsymbol{\beta}^{(1)})} \boldsymbol{\varepsilon}$
= $\sqrt{\alpha^{(2)} \alpha^{(1)}} \mathbf{x}^{(0)} + \sqrt{1 - \alpha^{(2)} \alpha^{(1)}} \boldsymbol{\varepsilon}$
• $\sqrt{1 - \boldsymbol{\beta}^{(1)}} \sqrt{\boldsymbol{\beta}^{(2)}} \boldsymbol{\varepsilon} + \sqrt{\boldsymbol{\beta}^{(2)}} \boldsymbol{\varepsilon} \sim \mathscr{N}(\mathbf{0}, ((1 - \boldsymbol{\beta}^{(1)}) \boldsymbol{\beta}^{(2)} + \boldsymbol{\beta}^{(2)}) \boldsymbol{I})$
• Let $\alpha^{(t)} = 1 - \boldsymbol{\beta}^{(t)}$ (derived hyperparameter)
• Only one $\boldsymbol{\varepsilon}$ is added
• $\mathbf{x}^{(t)} = \sqrt{\overline{\alpha}^{(t)}} \mathbf{x}^{(t-1)} + \sqrt{1 - \overline{\alpha}^{(t)}} \boldsymbol{\varepsilon}$
• Let $\overline{\alpha}^{(t)} = \alpha^{(t)} \alpha^{(t-1)} \cdots \alpha^{(1)}$ (derived hyperparameter)

Shan-Hung Wu (CS, NTHU)

Objective

- ${\, \bullet \,}$ As VAE, DDPM maximizes a lower bound of $P(\mathbb{X})$
- VAE: for each x, where $P(x) = \int_{c} Q(c|x) \log P(x) dc$, maximize:

$$\int_{c} Q(c|\mathbf{x}) \log \left(\frac{P(\mathbf{x}, c)}{Q(c|\mathbf{x})} \right) dc = E_{c|\mathbf{x} \sim Q} \left[\log \left(\frac{P(\mathbf{x}, c)}{Q(c|\mathbf{x})} \right) \right] \le P(\mathbf{x})$$

Objective

- $\bullet\,$ As VAE, DDPM maximizes a lower bound of $P(\mathbb{X})$
- VAE: for each x, where $P(x) = \int_{c} Q(c|x) \log P(x) dc$, maximize:

$$\int_{c} Q(c|\mathbf{x}) \log \left(\frac{P(\mathbf{x}, c)}{Q(c|\mathbf{x})} \right) dc = E_{c|\mathbf{x} \sim Q} \left[\log \left(\frac{P(\mathbf{x}, c)}{Q(c|\mathbf{x})} \right) \right] \le P(\mathbf{x})$$

• DDPM: for each \boldsymbol{x} where $P(\boldsymbol{x}^{(0)}) = \int_{\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(T)}} Q(\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(T)} | \boldsymbol{x}^{(0)}) \log P(\boldsymbol{x}^{(0)}) d\boldsymbol{x}^{(1)} \cdots d\boldsymbol{x}^{(T)},$ maximize:

$$\mathbf{E}_{(\mathbf{x}^{(1)},\cdots,\mathbf{x}^{(T)}|\mathbf{x}^{(0)})\sim \mathbf{Q}}\left[\log\left(\frac{\mathbf{P}(\mathbf{x}^{(0)},\mathbf{x}^{(1)},\cdots,\mathbf{x}^{(T)})}{\mathbf{Q}(\mathbf{x}^{(1)},\cdots,\mathbf{x}^{(T)}|\mathbf{x}^{(0)})}\right)\right],$$

which can be simplified to [23]:

$$- \mathbf{D}_{\mathrm{KL}} \left(\mathbf{Q}(\mathbf{x}^{(T)}|\mathbf{x}^{(0)}) \| \mathbf{P}(\mathbf{x}^{(T)}) \right) + \mathbf{E}_{\mathbf{x}^{(1)}|\mathbf{x}^{(0)} \sim \mathbf{Q}} \left[\log \mathbf{P}(\mathbf{x}^{(0)}|\mathbf{x}^{(1)}) \right] + \\ - \sum_{t=2}^{T} \mathbf{E}_{\mathbf{x}^{(t)}|\mathbf{x}^{(0)} \sim \mathbf{Q}} \left[\mathbf{D}_{\mathrm{KL}} \left(\mathbf{Q}(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}, \mathbf{x}^{(0)}) \| \mathbf{P}(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}) \right) \right]$$

• First term controlled by encoding process (predefined)

• Second & third term controlled by denoising process (learnable)

Shan-Hung Wu (CS, NTHU) Unsuper

Unsupervised Learning & Generative AI

Machine Learning

Denoising I

• For simplicity, we focus on maximizing the third term:

$$-\sum_{t=2}^{T} E_{\mathbf{x}^{(t)}|\mathbf{x}^{(0)} \sim Q} \left[D_{KL} \left(Q(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}, \mathbf{x}^{(0)}) \| P(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}) \right) \right]$$

• Goal: for each observed $x^{(t)}$, minimize

$$\mathbf{D}_{\mathrm{KL}}\left(\mathbf{Q}(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)},\mathbf{x}^{(0)})\|\mathbf{P}(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)})\right)$$

Note that

$$\begin{aligned} \mathbf{Q}(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}, \mathbf{x}^{(0)}) &= \frac{\mathbf{Q}(\mathbf{x}^{(t-1)}, \mathbf{x}^{(t)}, \mathbf{x}^{(0)})}{\mathbf{Q}(\mathbf{x}^{(t)}, \mathbf{x}^{(0)})} \\ &= \frac{\mathbf{Q}(\mathbf{x}^{(t)}|\mathbf{x}^{(t-1)})\mathbf{Q}(\mathbf{x}^{(t-1)}|\mathbf{x}^{(0)})\mathbf{Q}(\mathbf{x}^{(0)})}{\mathbf{Q}(\mathbf{x}^{(t)}|\mathbf{x}^{(0)})\mathbf{Q}(\mathbf{x}^{(0)})} \\ &= \frac{\mathbf{Q}(\mathbf{x}^{(t)}|\mathbf{x}^{(t-1)})\mathbf{Q}(\mathbf{x}^{(t-1)}|\mathbf{x}^{(0)})}{\mathbf{Q}(\mathbf{x}^{(t)}|\mathbf{x}^{(0)})} \end{aligned}$$

• Since
$$\mathbf{Q}(\mathbf{x}^{(t)}|\mathbf{x}^{(t-1)})$$
 & $\mathbf{Q}(\mathbf{x}^{(t-1)}|\mathbf{x}^{(0)})$ are Gaussian, we have [23]:
 $\mathbf{Q}(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)},\mathbf{x}^{(0)}) = \mathcal{N}\left(\frac{\sqrt{\alpha^{(t)}(1-\alpha^{(t-1)})\mathbf{x}^{(t)}+\sqrt{\bar{\alpha}^{(t-1)}}\beta^{(t)}\mathbf{x}^{(0)}}{1-\bar{\alpha}^{(t)}}, \frac{1-\bar{\alpha}^{(t-1)}}{1-\bar{\alpha}^{(t)}}\beta^{(t)}\mathbf{I}\right)$

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 65 / 132

Denoising II

• Goal: for each observed $x^{(t)}$, minimize

$$\begin{split} D_{KL}\left(Q(\boldsymbol{x}^{(t-1)}|\boldsymbol{x}^{(t)},\boldsymbol{x}^{(0)})\|P(\boldsymbol{x}^{(t-1)}|\boldsymbol{x}^{(t)})\right),\\ \text{where } Q(\cdots) = \mathcal{N}\left(\frac{\sqrt{\alpha^{(t)}(1-\alpha^{(t-1)})\boldsymbol{x}^{(t)}+\sqrt{\tilde{\alpha}^{(t-1)}}\beta^{(t)}\boldsymbol{x}^{(0)}}{1-\bar{\alpha}^{(t)}},\cdots\right) \text{ is } \textit{fixed} \end{split}$$

DDPM finds Θ that move the mean of P(x^(t-1)|x^(t),Θ) (also Gaussian) toward Q(···)'s mean:

$$\frac{\sqrt{\boldsymbol{\alpha}^{(t)}}(1-\boldsymbol{\alpha}^{(t-1)})\boldsymbol{x}^{(t)}+\sqrt{\bar{\boldsymbol{\alpha}}^{(t-1)}}\boldsymbol{\beta}^{(t)}\boldsymbol{x}^{(0)}}{1-\bar{\boldsymbol{\alpha}}^{(t)}}$$

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 66 / 132

Noise Predictor

• Θ moves $P(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)}, \Theta)$'s mean toward

$$\frac{\frac{\sqrt{\alpha^{(t)}}(1-\alpha^{(t-1)})\mathbf{x}^{(t)}+\sqrt{\bar{\alpha}^{(t-1)}}\beta^{(t)}\mathbf{x}^{(0)}}{1-\bar{\alpha}^{(t)}}}{=\frac{\sqrt{\alpha^{(t)}}(1-\alpha^{(t-1)})\mathbf{x}^{(t)}+\sqrt{\bar{\alpha}^{(t-1)}}\beta^{(t)}\frac{\mathbf{x}^{(t)}-\sqrt{1-\bar{\alpha}^{(t)}}}{\sqrt{\alpha^{(t)}}}}{1-\bar{\alpha}^{(t)}}}$$

• What's its corresponding network?

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning

Noise Predictor

• Θ moves $P(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)},\Theta)$'s mean toward

$$\frac{\frac{\sqrt{\alpha^{(t)}}(1-\alpha^{(t-1)})\mathbf{x}^{(t)}+\sqrt{\bar{\alpha}^{(t-1)}}\beta^{(t)}\mathbf{x}^{(0)}}{1-\bar{\alpha}^{(t)}}}{=\frac{\sqrt{\alpha^{(t)}}(1-\alpha^{(t-1)})\mathbf{x}^{(t)}+\sqrt{\bar{\alpha}^{(t-1)}}\beta^{(t)}\frac{\mathbf{x}^{(t)}-\sqrt{1-\bar{\alpha}^{(t)}}\varepsilon}{\sqrt{\alpha^{(t)}}}}{1-\bar{\alpha}^{(t)}}}{=\frac{1}{\sqrt{\alpha^{(t)}}}\left(\mathbf{x}^{(t)}-\frac{1-\alpha^{(t)}}{\sqrt{1-\bar{\alpha}^{(t)}}}\varepsilon\right)}$$

- What's its corresponding network?
- By definition: let Θ parametrize a network outputting x^(t-1) given x^(t)
 But the input x^(t) also resides in the output target

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 67 / 132

Noise Predictor

• Θ moves $P(\mathbf{x}^{(t-1)}|\mathbf{x}^{(t)},\Theta)$'s mean toward

$$\frac{\sqrt{\alpha^{(t)}(1-\alpha^{(t-1)})\mathbf{x}^{(t)}+\sqrt{\bar{\alpha}^{(t-1)}}\beta^{(t)}\mathbf{x}^{(0)}}}{1-\bar{\alpha}^{(t)}} = \frac{\sqrt{\alpha^{(t)}(1-\alpha^{(t-1)})\mathbf{x}^{(t)}+\sqrt{\alpha^{(t-1)}}\beta^{(t)}\frac{\mathbf{x}^{(t)}-\sqrt{1-\bar{\alpha}^{(t)}}\varepsilon}{\sqrt{\alpha^{(t)}}}}{1-\bar{\alpha}^{(t)}}}{\frac{1-\bar{\alpha}^{(t)}}{\sqrt{1-\bar{\alpha}^{(t)}}}\varepsilon}\right)$$

- What's its corresponding network?
- By definition: let Θ parametrize a network outputting x^(t-1) given x^(t)
 But the input x^(t) also resides in the output target
- DDPM: let Θ parametrize a *noise predictor* outputting arepsilon given $x^{(t)}$
 - Objective: $\operatorname{arg\,min}_{\Theta} \| \boldsymbol{\varepsilon} \boldsymbol{e}(\boldsymbol{x}^{(t)}, t; \Theta) \|^2$
 - Of U-Net [37] architecture
 - Shared between all t

