
Reinforcement Learning

Shan-Hung Wu
shwu@cs.nthu.edu.tw

Department of Computer Science,
National Tsing Hua University, Taiwan

Machine Learning

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 1 / 64



Outline

1 Introduction

2 Markov Decision Process
Value Iteration
Policy Iteration

3 Reinforcement Learning
Model-Free RL using Monte Carlo Estimation
Temporal-Difference Estimation and SARSA (Model-Free)
Exploration Strategies
Q-Learning (Model-Free)
SARSA vs. Q-Learning

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 2 / 64



Outline

1 Introduction

2 Markov Decision Process
Value Iteration
Policy Iteration

3 Reinforcement Learning
Model-Free RL using Monte Carlo Estimation
Temporal-Difference Estimation and SARSA (Model-Free)
Exploration Strategies
Q-Learning (Model-Free)
SARSA vs. Q-Learning

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 3 / 64



Reinforcement Learning I

An agent sees states s(t)’s of an environment, takes actions a(t)’s,
and receives rewards R(t)’s (or penalties)

Environment does not change over time
The state of the environment may change due to an action
Reward R(t) may depend on s(t+1),s(t), · · · or a(t),a(t−1), · · ·
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Reinforcement Learning II

Goal: to learn the best policy π∗(s(t)) = a(t) that maximizes the total
reward ∑t R(t)

Training:
1 Perform trial-and-error runs
2 Learn from the experience
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Compared to Supervised/Unsupervised Learning

π∗(s(t)) = a(t) maximizing total reward ∑t R(t) vs. f ∗(x(i)) = y(i)
minimizing total loss

Examples x(i)’s are i.i.d., but not in RL
s(t+1) may depend on s(t),s(t−1), · · · and a(t),a(t−1), · · ·

No what to predict (y(i)’s), just how good a prediction is (R(t)’s)
R(t)’s are also called the critics
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Applications
Sequential decision making and control problems

From machine learning to AI that changes the world
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Markov Processes
A random process {s(t)}t is a collection of time-indexed random
variables

A classic way to model dependency between input samples {s(t)}t

A random process is called a Markov process if it satisfies the
Markov property:

P(s(t+1)|s(t),s(t−1), · · ·) = P(s(t+1)|s(t))

For those who knows Markov process:**

States are fully
observable

States are partially
observable

Transition is
autonomous Markov chains Hidden Markov models

Transition is
controlled

Markov decision
processes (MDP)

Partially observable
MDP

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 9 / 64



Markov Processes
A random process {s(t)}t is a collection of time-indexed random
variables

A classic way to model dependency between input samples {s(t)}t

A random process is called a Markov process if it satisfies the
Markov property:

P(s(t+1)|s(t),s(t−1), · · ·) = P(s(t+1)|s(t))

For those who knows Markov process:**

States are fully
observable

States are partially
observable

Transition is
autonomous Markov chains Hidden Markov models

Transition is
controlled

Markov decision
processes (MDP)

Partially observable
MDP

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 9 / 64



Markov Decision Process I
A Markov decision process (MDP) is defined by

S the state space; A the action space
Start state s(0)
P(s′|s; a) the transition distribution controlled by actions; fixed over
time t
R(s,a,s′) ∈ R (or simply R(s′) ) the deterministic reward function
γ ∈ [0,1] is the discount factor
H ∈ N the horizon; can be infinite

An absorbing/terminal state transit to itself with probability 1
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Markov Decision Process II
Given a policy π(s) = a, an MDP proceeds as follows:

s(0) a(0)−→ s(1) a(1)−→ ·· · a(H−1)

−→ s(H),

with the accumulative reward

R(s(0),a(0),s(1))+ γR(s(1),a(1),s(2))+ · · ·+ γ
H−1R(s(H−1),a(H−1),s(H))

To accrue rewards as soon as possible (prefer a shot path)
Different accumulative rewards in different trials

MDP π
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Goal

Given a policy π, the expected accumulative reward collected by
taking actions following π can be express by:

Vπ = Es(0),··· ,s(H)