Shan-Hung Wu (CS, NTHU)

Training & Inference Algorithms

- One-step encoding during training time
- Muti-step inference (sampling), with each intermediate decoding step
 - *t*, *t* > 1, comes with extra noise $\sigma^{(t)}z$
 - Similar to output token sampling in GPT
 - Improves performance empirically

Algorithm 1 Training	Algorithm 2 Sampling
1: repeat 2: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$ 3: $t \sim \text{Uniform}(\{1, \dots, T\})$ 4: $\boldsymbol{\epsilon} \sim \mathcal{N}(0, \mathbf{I})$ 5: Take gradient descent step on $\nabla_{\boldsymbol{\theta}} \ \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\boldsymbol{\theta}}(\sqrt{\overline{\alpha}_t}\mathbf{x}_0 + \sqrt{1 - \overline{\alpha}_t}\boldsymbol{\epsilon}, t) \ ^2$ 6: until converged	1: $\mathbf{x}_T \sim \mathcal{N}(0, \mathbf{I})$ 2: for $t = T,, 1$ do 3: $\mathbf{z} \sim \mathcal{N}(0, \mathbf{I})$ if $t > 1$, else $\mathbf{z} = 0$ 4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1 - \alpha_t}{\sqrt{1 - \alpha_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) \right) + \sigma_t \mathbf{z}$ 5: end for 6: return \mathbf{x}_0

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 6

68 / 132

Results

• Sharp and coherent

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 69 / 132

Conditioning & Scaling

- Stable Diffusion [36]: separately train 3 networks
 - Text/condition embedding: only needs text data
 - Diffusion: needs paired (text-image) data but works at *latent* (low dimensional) space
 - Image encoder/decoder: only needs image data
- Text embedding as extra input for denoising net
- Other models like DALL-E [33] also use similar strategies

Shan-Hung Wu (CS, NTHU)

Results

• Even the smallest text-image training set (LAION [41, 40]) has >400M samples!

MS COCO [22] "only" has 328K images

Shan-Hung Wu (CS, NTHU)

Outline

- 1 Unsupervised Learning
 - Text Models
 - Image Models
- 2 ChatGPT
- Autoencoders (AE)
 Manifold Learning*
- 4 Variational Autoencoders (VAE)
- 5 Flow-based Models
- 6 Diffusion Models
- 7 Generative Adversarial Networks*
 - Basic Architecture
 - Challenges
 - More GANs

Shan-Hung Wu (CS, NTHU)

Why Do AE and VAE Give Blurry Images?

- Objective $\arg \max_{\Theta} \log P(\mathbb{X}|\Theta) = \arg \min_{\Theta} \sum_{n} \|\boldsymbol{x}^{(n)} \boldsymbol{a}^{(n,L)}\|^2$ does not panelize Gaussian pixel noises in $\boldsymbol{a}^{(i,L)}$
 - ${\ {\circ} \ }$ Root cause: assumption that $x\sim {\mathscr N}$

Why Do AE and VAE Give Blurry Images?

- Objective $\arg \max_{\Theta} \log P(\mathbb{X}|\Theta) = \arg \min_{\Theta} \sum_{n} \|\boldsymbol{x}^{(n)} \boldsymbol{a}^{(n,L)}\|^2$ does not panelize Gaussian pixel noises in $\boldsymbol{a}^{(i,L)}$
 - $\bullet\,$ Root cause: assumption that $x\sim \mathcal{N}$

• Fix 1: maximizing the likelihood $P(X|\Theta)$ without assuming $x \sim \mathcal{N}$ • Flow-based methods, diffusion models

Why Do AE and VAE Give Blurry Images?

- Objective $\arg \max_{\Theta} \log P(\mathbb{X}|\Theta) = \arg \min_{\Theta} \sum_{n} \|\boldsymbol{x}^{(n)} \boldsymbol{a}^{(n,L)}\|^2$ does not panelize Gaussian pixel noises in $\boldsymbol{a}^{(i,L)}$
 - $\bullet\,$ Root cause: assumption that $x\sim \mathscr{N}$

- \bullet Fix 1: maximizing the likelihood $P(\mathbb{X}|\Theta)$ without assuming $x\sim \mathscr{N}$
 - Flow-based methods, diffusion models
- Fix 2: maximizing the chance that $a^{(L)}$ is a true image from another NN point of view

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 73 / 132

Outline

- 1 Unsupervised Learning
 - Text Models
 - Image Models
- 2 ChatGPT
- Autoencoders (AE)
 Manifold Learning*
- 4 Variational Autoencoders (VAE)
- 5 Flow-based Models
- 6 Diffusion Models

- Challenges
- More GANs

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 74 / 132

Network Design

• Generative adversarial networks (GAN) [8] consist of:

Shan-Hung Wu (CS, NTHU)

Network Design

- Generative adversarial networks (GAN) [8] consist of:
- Generator g: to generate data points from random codes
 - No need for "encoder" since the task is data synthesis

Shan-Hung Wu (CS, NTHU)

Network Design

- Generative adversarial networks (GAN) [8] consist of:
- Generator g: to generate data points from random codes
 - No need for "encoder" since the task is data synthesis
- **Discriminator** f: to separate generated points from real ones
 - Weights for x and \hat{x} are tied
 - A binary classifier with Sigmoid output unit $a^{(L)} = \hat{
 ho}$ for
 - $P(y = true point | \mathbf{x}) \sim Bernoulli(\rho)$

Shan-Hung Wu (CS, NTHU)
Network Design

- Generative adversarial networks (GAN) [8] consist of:
- Generator g: to generate data points from random codes
 - No need for "encoder" since the task is data synthesis
- **Discriminator** f: to separate generated points from real ones
 - Weights for x and \hat{x} are tied
 - A binary classifier with Sigmoid output unit a^(L) = p̂ for P(y = true point | x) ~ Bernoulli(p)
- Goal: to train a g that tricks f into believing g(c) is real

• Given N real training points and N generated points:

 $\begin{aligned} &\arg\min_{\Theta_g}\max_{\Theta_f}\log \mathbf{P}(\mathbb{X} \mid \Theta_g, \Theta_f) \\ &=\arg\min_{\Theta_g}\max_{\Theta_f}\sum_n\log f(\boldsymbol{x}^{(n)}) + \sum_m\log(1 - f(g(\boldsymbol{c}^{(m)}))) \end{aligned}$

Shan-Hung Wu (CS, NTHU)

• Given N real training points and N generated points:

$$\arg \min_{\Theta_g} \max_{\Theta_f} \log P(\mathbb{X} | \Theta_g, \Theta_f)$$

= $\arg \min_{\Theta_g} \max_{\Theta_f} \sum_n \log f(\mathbf{x}^{(n)}) + \sum_m \log(1 - f(g(\mathbf{c}^{(m)})))$
= $\arg \min_{\Theta_g} \max_{\Theta_f} \sum_{n=1}^N \log \hat{\boldsymbol{\rho}}^{(n)} + \sum_{m=1}^N \log(1 - \hat{\boldsymbol{\rho}}^{(m)})$

• Recall that f maximizes the log likelihood $\log P(\mathbb{X} | \Theta) \propto \sum_{n} \log P(y^{(n)} | \boldsymbol{x}^{(n)}, \Theta) = \sum_{n} \log \left[(\hat{\boldsymbol{\rho}}^{(n)})^{y^{(n)}} (1 - \hat{\boldsymbol{\rho}}^{(n)})^{(1-y^{(n)})} \right]$

Shan-Hung Wu (CS, NTHU)

• Given N real training points and N generated points:

$$\arg \min_{\Theta_g} \max_{\Theta_f} \log P(\mathbb{X} | \Theta_g, \Theta_f)$$

= $\arg \min_{\Theta_g} \max_{\Theta_f} \sum_n \log f(\mathbf{x}^{(n)}) + \sum_m \log(1 - f(g(\mathbf{c}^{(m)})))$
= $\arg \min_{\Theta_g} \max_{\Theta_f} \sum_{n=1}^N \log \hat{\boldsymbol{\rho}}^{(n)} + \sum_{m=1}^N \log(1 - \hat{\boldsymbol{\rho}}^{(m)})$

• Recall that f maximizes the log likelihood $\log P(\mathbb{X} | \Theta) \propto \sum_{n} \log P(y^{(n)} | \boldsymbol{x}^{(n)}, \Theta) = \sum_{n} \log \left[(\hat{\boldsymbol{\rho}}^{(n)})^{y^{(n)}} (1 - \hat{\boldsymbol{\rho}}^{(n)})^{(1-y^{(n)})} \right]$

Inner max first, then outer min

Shan-Hung Wu (CS, NTHU)

• Given N real training points and N generated points:

$$\arg \min_{\Theta_g} \max_{\Theta_f} \log P(\mathbb{X} | \Theta_g, \Theta_f)$$

=
$$\arg \min_{\Theta_g} \max_{\Theta_f} \sum_n \log f(\mathbf{x}^{(n)}) + \sum_m \log(1 - f(g(\mathbf{c}^{(m)})))$$

=
$$\arg \min_{\Theta_g} \max_{\Theta_f} \sum_{n=1}^N \log \hat{\rho}^{(n)} + \sum_{m=1}^N \log(1 - \hat{\rho}^{(m)})$$

• Recall that f maximizes the log likelihood $\log P(\mathbb{X}|\Theta) \propto \sum_{n} \log P(y^{(n)} | \mathbf{x}^{(n)}, \Theta) = \sum_{n} \log \left[(\hat{\boldsymbol{\rho}}^{(n)})^{y^{(n)}} (1 - \hat{\boldsymbol{\rho}}^{(n)})^{(1-y^{(n)})} \right]$

- Inner max first, then outer min
- $\hat{
 ho}^{(n)}$ depends on $\Theta_{\!f}$ only
- $\hat{oldsymbol{
 ho}}^{(m)}$ depends on both $\Theta_{\!f}$ and $\Theta_{\!g}$

Shan-Hung Wu (CS, NTHU)

$$\arg\min_{\Theta_g} \max_{\Theta_f} \sum_n \log f(\boldsymbol{x}^{(n)}) + \sum_m \log(1 - f(g(\boldsymbol{c}^{(m)})))$$

- Initialize Θ_g for g and Θ_f for f
- At each SGD step/iteration:

$$\arg\min_{\Theta_g} \max_{\Theta_f} \sum_n \log f(\boldsymbol{x}^{(n)}) + \sum_m \log(1 - f(g(\boldsymbol{c}^{(m)})))$$

- Initialize Θ_g for g and Θ_f for f
- At each SGD step/iteration:
- **1** Repeat K times (with fixed Θ_g):
 - **1** Sample N real points $\{x^{(n)}\}_n$ from X and N codes from $\mathbf{c} \sim \mathscr{N}(\mathbf{0}, I)$
 - 2 $\Theta_f \leftarrow \Theta_f + \eta \nabla_{\Theta_f} [\sum_n \log f(\mathbf{x}^{(n)}) + \sum_m \log(1 f(g(\mathbf{c}^{(m)})))]$

$$\arg\min_{\Theta_g} \max_{\Theta_f} \sum_n \log f(\boldsymbol{x}^{(n)}) + \sum_m \log(1 - f(g(\boldsymbol{c}^{(m)})))$$

- Initialize Θ_g for g and Θ_f for f
- At each SGD step/iteration:
- **1** Repeat K times (with fixed Θ_g):
 - **1** Sample N real points $\{\mathbf{x}^{(n)}\}_n$ from X and N codes from $\mathbf{c} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ **2** $\Theta_f \leftarrow \Theta_f + \eta \nabla_{\Theta_f} [\sum_n \log f(\mathbf{x}^{(n)}) + \sum_m \log(1 - f(g(\mathbf{c}^{(m)})))]$
 - 2 $\Theta_f \leftarrow \Theta_f + \eta \vee_{\Theta_f} [\sum_n \log f(\mathbf{x}^{(n)}) + \sum_m \log(1 f(g(\mathbf{c}^{(n)})))]$
- **2** Execute once (with fixed Θ_f):
 - **1** Sample *N* codes from $\mathbf{c} \sim \mathcal{N}(\mathbf{0}, I)$
 - 2 $\Theta_g \leftarrow \Theta_g \eta \nabla_{\Theta_g} [\sum_m \log(1 f(g(\boldsymbol{c}^{(m)})))]$

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 77 / 132

$$\arg\min_{\Theta_g} \max_{\Theta_f} \sum_n \log f(\boldsymbol{x}^{(n)}) + \sum_m \log(1 - f(g(\boldsymbol{c}^{(m)})))$$

- Initialize Θ_g for g and Θ_f for f
- At each SGD step/iteration:
- **1** Repeat *K* times (with fixed Θ_g):
 - **(1)** Sample *N* real points $\{\mathbf{x}^{(n)}\}_n$ from X and *N* codes from $\mathbf{c} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
 - 2 $\Theta_f \leftarrow \Theta_f + \eta \nabla_{\Theta_f} [\sum_{n} \log f(\mathbf{x}^{(n)}) + \sum_{m} \log(1 f(g(\mathbf{c}^{(m)})))]$
- **2** Execute once (with fixed Θ_f):
 - **1** Sample N codes from $\mathbf{c} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
 - 2 $\Theta_g \leftarrow \Theta_g \eta \nabla_{\Theta_g} [\sum_m \log(1 f(g(\boldsymbol{c}^{(m)})))]$
 - Why limiting the steps (K) when updating Θ_f ?

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 77 / 132

$$\arg\min_{\Theta_g} \max_{\Theta_f} \sum_n \log f(\boldsymbol{x}^{(n)}) + \sum_m \log(1 - f(g(\boldsymbol{c}^{(m)})))$$

- Initialize Θ_g for g and Θ_f for f
- At each SGD step/iteration:
- **1** Repeat K times (with fixed Θ_g):
 - **①** Sample N real points $\{\mathbf{x}^{(n)}\}_n$ from X and N codes from $\mathbf{c} \sim \mathscr{N}(\mathbf{0}, \mathbf{I})$
 - 2 $\Theta_f \leftarrow \Theta_f + \eta \nabla_{\Theta_f} [\sum_n \log f(\boldsymbol{x}^{(n)}) + \sum_m \log(1 f(g(\boldsymbol{c}^{(m)})))]$
- **2** Execute once (with fixed Θ_f):
 - **1** Sample N codes from $\mathbf{c} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
 - 2 $\Theta_g \leftarrow \Theta_g \eta \nabla_{\Theta_g} [\sum_m \log(1 f(g(\boldsymbol{c}^{(m)})))]$
 - Why limiting the steps (K) when updating Θ_f ?
 - ${}_{\odot}$ f may overfit data and give very different values once g is updated
 - Limiting K so to prevent g from being updated for "wrong" target

Shan-Hung Wu (CS, NTHU)

Results

• Domain-specific architecture, e.g., DC-GAN [30]

Results

• Domain-specific architecture, e.g., DC-GAN [30]

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 7

GANs Are Hard to Train!

- Tips for Training Stable GANs
- Keep Calm and train a GAN. Pitfalls and Tips...
- 10 Lessons I Learned Training GANs for one Year
- GAN hacks on GitHub

Outline

- 1 Unsupervised Learning
 - Text Models
 - Image Models
- 2 ChatGPT
- Autoencoders (AE)
 Manifold Learning*
- 4 Variational Autoencoders (VAE)
- 5 Flow-based Models
- 6 Diffusion Models

- Basic Architecture
- Challenges
- More GANs

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 80 / 132

• The GAN training may *not* converge

• The GAN training may *not* converge

• The goal of GAN is to find a saddle point

$$\arg\min_{\Theta_g} \sum_{\Theta_f} \sum_{n} \log f(\mathbf{x}^{(n)}) + \sum_{m} \log(1 - f(g(\mathbf{c}^{(m)})))$$

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 81 / 132

• The GAN training may *not* converge

• The goal of GAN is to find a saddle point

$$\arg \min_{\Theta_g} \max_{\Theta_f} \sum_{n} \log f(\mathbf{x}^{(n)}) + \sum_{m} \log(1 - f(g(\mathbf{c}^{(m)})))$$

• The updated Θ_f and Θ_g may cancel each other's progress

Shan-Hung Wu (CS, NTHU)

• The GAN training may *not* converge

• The goal of GAN is to find a saddle point

$$\arg \min_{\Theta_g} \max_{\Theta_f} \sum_{n} \log f(\mathbf{x}^{(n)}) + \sum_{m} \log(1 - f(g(\mathbf{c}^{(m)})))$$

- $\bullet\,$ The updated $\Theta_{\!f}$ and $\Theta_{\!g}$ may cancel each other's progress
- Requires human monitoring and termination

Shan-Hung Wu (CS, NTHU)

Mode Collapsing

- Even worse: mode collapsing
 - g may oscillate from generating one kind of points to generating another kind of points

Mode Collapsing

- Even worse: mode collapsing
 - g may oscillate from generating one kind of points to generating another kind of points

• When K is small, alternate SGD does not distinguish between $\min_{\Theta_g} \max_{\Theta_f}$ and $\max_{\Theta_f} \min_{\Theta_g}$

$$\arg\min_{\Theta_g} \max_{\Theta_f} \sum_n \log f(\boldsymbol{x}^{(n)}) + \sum_m \log(1 - f(g(\boldsymbol{c}^{(m)})))$$

• $\max_{\Theta_f} \min_{\Theta_g}$?

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 82 / 132

Mode Collapsing

- Even worse: mode collapsing
 - $\bullet \ g$ may oscillate from generating one kind of points to generating another kind of points

 When K is small, alternate SGD does not distinguish between min_{Og} max_{Of} and max_{Of} min_{Og}

$$\arg\min_{\Theta_g} \max_{\Theta_f} \sum_n \log f(\boldsymbol{x}^{(n)}) + \sum_m \log(1 - f(g(\boldsymbol{c}^{(m)})))$$

max_{Of}min_{Og}? g is encouraged to map every code to the "mode" that f believes is most likely to be real

Shan-Hung Wu (CS, NTHU)

- Minibatch discrimination [39]
 - In $\max_{\Theta_f} \min_{\Theta_g}$ case, g collapses because $\nabla_{\Theta_f} C$ are computed independently for each point
 - Why not augment each $x^{(n)}/\hat{x}^{(n)}$ with batch features?

- Minibatch discrimination [39]
 - In $\max_{\Theta_f} \min_{\Theta_g}$ case, g collapses because $\nabla_{\Theta_f} C$ are computed independently for each point
 - Why not augment each $x^{(n)}/\hat{x}^{(n)}$ with **batch features**?
 - If g collapses, f can tell this from batch features and reject fake points
 - Now, g needs to generate dissimilar points to fool f

- Minibatch discrimination [39]
 - In $\max_{\Theta_f} \min_{\Theta_g}$ case, g collapses because $\nabla_{\Theta_f} C$ are computed independently for each point
 - Why not augment each $x^{(n)}/\hat{x}^{(n)}$ with **batch features**?
 - $\bullet~$ If g collapses, f can tell this from batch features and reject fake points
 - $\, \bullet \,$ Now, g needs to generate dissimilar points to fool f

- Minibatch discrimination [39]
 - In $\max_{\Theta_f} \min_{\Theta_g}$ case, g collapses because $\nabla_{\Theta_f} C$ are computed independently for each point
 - Why not augment each $x^{(n)}/\hat{x}^{(n)}$ with **batch features**?
 - If g collapses, f can tell this from batch features and reject fake points
 - $\, \bullet \,$ Now, g needs to generate dissimilar points to fool f

• Unrolled GANs [24]: to back-propagate through several max steps when computing $\nabla_{\Theta_g} C$

Shan-Hung Wu (CS, NTHU)

$$\arg\min_{\Theta_g} \max_{\Theta_f} \sum_n \log f(\boldsymbol{x}^{(n)}) + \sum_m \log(1 - f(g(\boldsymbol{c}^{(m)})))$$

- Alternate SGD:
 - $\Theta_f \leftarrow \Theta_f + \eta \nabla_{\Theta_f} [\sum_n \log f(\mathbf{x}^{(n)}) + \sum_m \log(1 f(g(\mathbf{c}^{(m)})))]$ for K times
 - $\Theta_g \leftarrow \Theta_g \eta \nabla_{\Theta_g} [\sum_m \log(1 f(g(\boldsymbol{c}^{(m)})))]$

$$\arg\min_{\Theta_g} \max_{\Theta_f} \sum_n \log f(\boldsymbol{x}^{(n)}) + \sum_m \log(1 - f(g(\boldsymbol{c}^{(m)})))$$

- Alternate SGD:
 - $\Theta_f \leftarrow \Theta_f + \eta \nabla_{\Theta_f} [\sum_n \log f(\mathbf{x}^{(n)}) + \sum_m \log(1 f(g(\mathbf{c}^{(m)})))]$ for *K* times • $\Theta_g \leftarrow \Theta_g - \eta \nabla_{\Theta_n} [\sum_m \log(1 - f(g(\mathbf{c}^{(m)})))]$
- Why limiting K when updating Θ_f ?
- Too large *K*:

• Too small K:

Shan-Hung Wu (CS, NTHU)

$$\arg\min_{\Theta_g} \max_{\Theta_f} \sum_n \log f(\boldsymbol{x}^{(n)}) + \sum_m \log(1 - f(g(\boldsymbol{c}^{(m)})))$$

- Alternate SGD:
 - $\Theta_f \leftarrow \Theta_f + \eta \nabla_{\Theta_f} [\sum_{n} \log f(\mathbf{x}^{(n)}) + \sum_{m} \log(1 f(g(\mathbf{c}^{(m)})))]$ for **K** times
 - $\Theta_g \leftarrow \Theta_g \eta \nabla_{\Theta_g} [\sum_m \log(1 f(g(\boldsymbol{c}^{(m)})))]$
- Why limiting K when updating Θ_f ?
- Too large *K*:
 - f may overfit data, making g updated for "wrong" target f

• Too small K:

Shan-Hung Wu (CS, NTHU)

$$\arg\min_{\Theta_g} \max_{\Theta_f} \sum_n \log f(\boldsymbol{x}^{(n)}) + \sum_m \log(1 - f(g(\boldsymbol{c}^{(m)})))$$

- Alternate SGD:
 - $\Theta_f \leftarrow \Theta_f + \eta \nabla_{\Theta_f} [\sum_n \log f(\mathbf{x}^{(n)}) + \sum_m \log(1 f(g(\mathbf{c}^{(m)})))]$ for **K** times
 - $\Theta_g \leftarrow \Theta_g \eta \nabla_{\Theta_g} [\sum_m \log(1 f(g(\boldsymbol{c}^{(m)})))]$
- Why limiting K when updating Θ_f ?
- Too large K:
 - f may overfit data, making g updated for "wrong" target f
 - Vanishing gradients: $abla_{\Theta_g}[\sum_m \log(1 f(g(m{c}^{(m)})))]$ too small to learn

Too small K:

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 84 / 132

$$\arg\min_{\Theta_g} \max_{\Theta_f} \sum_n \log f(\boldsymbol{x}^{(n)}) + \sum_m \log(1 - f(g(\boldsymbol{c}^{(m)})))$$

- Alternate SGD:
 - $\Theta_f \leftarrow \Theta_f + \eta \nabla_{\Theta_f} [\sum_{n} \log f(\mathbf{x}^{(n)}) + \sum_{m} \log(1 f(g(\mathbf{c}^{(m)})))]$ for **K** times
 - $\Theta_g \leftarrow \Theta_g \eta \nabla_{\Theta_g} [\sum_m \log(1 f(g(\boldsymbol{c}^{(m)})))]$
- Why limiting K when updating Θ_f?
- Too large *K*:
 - f may overfit data, making g updated for "wrong" target f
 - Vanishing gradients: $abla_{\Theta_g}[\sum_m \log(1 f(g(m{c}^{(m)})))]$ too small to learn

- Too small K:
 - g updated for "meaningless" f

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 84 / 132

Solution: Wasserstein GAN [1]