(
H

∑
t=0

γ
tR(s(t),π(s(t)),s(t+1)); π

)

Goal: to find the optimal policy

π
∗ = argmax

π
Vπ

How?
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Optimal Value Function

π
∗ = argmax

π
Es(0),··· ,s(H)

(
H

∑
t=0

γ
tR(s(t),π(s(t)),s(t+1)); π

)

Optimal value function:

V∗(h)(s) = max
π

Es(1),··· ,s(h)

(
h

∑
t=0

γ
tR(s(t),π(s(t)),s(t+1))|s(0) = s; π

)

Maximum expected accumulative reward when starting from state s
and acting optimally for h steps

Having V∗(H−1)(s) for each s, we cab solve π∗ easily by

π
∗(s) = argmax

a ∑
s′

P(s′|s;a)[R(s,a,s′)+ γV∗(H−1)(s′)],∀s

in O(|S||A|) time
How to obtain V∗(H−1)(s) for each s?
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Dynamic Programming

V∗(h)(s) = max
π

Es(1),··· ,s(H)

(
h

∑
t=0

γ
tR(s(t),π(s(t)),s(t+1))|s(0) = s; π

)

h = H−1:

V∗(H−1)(s) = max
a ∑

s′
P(s′|s;a)[R(s,a,s′)+ γV∗(H−2)(s′)],∀s

h = H−2:

V∗(H−2)(s) = max
a ∑

s′
P(s′|s;a)[R(s,a,s′)+ γV∗(H−3)(s′)],∀s

h = 0:

V∗(0)(s) = max
a ∑

s′
P(s′|s;a)[R(s,a,s′)+ γV∗(−1)(s′)],∀s

h =−1:
V∗(−1)(s) = 0,∀s
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Algorithm: Value Iteration (Finite Horizon)

Input: MDP (S,A,P,R,γ,H)
Output: π∗(s)’s for all s’s

For each state s, initialize V∗(s)← 0;
for h← 0 to H−1 do

foreach s do
V∗(s)←maxa ∑s′ P(s′|s;a)[R(s,a,s′)+ γV∗(s′)];

end
end
foreach s do

π∗(s)← argmaxa ∑s′ P(s′|s;a)[R(s,a,s′)+ γV∗(s′)];
end

Algorithm 1: Value iteration with finite horizon.
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Example
MDP settings:

Actions: “up,” “down,” “left,” “right”
Noise of transition probability P(s′|s; a): 0.2,

e.g., up:
.8

.1 .1
.0

, right:
.1

0 .8
.1

, right:
.1

0 .1 .8
�

,

etc.
γ: 0.9
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Infinite Horizon & Bellman Optimality Equation
Recurrence of optimal values:

V∗(h)(s) = max
a ∑

s′
P(s′|s;a)[R(s,a,s′)+ γV∗(h−1)(s′)],∀s

When h→ ∞, we have the Bellman optimality equation:

V∗(s) = max
a ∑

s′
P(s′|s;a)[R(s,a,s′)+ γV∗(s′)],∀s

Optimal policy:

π
∗(s) = argmax

a ∑
s′

P(s′|s;a)[R(s,a,s′)+ γV∗(s′)],∀s

When h→ ∞, π∗ is
Stationary: the optimal action at a state s is the same at all times
(efficient to store)
Memoryless: independent with s(0)
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Algorithm: Value Iteration (Infinite Horizon)

Input: MDP (S,A,P,R,γ,H→ ∞)
Output: π∗(s)’s for all s’s

For each state s, initialize V∗(s)← 0;
repeat

foreach s do
V∗(s)←maxa ∑s′ P(s′|s;a)[R(s,a,s′)+ γV∗(s′)];

end
until V∗(s)’s converge;
foreach s do

π∗(s)← argmaxa ∑s′ P(s′|s;a)[R(s,a,s′)+ γV∗(s′)];
end

Algorithm 2: Value iteration with infinite horizon.
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Convergence

Theorem
Value iteration converges and gives the optimal policy π∗ when H→ ∞.