- Let f be a regressor *without* the sigmoid output layer
- Cost function:

$$\arg\min_{\Theta_g} \max_{\Theta_f} \sum_n f(\boldsymbol{x}^{(n)}) - \sum_m f(g(\boldsymbol{c}^{(m)}))$$

- Initialize Θ_g for g and Θ_f for f
- At each SGD step/iteration:

Solution: Wasserstein GAN [1]

- Let *f* be a regressor *without* the sigmoid output layer
- Cost function:

$$\arg\min_{\Theta_g} \max_{\Theta_f} \sum_n f(\boldsymbol{x}^{(n)}) - \sum_m f(g(\boldsymbol{c}^{(m)}))$$

- Initialize Θ_g for g and Θ_f for f
- At each SGD step/iteration:
- **1** Repeat K times (with fixed Θ_g):
 - **1** Sample N real points $\{\mathbf{x}^{(n)}\}_n$ from X and N codes from $\mathbf{c} \sim \mathscr{N}(\mathbf{0}, \mathbf{I})$
 - **2** $\Theta_f \leftarrow \Theta_f + \eta \operatorname{clip}(\nabla_{\Theta_f}[\sum_{n} f(\mathbf{x}^{(n)}) \sum_{m} f(g(\mathbf{c}^{(m)}))])$

Solution: Wasserstein GAN [1]

- Let f be a regressor *without* the sigmoid output layer
- Cost function:

$$\arg\min_{\Theta_g} \max_{\Theta_f} \sum_n f(\boldsymbol{x}^{(n)}) - \sum_m f(g(\boldsymbol{c}^{(m)}))$$

- Initialize Θ_g for g and Θ_f for f
- At each SGD step/iteration:
- **1** Repeat K times (with fixed Θ_g):
 - **1** Sample N real points $\{\mathbf{x}^{(n)}\}_n$ from X and N codes from $\mathbf{c} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
 - **2** $\Theta_f \leftarrow \Theta_f + \eta \operatorname{clip}(\nabla_{\Theta_f}[\sum_n f(\boldsymbol{x}^{(n)}) \sum_m f(g(\boldsymbol{c}^{(m)}))])$
- **2** Execute once (with fixed Θ_f):
 - **1** Sample N codes from $\mathbf{c} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
 - 2 $\Theta_g \leftarrow \Theta_g \eta \nabla_{\Theta_g} [-\sum_m f(g(\boldsymbol{c}^{(m)}))]$

Shan-Hung Wu (CS, NTHU)

GANs from Information Theory Perspective

• Review the Information Theory first!

GANs from Information Theory Perspective

- Review the Information Theory first!
- Let $\mathbf{P}_{\mathsf{data}}$ / \mathbf{P}_g be distribution of \mathbf{x} / $\hat{\mathbf{x}} = g(\mathbf{c})$

GANs from Information Theory Perspective

- Review the Information Theory first!
- $\bullet\,$ Let $\mathbf{P}_{\mathsf{data}}$ / \mathbf{P}_g be distribution of \mathbf{x} / $\hat{\mathbf{x}} = g(\mathbf{c})$
- A way to find g: $\arg \min_{\Theta_g} D_{\mathsf{KL}}(\mathbf{P}_{\mathsf{data}} \| \mathbf{P}_g)$
- Review the Information Theory first!
- $\bullet\,$ Let $\mathbf{P}_{\mathsf{data}}$ / \mathbf{P}_g be distribution of \mathbf{x} / $\hat{\mathbf{x}} = g(\mathbf{c})$
- A way to find g: $\arg \min_{\Theta_g} D_{\mathsf{KL}}(\mathbf{P}_{\mathsf{data}} \| \mathbf{P}_g)$
 - Why not $\operatorname{arg\,min}_{\Theta_g} D_{\mathsf{KL}}(P_g \| P_{\mathsf{data}})$?

- Review the Information Theory first!
- Let $\mathbf{P}_{\mathsf{data}}$ / \mathbf{P}_g be distribution of \mathbf{x} / $\hat{\mathbf{x}} = g(\mathbf{c})$
- A way to find g: $\arg \min_{\Theta_g} D_{\mathsf{KL}}(\mathsf{P}_{\mathsf{data}} \| \mathsf{P}_g)$
 - Why not $\operatorname{arg\,min}_{\Theta_g} D_{\mathsf{KL}}(P_g \| P_{\mathsf{data}})$?

- Review the Information Theory first!
- Let $\mathbf{P}_{\mathsf{data}}$ / \mathbf{P}_g be distribution of \mathbf{x} / $\hat{\mathbf{x}} = g(\mathbf{c})$
- A way to find g: $\arg \min_{\Theta_g} D_{\mathsf{KL}}(\mathbf{P}_{\mathsf{data}} \| \mathbf{P}_g)$

• Why not $\operatorname{arg\,min}_{\Theta_g} D_{\mathsf{KL}}(P_g \| P_{\mathsf{data}})$?

• GAN: $\arg\min_{\Theta_g} \max_{\Theta_f} \sum_n \log f(\boldsymbol{x}^{(n)}) + \sum_m \log(1 - f(g(\boldsymbol{c}^{(m)})))$

- Review the Information Theory first!
- Let $\mathbf{P}_{\mathsf{data}}$ / \mathbf{P}_g be distribution of \mathbf{x} / $\hat{\mathbf{x}} = g(\mathbf{c})$
- A way to find g: $\arg \min_{\Theta_g} D_{\mathsf{KL}}(\mathsf{P}_{\mathsf{data}} \| \mathsf{P}_g)$

• Why not $\arg \min_{\Theta_g} D_{\mathsf{KL}}(P_g \| P_{\mathsf{data}})$?

- GAN: $\arg\min_{\Theta_g} \max_{\Theta_f} \sum_n \log f(\boldsymbol{x}^{(n)}) + \sum_m \log(1 f(g(\boldsymbol{c}^{(m)})))$
- Actually, the max term measures Jensen-Shannon divergence (a.k.a. symmetric KL divergence):

$$\mathbf{D}_{\mathsf{JS}}(\mathbf{P}_{\mathsf{data}} \| \mathbf{P}_g) = \frac{1}{2} \mathbf{D}_{\mathsf{KL}}(\mathbf{P}_{\mathsf{data}} \| \mathbf{Q}) + \frac{1}{2} \mathbf{D}_{\mathsf{KL}}(\mathbf{P}_g \| \mathbf{Q}), \text{ where } \mathbf{Q} = \frac{1}{2} (\mathbf{P}_g + \mathbf{P}_{\mathsf{data}})$$

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

$$C^* = \max_{\Theta_f} \sum_{n} \log f(\boldsymbol{x}^{(n)}) + \sum_{m} \log(1 - f(g(\boldsymbol{c}^{(m)})))$$

$$C^* = \max_{\Theta_f} \sum_n \log f(\boldsymbol{x}^{(n)}) + \sum_m \log(1 - f(g(\boldsymbol{c}^{(m)}))) \\ = \max_{\Theta_f} \frac{1}{N} \sum_n \log f(\boldsymbol{x}^{(n)}) + \frac{1}{N} \sum_m \log(1 - f(\hat{\boldsymbol{x}}^{(m)}))$$

$$C^* = \max_{\Theta_f} \sum_n \log f(\mathbf{x}^{(n)}) + \sum_m \log(1 - f(g(\mathbf{c}^{(m)}))) \\ = \max_{\Theta_f} \frac{1}{N} \sum_n \log f(\mathbf{x}^{(n)}) + \frac{1}{N} \sum_m \log(1 - f(\hat{\mathbf{x}}^{(m)})) \\ \approx \max_{\Theta_f} \mathbf{E}_{\mathbf{x} \sim \mathbf{P}_{\mathsf{data}}} [\log f(\mathbf{x})] + \mathbf{E}_{\mathbf{x} \sim \mathbf{P}_g} [\log(1 - f(\mathbf{x}))]$$

$$C^* = \max_{\Theta_f} \sum_n \log f(\mathbf{x}^{(n)}) + \sum_m \log(1 - f(g(\mathbf{c}^{(m)})))$$

=
$$\max_{\Theta_f} \frac{1}{N} \sum_n \log f(\mathbf{x}^{(n)}) + \frac{1}{N} \sum_m \log(1 - f(\hat{\mathbf{x}}^{(m)}))$$

$$\approx \max_{\Theta_f} E_{\mathbf{x} \sim P_{\mathsf{data}}}[\log f(\mathbf{x})] + E_{\mathbf{x} \sim P_g}[\log(1 - f(\mathbf{x}))]$$

=
$$\max_{\Theta_f} \int_{\mathbf{x}} P_{\mathsf{data}}(\mathbf{x}) \log f(\mathbf{x}) d\mathbf{x} + \int_{\mathbf{x}} P_g(\mathbf{x}) \log(1 - f(\mathbf{x})) d\mathbf{x}$$

$$C^* = \max_{\Theta_f} \sum_n \log f(\mathbf{x}^{(n)}) + \sum_m \log(1 - f(g(\mathbf{c}^{(m)})))$$

= $\max_{\Theta_f} \frac{1}{N} \sum_n \log f(\mathbf{x}^{(n)}) + \frac{1}{N} \sum_m \log(1 - f(\hat{\mathbf{x}}^{(m)}))$
 $\approx \max_{\Theta_f} E_{\mathbf{x} \sim P_{\mathsf{data}}}[\log f(\mathbf{x})] + E_{\mathbf{x} \sim P_g}[\log(1 - f(\mathbf{x}))]$
= $\max_{\Theta_f} \int_{\mathbf{x}} P_{\mathsf{data}}(\mathbf{x}) \log f(\mathbf{x}) d\mathbf{x} + \int_{\mathbf{x}} P_g(\mathbf{x}) \log(1 - f(\mathbf{x})) d\mathbf{x}$
= $\max_{\Theta_f} \int_{\mathbf{x}} [P_{\mathsf{data}}(\mathbf{x}) \log f(\mathbf{x}) + P_g(\mathbf{x}) \log(1 - f(\mathbf{x}))] d\mathbf{x}$

• Given a fixed g, we have

$$C^* = \max_{\Theta_f} \sum_n \log f(\mathbf{x}^{(n)}) + \sum_m \log(1 - f(g(\mathbf{c}^{(m)})))$$

= $\max_{\Theta_f} \frac{1}{N} \sum_n \log f(\mathbf{x}^{(n)}) + \frac{1}{N} \sum_m \log(1 - f(\hat{\mathbf{x}}^{(m)}))$
 $\approx \max_{\Theta_f} \mathbf{E}_{\mathbf{x} \sim \mathbf{P}_{\mathsf{data}}} [\log f(\mathbf{x})] + \mathbf{E}_{\mathbf{x} \sim \mathbf{P}_g} [\log(1 - f(\mathbf{x}))]$
= $\max_{\Theta_f} \int_{\mathbf{x}} \mathbf{P}_{\mathsf{data}}(\mathbf{x}) \log f(\mathbf{x}) d\mathbf{x} + \int_{\mathbf{x}} \mathbf{P}_g(\mathbf{x}) \log(1 - f(\mathbf{x})) d\mathbf{x}$
= $\max_{\Theta_f} \int_{\mathbf{x}} [\mathbf{P}_{\mathsf{data}}(\mathbf{x}) \log f(\mathbf{x}) + \mathbf{P}_g(\mathbf{x}) \log(1 - f(\mathbf{x}))] d\mathbf{x}$

• To have C^* , we can find f maximizing

$$\mathbf{P}_{\mathsf{data}}(\boldsymbol{x})\log f(\boldsymbol{x}) + \mathbf{P}_g(\boldsymbol{x})\log(1-f(\boldsymbol{x}))$$

for each x

• Assuming that f has infinite capacity

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 87 / 132

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning

88 / 132

• Given P_{data} , P_g , and x, what is the f(x) that maximizes

$$P_{data}(\boldsymbol{x}) \log f(\boldsymbol{x}) + P_g(\boldsymbol{x}) \log(1 - f(\boldsymbol{x}))?$$

•
$$f^*(\mathbf{x}) = \frac{P_{data}(\mathbf{x})}{P_{data}(\mathbf{x}) + P_g(\mathbf{x})} \in [0, 1]$$
 [Proof]
• That is,

$$C^* = \max_{\Theta_f} \int_{\mathbf{x}} [P_{\mathsf{data}}(\mathbf{x}) \log f(\mathbf{x}) + P_g(\mathbf{x}) \log(1 - f(\mathbf{x}))] d\mathbf{x}$$

• Given P_{data} , P_g , and \boldsymbol{x} , what is the $f(\boldsymbol{x})$ that maximizes

$$P_{data}(\boldsymbol{x}) \log f(\boldsymbol{x}) + P_g(\boldsymbol{x}) \log(1 - f(\boldsymbol{x}))?$$

•
$$f^*(\mathbf{x}) = \frac{P_{data}(\mathbf{x})}{P_{data}(\mathbf{x}) + P_g(\mathbf{x})} \in [0, 1]$$
 [Proof]
• That is,

$$C^* = \max_{\Theta_f} \int_{\mathbf{x}} [P_{\mathsf{data}}(\mathbf{x}) \log f(\mathbf{x}) + P_g(\mathbf{x}) \log(1 - f(\mathbf{x}))] d\mathbf{x}$$

= $\int_{\mathbf{x}} P_{\mathsf{data}}(\mathbf{x}) \log \frac{P_{\mathsf{data}}(\mathbf{x})}{P_{\mathsf{data}}(\mathbf{x}) + P_g(\mathbf{x})} d\mathbf{x}$
+ $\int_{\mathbf{x}} P_g(\mathbf{x}) \log(\frac{P_g(\mathbf{x})}{P_{\mathsf{data}}(\mathbf{x}) + P_g(\mathbf{x})}) d\mathbf{x}$

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning

• Given P_{data} , P_g , and \boldsymbol{x} , what is the $f(\boldsymbol{x})$ that maximizes

$$P_{data}(\boldsymbol{x}) \log f(\boldsymbol{x}) + P_g(\boldsymbol{x}) \log(1 - f(\boldsymbol{x}))?$$

•
$$f^*(\mathbf{x}) = \frac{P_{\mathsf{data}}(\mathbf{x})}{P_{\mathsf{data}}(\mathbf{x}) + P_g(\mathbf{x})} \in [0, 1]$$
 [Proof]
• That is,

$$C^* = \max_{\Theta_f} \int_{\mathbf{x}} [P_{\mathsf{data}}(\mathbf{x}) \log f(\mathbf{x}) + P_g(\mathbf{x}) \log(1 - f(\mathbf{x}))] d\mathbf{x}$$

= $\int_{\mathbf{x}} P_{\mathsf{data}}(\mathbf{x}) \log \frac{P_{\mathsf{data}}(\mathbf{x})}{P_{\mathsf{data}}(\mathbf{x}) + P_g(\mathbf{x})} d\mathbf{x}$
+ $\int_{\mathbf{x}} P_g(\mathbf{x}) \log(\frac{P_g(\mathbf{x})}{P_{\mathsf{data}}(\mathbf{x}) + P_g(\mathbf{x})}) d\mathbf{x}$
= $-2\log 2 + \int_{\mathbf{x}} P_{\mathsf{data}}(\mathbf{x}) \log \frac{P_{\mathsf{data}}(\mathbf{x})}{(P_{\mathsf{data}}(\mathbf{x}) + P_g(\mathbf{x}))/2} d\mathbf{x}$
+ $\int_{\mathbf{x}} P_g(\mathbf{x}) \log(\frac{P_g(\mathbf{x})}{(P_{\mathsf{data}}(\mathbf{x}) + P_g(\mathbf{x}))/2}) d\mathbf{x}$

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

• Given P_{data} , P_g , and \boldsymbol{x} , what is the $f(\boldsymbol{x})$ that maximizes

$$P_{data}(\boldsymbol{x}) \log f(\boldsymbol{x}) + P_g(\boldsymbol{x}) \log(1 - f(\boldsymbol{x}))?$$

•
$$f^*(\mathbf{x}) = \frac{P_{\mathsf{data}}(\mathbf{x})}{P_{\mathsf{data}}(\mathbf{x}) + P_g(\mathbf{x})} \in [0, 1]$$
 [Proof]
• That is,

$$C^* = \max_{\Theta_f} \int_{\mathbf{x}} [P_{\mathsf{data}}(\mathbf{x}) \log f(\mathbf{x}) + P_g(\mathbf{x}) \log(1 - f(\mathbf{x}))] d\mathbf{x}$$

$$= \int_{\mathbf{x}} P_{\mathsf{data}}(\mathbf{x}) \log \frac{P_{\mathsf{data}}(\mathbf{x})}{P_{\mathsf{data}}(\mathbf{x}) + P_g(\mathbf{x})} d\mathbf{x}$$

$$+ \int_{\mathbf{x}} P_g(\mathbf{x}) \log(\frac{P_g(\mathbf{x})}{P_{\mathsf{data}}(\mathbf{x}) + P_g(\mathbf{x})}) d\mathbf{x}$$

$$= -2\log 2 + \int_{\mathbf{x}} P_{\mathsf{data}}(\mathbf{x}) \log \frac{P_{\mathsf{data}}(\mathbf{x})}{(P_{\mathsf{data}}(\mathbf{x}) + P_g(\mathbf{x}))/2} d\mathbf{x}$$

$$+ \int_{\mathbf{x}} P_g(\mathbf{x}) \log(\frac{P_g(\mathbf{x})}{(P_{\mathsf{data}}(\mathbf{x}) + P_g(\mathbf{x}))/2}) d\mathbf{x}$$

$$= -2\log 2 + 2D_{\mathsf{JS}}(\mathsf{P}_{\mathsf{data}} \| \mathsf{P}_g)$$

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

• Cost function of GAN:

 $\begin{aligned} \arg\min_{\Theta_g} \max_{\Theta_f} \sum_n \log f(\boldsymbol{x}^{(n)}) + \sum_m \log(1 - f(g(\boldsymbol{c}^{(m)}))) \\ &= \arg\min_{\Theta_g} -2\log 2 + 2D_{\mathsf{JS}}(\mathsf{P}_{\mathsf{data}} \| \mathsf{P}_g) \end{aligned}$

Cost function of GAN:

 $\begin{aligned} \arg\min_{\Theta_g} \max_{\Theta_f} \sum_n \log f(\boldsymbol{x}^{(n)}) + \sum_m \log(1 - f(g(\boldsymbol{c}^{(m)}))) \\ &= \arg\min_{\Theta_g} -2\log 2 + 2D_{\mathsf{JS}}(\mathsf{P}_{\mathsf{data}} \| \mathsf{P}_g) \end{aligned}$

 \bullet However, no mater how g changes, ${\rm D}_{\rm JS}({\rm P}_{\rm data}\|{\rm P}_g)$ remains high during the GAN training process

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 89

Cost function of GAN:

 $\begin{aligned} \arg\min_{\Theta_g} \max_{\Theta_f} \sum_n \log f(\boldsymbol{x}^{(n)}) + \sum_m \log(1 - f(g(\boldsymbol{c}^{(m)}))) \\ &= \arg\min_{\Theta_g} -2\log 2 + 2D_{\mathsf{JS}}(\mathsf{P}_{\mathsf{data}} \| \mathsf{P}_g) \end{aligned}$

 \bullet However, no mater how g changes, ${\rm D}_{\rm JS}({\rm P}_{\rm data}\|{\rm P}_g)$ remains high during the GAN training process

• There's something wrong with the design of the inner max problem!

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

• GAN: $\arg \min_{\Theta_g} D_{\mathsf{JS}}(P_{\mathsf{data}} || P_g)$

Unsupervised Learning & Generative AI

- GAN: $\arg \min_{\Theta_g} D_{\mathsf{JS}}(\mathbf{P}_{\mathsf{data}} \| \mathbf{P}_g)$
- $0 \le D_{\text{JS}}(P_{\text{data}} \| P_g) \le \log 2 \approx 0.69$

- GAN: $\arg \min_{\Theta_g} D_{\mathsf{JS}}(P_{\mathsf{data}} \| P_g)$
- $0 \le D_{\text{JS}}(P_{\text{data}} \| P_g) \le \log 2 \approx 0.69$
- When does $D_{JS}(P_{data} \| P_g)$ reach its maximum value?

- GAN: $\arg \min_{\Theta_g} D_{\mathsf{JS}}(P_{\mathsf{data}} || P_g)$
- $0 \le D_{\text{JS}}(P_{\text{data}} \| P_g) \le \log 2 \approx 0.69$
- When does $D_{JS}(P_{data} || P_g)$ reach its maximum value?
- Let's see the case when \mathbf{P}_g and \mathbf{P}_{data} are "disjointed"

90 / 132

- GAN: $\arg \min_{\Theta_g} D_{\mathsf{JS}}(P_{\mathsf{data}} \| P_g)$
- $0 \le D_{\text{JS}}(P_{\text{data}} \| P_g) \le \log 2 \approx 0.69$
- When does $D_{JS}(P_{data} \| P_g)$ reach its maximum value?
- Let's see the case when P_g and P_{data} are "disjointed"

• Suppose $P_g(\mathbf{x}) \neq 0 \Leftrightarrow P_{\mathsf{data}}(\mathbf{x}) = 0$ and $P_g(\mathbf{x}) = 0 \Leftrightarrow P_{\mathsf{data}}(\mathbf{x}) \neq 0$, we have

$$\mathbf{D}_{\mathsf{JS}}(\mathbf{P}_g \| \mathbf{P}_{\mathsf{data}}) = \frac{1}{2} \mathbf{D}_{\mathsf{KL}}(\mathbf{P}_g \| \frac{\mathbf{P}_g + \mathbf{P}_{\mathsf{data}}}{2}) + \frac{1}{2} \mathbf{D}_{\mathsf{KL}}(\mathbf{P}_{\mathsf{data}} \| \frac{\mathbf{P}_g + \mathbf{P}_{\mathsf{data}}}{2})$$

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 90 / 132

- GAN: $\arg \min_{\Theta_g} D_{\mathsf{JS}}(P_{\mathsf{data}} \| P_g)$
- $0 \le D_{\text{JS}}(P_{\text{data}} \| P_g) \le \log 2 \approx 0.69$
- When does $D_{JS}(P_{data} \| P_g)$ reach its maximum value?
- Let's see the case when P_g and P_{data} are "disjointed"

Generator iterations

• Suppose $P_g(\mathbf{x}) \neq 0 \Leftrightarrow P_{\mathsf{data}}(\mathbf{x}) = 0$ and $P_g(\mathbf{x}) = 0 \Leftrightarrow P_{\mathsf{data}}(\mathbf{x}) \neq 0$, we have

$$\begin{split} \mathsf{D}_{\mathsf{JS}}(\mathsf{P}_g \| \mathsf{P}_{\mathsf{data}}) &= \frac{1}{2} \mathsf{D}_{\mathsf{KL}}(\mathsf{P}_g \| \frac{\mathsf{P}_g + \mathsf{P}_{\mathsf{data}}}{2}) + \frac{1}{2} \mathsf{D}_{\mathsf{KL}}(\mathsf{P}_{\mathsf{data}} \| \frac{\mathsf{P}_g + \mathsf{P}_{\mathsf{data}}}{2}) \\ &= \frac{1}{2} \int_{\boldsymbol{x}} \mathsf{P}_g(\boldsymbol{x}) \log \frac{2\mathsf{P}_g(\boldsymbol{x})}{\mathsf{P}_g(\boldsymbol{x}) + \mathsf{P}_{\mathsf{data}}(\boldsymbol{x})} d\boldsymbol{x} \\ &+ \frac{1}{2} \int_{\boldsymbol{x}} \mathsf{P}_{\mathsf{data}}(\boldsymbol{x}) \log \frac{2\mathsf{P}_{\mathsf{data}}(\boldsymbol{x})}{\mathsf{P}_g(\boldsymbol{x}) + \mathsf{P}_{\mathsf{data}}(\boldsymbol{x})} d\boldsymbol{x} \end{split}$$

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

- GAN: $\arg \min_{\Theta_g} D_{\mathsf{JS}}(P_{\mathsf{data}} || P_g)$
- $0 \le D_{\text{JS}}(P_{\text{data}} \| P_g) \le \log 2 \approx 0.69$
- When does $D_{JS}(P_{data} \| P_g)$ reach its maximum value?
- Let's see the case when P_g and P_{data} are "disjointed"

• Suppose $P_g(\mathbf{x}) \neq 0 \Leftrightarrow P_{data}(\mathbf{x}) = 0$ and $P_g(\mathbf{x}) = 0 \Leftrightarrow P_{data}(\mathbf{x}) \neq 0$, we have

$$\begin{aligned} \mathsf{D}_{\mathsf{JS}}(\mathsf{P}_g \| \mathsf{P}_{\mathsf{data}}) &= \frac{1}{2} \mathsf{D}_{\mathsf{KL}}(\mathsf{P}_g \| \frac{\mathsf{P}_g + \mathsf{P}_{\mathsf{data}}}{2}) + \frac{1}{2} \mathsf{D}_{\mathsf{KL}}(\mathsf{P}_{\mathsf{data}} \| \frac{\mathsf{P}_g + \mathsf{P}_{\mathsf{data}}}{2}) \\ &= \frac{1}{2} \int_{\boldsymbol{x}} \mathsf{P}_g(\boldsymbol{x}) \log \frac{2\mathsf{P}_g(\boldsymbol{x})}{\mathsf{P}_g(\boldsymbol{x}) + \mathsf{P}_{\mathsf{data}}(\boldsymbol{x})} d\boldsymbol{x} \\ &\quad + \frac{1}{2} \int_{\boldsymbol{x}} \mathsf{P}_{\mathsf{data}}(\boldsymbol{x}) \log \frac{2\mathsf{P}_{\mathsf{data}}(\boldsymbol{x})}{\mathsf{P}_g(\boldsymbol{x}) + \mathsf{P}_{\mathsf{data}}(\boldsymbol{x})} d\boldsymbol{x} \\ &= \frac{1}{2} \log 2 + \frac{1}{2} \log 2 = \log 2 \end{aligned}$$

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

- GAN: $\arg \min_{\Theta_g} D_{\mathsf{JS}}(P_{\mathsf{data}} || P_g)$
- $0 \le D_{\text{JS}}(P_{\text{data}} \| P_g) \le \log 2 \approx 0.69$
- When does $D_{JS}(P_{data} \| P_g)$ reach its maximum value?
- Let's see the case when P_g and P_{data} are "disjointed"

• Suppose $P_g(\mathbf{x}) \neq 0 \Leftrightarrow P_{\mathsf{data}}(\mathbf{x}) = 0$ and $P_g(\mathbf{x}) = 0 \Leftrightarrow P_{\mathsf{data}}(\mathbf{x}) \neq 0$, we have

$$\begin{aligned} \mathsf{D}_{\mathsf{JS}}(\mathsf{P}_g \| \mathsf{P}_{\mathsf{data}}) &= \frac{1}{2} \mathsf{D}_{\mathsf{KL}}(\mathsf{P}_g \| \frac{\mathsf{P}_g + \mathsf{P}_{\mathsf{data}}}{2}) + \frac{1}{2} \mathsf{D}_{\mathsf{KL}}(\mathsf{P}_{\mathsf{data}} \| \frac{\mathsf{P}_g + \mathsf{P}_{\mathsf{data}}}{2}) \\ &= \frac{1}{2} \int_{\boldsymbol{x}} \mathsf{P}_g(\boldsymbol{x}) \log \frac{2\mathsf{P}_g(\boldsymbol{x})}{\mathsf{P}_g(\boldsymbol{x}) + \mathsf{P}_{\mathsf{data}}(\boldsymbol{x})} d\boldsymbol{x} \\ &\quad + \frac{1}{2} \int_{\boldsymbol{x}} \mathsf{P}_{\mathsf{data}}(\boldsymbol{x}) \log \frac{2\mathsf{P}_{\mathsf{data}}(\boldsymbol{x})}{\mathsf{P}_g(\boldsymbol{x}) + \mathsf{P}_{\mathsf{data}}(\boldsymbol{x})} d\boldsymbol{x} \\ &= \frac{1}{2} \log 2 + \frac{1}{2} \log 2 = \log 2 \end{aligned}$$

• Are P_g and P_{data} really disjointed during the GAN training? Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning

Disjoining \mathbf{P}_g and \mathbf{P}_{data}

- $\bullet\,$ In a high dimensional space, ${\bf x}$ and $g({\bf z})$ may resides in low dimensional manifolds
 - $\bullet~P_g$ and P_{data} may have values only on the manifolds

Disjoining P_g and P_{data}

- $\bullet\,$ In a high dimensional space, ${\bf x}$ and $g({\bf z})$ may resides in low dimensional manifolds
 - $\bullet~P_g$ and P_{data} may have values only on the manifolds

 $\bullet~P_g$ and P_{data} can be very different initially during GAN training

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 91 / 132

Disjoining P_g and P_{data}

- $\bullet\,$ In a high dimensional space, ${\bf x}$ and $g({\bf z})$ may resides in low dimensional manifolds
 - $\bullet~P_g$ and P_{data} may have values only on the manifolds

- $\bullet~P_g$ and P_{data} can be very different initially during GAN training
- ${\, \bullet \, }$ The intersections where ${\rm P}_g({\it x}) \neq 0$ and ${\rm P}_{\sf data}({\it x}) \neq 0$ can be neglected
 - $P_g(\mathbf{x}) \neq 0 \Leftrightarrow P_{\mathsf{data}}(\mathbf{x}) = 0$ and $P_g(\mathbf{x}) = 0 \Leftrightarrow P_{\mathsf{data}}(\mathbf{x}) \neq 0$ almost surely
 - Maximum JS divergence at all time

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 91 / 132

• GAN: $\arg \min_{\Theta_g} D_{\mathsf{JS}}(P_{\mathsf{data}} \| P_g)$

• $D_{JS}(P_{data} \| P_g)$ does *not* bring P_g and P_{data} closer during GAN training

• GAN: $\arg \min_{\Theta_g} D_{\mathsf{JS}}(P_{\mathsf{data}} \| P_g)$

• $D_{JS}(P_{data} \| P_g)$ does *not* bring P_g and P_{data} closer during GAN training

• Wasserstein (or earth-mover) distance:

$$\begin{split} \mathsf{W}(\mathsf{P}_{\mathsf{data}},\mathsf{P}_g) &= \inf_{\mathsf{Q}\in \Gamma(\mathsf{P}_{\mathsf{data}},\mathsf{P}_g)} \mathsf{E}_{(\mathbf{x},\hat{\mathbf{x}})\sim \mathsf{Q}}[\|\mathbf{x}-\hat{\mathbf{x}}\|] \\ &= \inf_{\mathsf{Q}\in \Gamma(\mathsf{P}_{\mathsf{data}},\mathsf{P}_g)} \int_{(\mathbf{x},\hat{\mathbf{x}})} \mathsf{Q}(\mathbf{x},\hat{\mathbf{x}}) \|\mathbf{x}-\hat{\mathbf{x}}\| d(\mathbf{x},\hat{\mathbf{x}}) \end{split}$$

• GAN: $arg min_{\Theta_g} D_{JS}(P_{data} \| P_g)$

 $\bullet~D_{\mathsf{JS}}(P_{\mathsf{data}}\|P_g)$ does not bring P_g and P_{data} closer during GAN training

• Wasserstein (or earth-mover) distance:

$$\begin{split} \mathsf{W}(\mathsf{P}_{\mathsf{data}},\mathsf{P}_g) &= \inf_{\mathsf{Q}\in \Gamma(\mathsf{P}_{\mathsf{data}},\mathsf{P}_g)} \mathsf{E}_{(\mathbf{x},\hat{\mathbf{x}})\sim \mathsf{Q}}[\|\mathbf{x}-\hat{\mathbf{x}}\|] \\ &= \inf_{\mathsf{Q}\in \Gamma(\mathsf{P}_{\mathsf{data}},\mathsf{P}_g)} \int_{(\mathbf{x},\hat{\mathbf{x}})} \mathsf{Q}(\mathbf{x},\hat{\mathbf{x}}) \|\mathbf{x}-\hat{\mathbf{x}}\| d(\mathbf{x},\hat{\mathbf{x}}) \end{split}$$

• Intuitively, the minimal "cost" to change P_{data} into P_g

• GAN: $\arg \min_{\Theta_g} D_{\mathsf{JS}}(P_{\mathsf{data}} \| P_g)$

• $D_{JS}(P_{data} \| P_g)$ does *not* bring P_g and P_{data} closer during GAN training

• Wasserstein (or earth-mover) distance:

$$\begin{split} \mathsf{W}(\mathsf{P}_{\mathsf{data}},\mathsf{P}_g) &= \inf_{\mathsf{Q}\in \Gamma(\mathsf{P}_{\mathsf{data}},\mathsf{P}_g)} \mathsf{E}_{(\mathbf{x},\hat{\mathbf{x}})\sim \mathsf{Q}}[\|\mathbf{x}-\hat{\mathbf{x}}\|] \\ &= \inf_{\mathsf{Q}\in \Gamma(\mathsf{P}_{\mathsf{data}},\mathsf{P}_g)} \int_{(\mathbf{x},\hat{\mathbf{x}})} \mathsf{Q}(\mathbf{x},\hat{\mathbf{x}}) \|\mathbf{x}-\hat{\mathbf{x}}\| d(\mathbf{x},\hat{\mathbf{x}}) \end{split}$$

- Intuitively, the minimal "cost" to change P_{data} into P_g
- W(P_{data}, P_g) measures the "divergence" between P_g and P_{data} even when they are disjointed

Wasserstein GAN I

• W-GAN: $\arg \min_{\Theta_g} W(P_{data}, P_g)$ • $W(P_{data}, P_g) = \inf_{Q \in \Gamma(P_{data}, P_g)} E_{(\mathbf{x}, \hat{\mathbf{x}}) \sim Q}[\|\mathbf{x} - \hat{\mathbf{x}}\|]$

Wasserstein GAN I

- W-GAN: $\arg \min_{\Theta_g} W(P_{\mathsf{data}}, P_g)$ • $W(P_{\mathsf{data}}, P_g) = \inf_{Q \in \Gamma(P_{\mathsf{data}}, P_g)} E_{(\mathbf{x}, \hat{\mathbf{x}}) \sim Q}[\|\mathbf{x} - \hat{\mathbf{x}}\|]$
- $\bullet~$ Unfortunately, $W(P_{\mathsf{data}},P_g)$ is hard to solve directly

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 93 / 132

Wasserstein GAN II

Theorem

Consider f's that are Lipschitz continuous with constant 1, i.e.,

$$|f(\boldsymbol{x}) - f(\hat{\boldsymbol{x}})| \le 1 \cdot ||\boldsymbol{x} - \hat{\boldsymbol{x}}||, \forall \boldsymbol{x}, \hat{\boldsymbol{x}},$$

we have ^a

$$W(P_{\mathsf{data}}, P_g) = \sup_f E_{\mathbf{x} \sim P_{\mathsf{data}}}[f(\mathbf{x})] - E_{\mathbf{x} \sim P_g}[f(\mathbf{x})]$$
Wasserstein GAN II

Theorem

Consider f's that are Lipschitz continuous with constant 1, i.e.,

 $|f(\boldsymbol{x}) - f(\hat{\boldsymbol{x}})| \le 1 \cdot \|\boldsymbol{x} - \hat{\boldsymbol{x}}\|, \forall \boldsymbol{x}, \hat{\boldsymbol{x}},$

we have ^a

$$\begin{split} W(P_{\mathsf{data}}, P_g) &= \sup_f E_{\mathbf{x} \sim P_{\mathsf{data}}}[f(\mathbf{x})] - E_{\mathbf{x} \sim P_g}[f(\mathbf{x})] \\ &= \sup_f \int_{\mathbf{x}} (P_{\mathsf{data}}(\mathbf{x}) - P_g(\mathbf{x})) f(\mathbf{x}) d\mathbf{x}. \end{split}$$

^ahttps://vincentherrmann.github.io/blog/wasserstein/

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Wasserstein GAN II

Theorem

Consider f's that are Lipschitz continuous with constant 1, i.e.,

 $|f(\boldsymbol{x}) - f(\hat{\boldsymbol{x}})| \le 1 \cdot \|\boldsymbol{x} - \hat{\boldsymbol{x}}\|, \forall \boldsymbol{x}, \hat{\boldsymbol{x}},$

we have ^a

$$\begin{split} W(P_{\mathsf{data}}, P_g) &= \sup_f E_{\mathbf{x} \sim P_{\mathsf{data}}}[f(\mathbf{x})] - E_{\mathbf{x} \sim P_g}[f(\mathbf{x})] \\ &= \sup_f \int_{\mathbf{x}} (P_{\mathsf{data}}(\mathbf{x}) - P_g(\mathbf{x})) f(\mathbf{x}) d\mathbf{x}. \end{split}$$

^ahttps://vincentherrmann.github.io/blog/wasserstein/

• W-GAN [1]: $\arg \min_{\Theta_g} \max_{\Theta_f} E_{\mathbf{x} \sim P_{\mathsf{data}}}[f(\mathbf{x})] - E_{\mathbf{x} \sim P_g}[f(\mathbf{x})]$ Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine

Alternate SGD for W-GAN

$$\arg\min_{\Theta_g} \max_{\Theta_f} \mathbf{E}_{\mathbf{x} \sim \mathbf{P}_{\mathsf{data}}}[f(\mathbf{x})] - \mathbf{E}_{\mathbf{x} \sim \mathbf{P}_g}[f(\mathbf{x})] \\= \arg\min_{\Theta_g} \max_{\Theta_f} \sum_{n} f(\mathbf{x}^{(n)}) - \sum_{m} f(g(\mathbf{c}^{(m)}))$$

• f a regressor **without** the sigmoid output layer

Alternate SGD for W-GAN

 $\arg\min_{\Theta_g} \max_{\Theta_f} \mathbf{E}_{\mathbf{x} \sim \mathbf{P}_{\mathsf{data}}}[f(\mathbf{x})] - \mathbf{E}_{\mathbf{x} \sim \mathbf{P}_g}[f(\mathbf{x})] \\= \arg\min_{\Theta_g} \max_{\Theta_f} \sum_{n} f(\mathbf{x}^{(n)}) - \sum_{m} f(g(\mathbf{c}^{(m)}))$

- f a regressor *without* the sigmoid output layer
- Initialize Θ_g for g and Θ_f for f
- At each SGD step/iteration:
- **1** Repeat K times (with fixed Θ_g):
 - **1** Sample N real points $\{\mathbf{x}^{(n)}\}_n$ from X and N codes from $\mathbf{c} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$
 - 2 $\Theta_f \leftarrow \Theta_f + \eta \operatorname{clip}(\nabla_{\Theta_f}[\sum_n f(\boldsymbol{x}^{(n)}) \sum_m f(g(\boldsymbol{c}^{(m)}))])$
- **2** Execute once (with fixed Θ_f):
 - **1** Sample N codes from $\mathbf{c} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$

Shan-Hung Wu (CS, NTHU)

Machine Learning 95 / 132

Why Gradient Clipping?

• Update rule for Θ_f :

$$\Theta_f \leftarrow \Theta_f + \eta \operatorname{clip}(\nabla_{\Theta_f}[\sum_n f(\boldsymbol{x}^{(n)}) - \sum_m f(g(\boldsymbol{c}^{(m)}))])$$

- Gradient clipping: $\forall w \in \Theta_f$, $clip(w) = \max(\min(w, \tau), -\tau)$ for some threshold $\tau > 0$
- Why?

Why Gradient Clipping?

• Update rule for Θ_f :

1

$$\Theta_f \leftarrow \Theta_f + \eta \operatorname{clip}(\nabla_{\Theta_f}[\sum_n f(\boldsymbol{x}^{(n)}) - \sum_m f(g(\boldsymbol{c}^{(m)}))])$$

- Gradient clipping: $\forall w \in \Theta_f$, $clip(w) = \max(\min(w, \tau), -\tau)$ for some threshold $\tau > 0$
- Why?
- In W-GAN, we have :

 $\begin{aligned} & \arg\min_{\Theta_g} W(\mathbf{P}_{\mathsf{data}}, \mathbf{P}_g) \\ &= \arg\min_{\Theta_g} \max_{\Theta_f} \sum_n f(\boldsymbol{x}^{(n)}) - \sum_m f(g(\boldsymbol{c}^{(m)})) \end{aligned}$

only if f is 1-Lipschitz continuous

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 96 / 132

Why Gradient Clipping?

• Update rule for Θ_f :

(

$$\Theta_f \leftarrow \Theta_f + \eta \operatorname{clip}(\nabla_{\Theta_f}[\sum_n f(\boldsymbol{x}^{(n)}) - \sum_m f(g(\boldsymbol{c}^{(m)}))])$$

- Gradient clipping: $\forall w \in \Theta_f$, $clip(w) = \max(\min(w, \tau), -\tau)$ for some threshold $\tau > 0$
- Why?
- In W-GAN, we have :

$$\operatorname{arg\,min}_{\Theta_g} W(P_{\mathsf{data}}, P_g) = \operatorname{arg\,min}_{\Theta_g} \operatorname{max}_{\Theta_f} \sum_n f(\boldsymbol{x}^{(n)}) - \sum_m f(g(\boldsymbol{c}^{(m)}))$$

only if f is 1-Lipschitz continuous

• Heuristics for making f 1-Lipchitz

Shan-Hung Wu (CS, NTHU)

Advantages of W-GAN

- "Corrects" the inner max problem
 - Wasserstein distance guides g even when P_g and P_{data} "disjointed"
 - Training less sensitive to K (balance between g and f)
- The max value can be used as a "stop" indicator
- $\bullet~f$ a regressor, avoids vanishing gradients for g

Unsupervised Learning & Generative AI

Improved W-GAN I

 $\, \bullet \,$ In practice, W-GAN training converges slowly and is unstable to $\, \tau \,$

Improved W-GAN I

- $\circ\,$ In practice, W-GAN training converges slowly and is unstable to au
- W-GAN use a small au to make f 1-Lipschitz continuous
- \bullet However, too small a τ severely limits the capacity of f such it cannot actually maximize

$$\max_{\Theta_f} \mathbf{E}_{\mathbf{x} \sim \mathbf{P}_{\mathsf{data}}}[f(\mathbf{x})] - \mathbf{E}_{\mathbf{x} \sim \mathbf{P}_g}[f(\mathbf{x})]$$

 $\bullet~g$ is not updated for minimizing $W(P_{\mathsf{data}},P_g)$

Improved W-GAN I

- $\,$ $\,$ In practice, W-GAN training converges slowly and is unstable to $\,\tau$
- W-GAN use a small au to make f 1-Lipschitz continuous
- \bullet However, too small a τ severely limits the capacity of f such it cannot actually maximize

$$\max_{\Theta_{f}} \mathbf{E}_{\mathbf{x} \sim \mathbf{P}_{\mathsf{data}}}[f(\mathbf{x})] - \mathbf{E}_{\mathbf{x} \sim \mathbf{P}_{g}}[f(\mathbf{x})]$$

- g is not updated for minimizing $W(P_{data}, P_g)$
- Distribution of weight values of f ($\tau = 0.01$):

• Exploding and vanishing gradients

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 98 / 132

Improved W-GAN II

- If f is 1-Lipschitz, then $\|\nabla \! f(\pmb{x})\| \leq 1$ for all \pmb{x}
- Why not just panelize $\|\nabla f(\mathbf{x})\| > 1$ for all \mathbf{x} ?
- Cost function:

$$\begin{aligned} \arg\min_{\Theta_g} \max_{\Theta_f} \mathbb{E}_{\mathbf{x} \sim \mathbf{P}_{\mathsf{data}}}[f(\mathbf{x})] - \mathbb{E}_{\mathbf{x} \sim \mathbf{P}_g}[f(\mathbf{x})] \\ -\lambda \mathbb{E}_{\mathbf{x} \sim \mathbf{P}_{\mathsf{penalty}}}[\max(0, \|\nabla f(\mathbf{x})\| - 1)] \end{aligned}$$

Improved W-GAN II

- If f is 1-Lipschitz, then $\|\nabla \! f(\pmb{x})\| \leq 1$ for all \pmb{x}
- Why not just panelize $\|\nabla f(\mathbf{x})\| > 1$ for all \mathbf{x} ?
- Cost function:

$$\begin{aligned} \arg\min_{\Theta_g} \max_{\Theta_f} \mathbf{E}_{\mathbf{x} \sim \mathbf{P}_{\mathsf{data}}}[f(\mathbf{x})] - \mathbf{E}_{\mathbf{x} \sim \mathbf{P}_g}[f(\mathbf{x})] \\ - \lambda \mathbf{E}_{\mathbf{x} \sim \mathbf{P}_{\mathsf{penalty}}}[\max(0, \|\nabla f(\mathbf{x})\| - 1)] \end{aligned}$$

• $P_{penalty}$?

Improved W-GAN II

- If f is 1-Lipschitz, then $\|\nabla \! f(\pmb{x})\| \leq 1$ for all \pmb{x}
- Why not just panelize $\|\nabla f(\mathbf{x})\| > 1$ for all \mathbf{x} ?
- Cost function:

$$\begin{aligned} \arg\min_{\Theta_g} \max_{\Theta_f} \mathbf{E}_{\mathbf{x} \sim \mathbf{P}_{\mathsf{data}}}[f(\mathbf{x})] - \mathbf{E}_{\mathbf{x} \sim \mathbf{P}_g}[f(\mathbf{x})] \\ - \lambda \mathbf{E}_{\mathbf{x} \sim \mathbf{P}_{\mathsf{penalty}}}[\max(0, \|\nabla f(\mathbf{x})\| - 1)] \end{aligned}$$

• $P_{penalty}$?

W-GAN-GP [9]:

$$\arg\min_{\Theta_g} \max_{\Theta_f} \sum_n f(\boldsymbol{x}^{(n)}) - \sum_m f(g(\boldsymbol{c}^{(m)})) - \lambda \sum_p (\|\nabla f(\boldsymbol{x}^{(p)})\| - 1)^2$$

• The larger $f(\pmb{x}^{(p)})$ the better (subject to $\|\nabla\!f(\pmb{x}^{(p)})\|\leq 1)$

Faster convergence

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI M

Results

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning

101/132

• Large images generated by GANs usually lack global coherency

Counting

Perspective

Shape

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning

101/132

• Large images generated by GANs usually lack global coherency

Counting

Perspective

Shape

- A CNN, when used as *f*, detects *existence* of patterns more than their *relative positions*
 - ${\scriptstyle \circ}$ f loses track of the position of a pattern after several pooling layers
 - $\bullet\,$ Relative position of patterns in $\mathbb X$ may change due to different view angels
- Solutions?

Shan-Hung Wu (CS, NTHU) Unsup

• Large images generated by GANs usually lack global coherency

Counting

Perspective

Shape

- A CNN, when used as *f*, detects *existence* of patterns more than their *relative positions*
 - ${\scriptstyle \circ}$ f loses track of the position of a pattern after several pooling layers
 - $\bullet\,$ Relative position of patterns in $\mathbb X$ may change due to different view angels
- Solutions? A better *f*, such as the CapsuleNet [38]?

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Progressive Growing of GANs [14]

Incrementally adds new layers in sequential GAN trainings

- Convolution + upsampling for g each time
- Convolution + downpooling for f each time
- \bullet Real images are downscaled to match the current resolution of g

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning

102 / 132

Progressive Growing of GANs [14]

Incrementally adds new layers in sequential GAN trainings

- Convolution + upsampling for g each time
- Convolution + downpooling for f each time
- \bullet Real images are downscaled to match the current resolution of g
- Goal: to let new layers add details without ruining the context

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 102/132

Transition when Adding a New Layer

- Gradually increases α
 - New convolution layer in g/f learns to generate/detect details first
 - Then learns the "context"

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI Machine Learning 103 / 132

Results

- Minibatch discrimination [39] + W-GAN-GP [9] + progressive growing [14] + other tricks
- $2 \sim 6$ times faster

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Outline

- 1 Unsupervised Learning
 - Text Models
 - Image Models
- 2 ChatGPT
- Autoencoders (AE)
 Manifold Learning*
- 4 Variational Autoencoders (VAE)
- 5 Flow-based Models
- 6 Diffusion Models

⑦ Generative Adversarial Networks*

- Basic Architecture
- Challenges
- More GANs

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 105 / 132

Code Space Arithmetics

• DC-GAN [30] can learn to use codes in meaningful ways:

Unsupervised Learning & Generative AI

Machine Learning

Code Space Arithmetics

• DC-GAN [30] can learn to use codes in meaningful ways:

• Finding codes for images with constraints [50, 3] • Demo 1 • Demo 2

$$\arg\min_{\boldsymbol{c}} \|mask(g(\boldsymbol{c})) - \text{constraint}\|_F$$

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning

Conditional GAN I

• Text to image synthesis [34]: $\mathbb{X} = \{(\mathbf{x}^{(n)}, \phi^{(n)})\}_n$

"This bird is completely red with black wings and pointy beak."

• How?

Conditional GAN I

• Text to image synthesis [34]: $\mathbb{X} = \{(\mathbf{x}^{(n)}, \phi^{(n)})\}_n$

"This bird is completely red with black wings and pointy beak."

• How?

Shan-Hung Wu (CS, NTHU)

Conditional GAN II

Pitfall: g and f can choose to ignore the condition \$\phi\$ altogether
Solution?

Conditional GAN II

- $\bullet\,$ Pitfall: g and f can choose to ignore the condition $\phi\,$ altogether
- Solution? Conditioned labeling

$$\begin{split} & (\pmb{x}^{(n)}, \pmb{\phi}^{(n)}) \Rightarrow \mathsf{true} \\ & (\pmb{x}^{(n)}, \pmb{\phi}') \Rightarrow \mathsf{false}, \forall \pmb{\phi}' \neq \pmb{\phi}^{(n)} \\ & (\hat{\pmb{x}}^{(m)}, \pmb{\phi}^{(m)}) \Rightarrow \mathsf{false} \end{split}$$

Super Resolution [18]

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning 109 / 132

Super Resolution [18]

- $\bullet \ g: \mathsf{low} \ \mathsf{res} \ \mathsf{img} \to \mathsf{high} \ \mathsf{res} \ \mathsf{img}$
 - Training: c's are downscaled images

Super Resolution [18]

 $\bullet \ g: \mathsf{low} \ \mathsf{res} \ \mathsf{img} \to \mathsf{high} \ \mathsf{res} \ \mathsf{img}$

- Training: c's are downscaled images
- No "creativity," f acts as a better lose metric

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Image-to-Image Translation [13] I

- Given an image x_{src} in source domain, generate image(s) x_{target} in target domain
 - $x_{
 m src}$ and $x_{
 m target}$ are semantically aligned

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI Machine L

Machine Learning 110 / 132

Image-to-Image Translation [13] II

- Based on conditional GAN:
 - $\boldsymbol{c} = \boldsymbol{x}_{src}; \ \boldsymbol{g}(\boldsymbol{c}) = \boldsymbol{x}_{target}$
 - Conditioned labels
 - Uses dropout layers to create diversity (if needed)

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI Machine Learning 111/132

Image-to-Image Translation [13] II

• Based on conditional GAN:

•
$$c = x_{src}; g(c) = x_{target}$$

- Conditioned labels
- Uses dropout layers to create diversity (if needed)

• Requires *paired* examples $\mathbb{X} = \{(\mathbf{x}_{src}^{(n)}, \mathbf{x}_{target}^{(n)})\}_n$

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI Machine Learning 111/132
Unpaired Image-to-Image Translation I

• What if the images in different domains are *unpaired*?

•
$$\mathbb{X} = \{ \boldsymbol{x}_{\mathsf{src}}^{(n)} \}_n \cup \{ \boldsymbol{x}_{\mathsf{target}}^{(n)} \}_n$$

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning

112 / 132

Unpaired Image-to-Image Translation II

• Cycle GAN [51]: to train two generators $g_{src2target}$ and $g_{target2src}$ simultaneously in two GANs

Unpaired Image-to-Image Translation II

- Cycle GAN [51]: to train two generators $g_{\rm src2target}$ and $g_{\rm target2src}$ simultaneously in two GANs
- Add a loss term $\sum_{n} \| \mathbf{x}_{src}^{(n)} g_{target2src}(g_{src2target}(\mathbf{x}_{src}^{(n)})) \|_{F}$ and $\sum_{n} \| \mathbf{x}_{target}^{(n)} g_{src2target}(g_{target2src}(\mathbf{x}_{target}^{(n)})) \|_{F}$ for $g_{src2target}$ and $g_{target2src}$

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI

Machine Learning

114 / 132

• Ideal: $g_{src2target}$ and $g_{target2src}$ learns to translate images

- $\bullet\,$ Ideal: $g_{\rm src2target}$ and $g_{\rm target2src}$ learns to translate images
- Reality: $g_{src2target}$ and $g_{target2src}$ learns to hide inoformation [6]

- $\bullet\,$ Ideal: $g_{\rm src2target}$ and $g_{\rm target2src}$ learns to translate images
- Reality: $g_{src2target}$ and $g_{target2src}$ learns to hide inoformation [6]

• Unsupervised DNN models, including GANs, may not work as one may expect quality?

Reference I

 Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In International Conference on Machine Learning, pages 214–223, 2017.

- [2] Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022.
- [3] Andrew Brock, Theodore Lim, JM Ritchie, and Nick Weston. Neural photo editing with introspective adversarial networks. *arXiv preprint arXiv:1609.07093*, 2016.

Reference II

- [4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.
- [5] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T Freeman.

Maskgit: Masked generative image transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11315–11325, 2022.

[6] Casey Chu, Andrey Zhmoginov, and Mark Sandler. Cyclegan, a master of steganography. *arXiv preprint arXiv:1712.02950*, 2017.

Reference III

- [7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
- [8] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.

In Advances in Neural Information Processing Systems, pages 2672–2680, 2014.

 Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville.
 Improved training of wasserstein gans. arXiv preprint arXiv:1704.00028, 2017.

Shan-Hung Wu (CS, NTHU)

Reference IV

- Jonathan Ho, Ajay Jain, and Pieter Abbeel.
 Denoising diffusion probabilistic models.
 Advances in neural information processing systems, 33:6840–6851, 2020.
- [11] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.
- [12] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
 Lora: Low-rank adaptation of large language models.
 arXiv preprint arXiv:2106.09685, 2021.

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 118/132

Reference V

- [13] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with conditional adversarial networks. arXiv preprint arXiv:1611.07004, 2016.
- [14] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for improved quality, stability, and variation.

arXiv preprint arXiv:1710.10196, 2017.

- [15] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114, 2013.
- [16] Durk P Kingma and Prafulla Dhariwal.
 Glow: Generative flow with invertible 1x1 convolutions.
 Advances in neural information processing systems, 31, 2018.

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 119/132

Reference VI

- [17] Quoc V Le and Tomas Mikolov.
 Distributed representations of sentences and documents.
 In *ICML*, volume 14, pages 1188–1196, 2014.
- [18] Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic single image super-resolution using a generative adversarial network. arXiv preprint arXiv:1609.04802, 2016.
- [19] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative matrix factorization. *Nature*, 401(6755):788–791, 1999.

Reference VII

 [20] Daniel D Lee and H Sebastian Seung. Algorithms for non-negative matrix factorization. In Advances in neural information processing systems, pages 556–562, 2001.

[21] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented generation for knowledge-intensive nlp tasks. Advances in Neural Information Processing Systems, 33:9459–9474, 2020.

Reference VIII

- [22] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13, pages 740–755. Springer, 2014.
- [23] Calvin Luo.
 - Understanding diffusion models: A unified perspective. arXiv preprint arXiv:2208.11970, 2022.
- [24] Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-Dickstein. Unrolled generative adversarial networks. arXiv preprint arXiv:1611.02163, 2016.
- [25] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space. *arXiv preprint arXiv:1301.3781*, 2013.

Reference IX

[26] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.

Distributed representations of words and phrases and their compositionality.

In Advances in neural information processing systems, pages 3111–3119, 2013.

[27] Varun Nair, Elliot Schumacher, Geoffrey Tso, and Anitha Kannan. Dera: enhancing large language model completions with dialog-enabled resolving agents. arXiv preprint arXiv:2303.17071, 2023.

[28] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al.

Webgpt: Browser-assisted question-answering with human feedback. *arXiv preprint arXiv:2112.09332*, 2021.

Reference X

- [29] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with human feedback. Advances in Neural Information Processing Systems, 35:27730–27744, 2022.
- [30] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

 [31] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language understanding by generative pre-training. OpenAl blog, 2018.

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 124/132

Reference XI

- [32] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
 Language models are unsupervised multitask learners.
 OpenAl blog, 2019.
- [33] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen.
 Hierarchical text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.
- [34] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and Honglak Lee.
 Generative adversarial text to image synthesis. arXiv preprint arXiv:1605.05396, 2016.

Reference XII

[35] Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio.

Contractive auto-encoders: Explicit invariance during feature extraction.

In Proceedings of the 28th international conference on machine learning (ICML-11), pages 833–840, 2011.

[36] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
 High-resolution image synthesis with latent diffusion models.
 In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 10684–10695, 2022.

Reference XIII

- [37] Olaf Ronneberger, Philipp Fischer, and Thomas Brox.
 U-net: Convolutional networks for biomedical image segmentation.
 In Medical Image Computing and Computer-Assisted
 Intervention-MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18, pages 234–241.
 Springer, 2015.
- [38] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dynamic routing between capsules. In Advances in Neural Information Processing Systems, pages 3857–3867, 2017.

 [39] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
 Improved techniques for training gans.
 In Advances in Neural Information Processing Systems, pages 2226–2234, 2016.

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 127/132

Reference XIV

[40] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An open large-scale dataset for training next generation image-text models. Advances in Neural Information Processing Systems, 35:25278–25294, 2022.

[41] Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis, Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki.

Laion-400m: Open dataset of clip-filtered 400 million image-text pairs.

arXiv preprint arXiv:2111.02114, 2021.

Shan-Hung Wu (CS, NTHU)

Unsupervised Learning & Generative AI Mad

Reference XV

- [42] Or Sharir, Barak Peleg, and Yoav Shoham. The cost of training nlp models: A concise overview. arXiv preprint arXiv:2004.08900, 2020.
- [43] Patrice Simard, Bernard Victorri, Yann LeCun, and John S Denker. Tangent prop-a formalism for specifying selected invariances in an adaptive network.
 In *NIPS*, volume 91, pages 895–903, 1991.

 [44] Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, Oriol Vinyals, Alex Graves, et al.
 Conditional image generation with pixelcnn decoders.
 In Advances in Neural Information Processing Systems, pages 4790–4798, 2016.

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 129/132

Reference XVI

- [45] Aaron Van Oord, Nal Kalchbrenner, and Koray Kavukcuoglu.
 Pixel recurrent neural networks.
 In International Conference on Machine Learning, pages 1747–1756, 2016.
- [46] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.
- [47] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
 Extracting and composing robust features with denoising autoencoders.
 In Proceedings of the 25th international conference on Machine learning, pages 1096–1103. ACM, 2008.

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 130/132

Reference XVII

[48] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.

arXiv preprint arXiv:2206.07682, 2022.

- [49] Matthew D Zeiler and Rob Fergus.
 Visualizing and understanding convolutional networks.
 In European conference on computer vision, pages 818–833. Springer, 2014.
- [50] Jun-Yan Zhu, Philipp Krähenbühl, Eli Shechtman, and Alexei A Efros. Generative visual manipulation on the natural image manifold. In European Conference on Computer Vision, pages 597–613. Springer, 2016.

Shan-Hung Wu (CS, NTHU) Unsupervised Learning & Generative AI Machine Learning 131/132

Reference XVIII

[51] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation using cycle-consistent adversarial networks.

arXiv preprint arXiv:1703.10593, 2017.