Intuition:

V∗(s)−V∗(H)(s) = γH+1R(s(H+1),a(H+1),s(H+2))

+γH+2R(s(H+2),a(H+2),s(H+3))+ · · ·
≤ γH+1Rmax + γH+2Rmax + · · ·
= γH+1

1−γ
Rmax

Goes to 0 as H→ ∞

Hence, V∗(H)(s) H→∞−−−→ V∗(s)
Assumed that R(·)≥ 0; still holds if rewards can be negative

by using max |R(·)| and bounding from both sides
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Effect of MDP Parameters

How does the noise of P(s′|s; a) and γ affect π∗?

1 γ = 0.99, noise= 0.5
2 γ = 0.99, noise= 0
3 γ = 0.1, noise= 0.5
4 γ = 0.1, noise= 0

π∗ prefers the close exit (+1); risking the cliff (−10)? (4)
π∗ prefers the close exit (+1); avoiding the cliff (−10)? (3)
π∗ prefers the distant exit (+10); risking the cliff (−10)? (2)
π∗ prefers the distant exit (+10); avoiding the cliff (−10)? (1)
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Goal

Given an MDP (S,A,P,R,γ,H→ ∞)

Expected accumulative reward collected by taking actions following a
policy π:

Vπ = Es(0),··· ,s(H)

(
∞

∑
t=0

γ
tR(s(t),π(s(t)),s(t+1)); π

)

Goal: to find the optimal policy

π
∗ = argmax

π
Vπ
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Algorithm: Policy Iteration (Simplified)

Given a π, define its value function:

Vπ(s) = Es(1),···

(
∞

∑
t=0

γ
tR(s(t),π(s(t)),s(t+1))|s(0) = s; π

)

Expected accumulative reward when starting from state s and acting
based on π

Input: MDP (S,A,P,R,γ,H→ ∞)
Output: π(s)’s for all s’s

For each state s, initialize π(s) randomly;
repeat

Evaluate Vπ(s),∀s;
Improve π such that Vπ(s), ∀s, becomes higher;

until π(s)’s converge;
Algorithm 3: Policy iteration.
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Evaluating Vπ(s)

How to evaluate the value function of a given π?

Vπ(s) = Es(1),···

(
∞

∑
t=0

γ
tR(s(t),π(s(t)),s(t+1))|s(0) = s; π

)

Bellman expectation equation:

Vπ(s) = ∑
s′

P(s′|s;π(s))[R(s,π(s),s′)+ γVπ(s′)],∀s

M1 Solve the system of linear equations
|S| linear equations and |S| variables
Time complexity: O(|S|3)

M2 Dynamic programming (just like value iteration):
Initializes Vπ(s) = 0,∀s
Vπ(s)← ∑s′ P(s′|s;π(s))[R(s,π(s),s′)+ γVπ(s′)],∀s
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Policy Improvement

How to find π̂ such that Vπ̂(s)≥ Vπ(s) for all s?

Update rule: for all s do

π̂(s)← argmax
a ∑

s′
P(s′|s;a)[R(s,a,s′)+ γVπ(s′)]

Why?

Vπ(s) = ∑s′ P(s′|s;π(s))[R(s,π(s),s′)+ γVπ(s′)]
≤ ∑s′ P(s′|s; π̂(s))[R(s, π̂(s),s′)+ γVπ(s′)]
≤ ∑s′ P(s′|s; π̂(s)){R(s, π̂(s),s′)+

γ∑s′′ P(s′′|s′; π̂(s′))[R(s′, π̂(s′),s′′)+ γVπ(s′′)]}
· · ·
≤ Es′,s′′,···

(
R(s, π̂(s),s′)+ γR(s′, π̂(s′),s′′)+ · · · |s(0) = s; π̂

)
= Vπ̂(s),∀s
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Algorithm: Policy Iteration

Input: MDP (S,A,P,R,γ,H→ ∞)
Output: π(s)’s for all s’s

For each state s, initialize π(s) randomly;
repeat

For each state s, initialize Vπ(s)← 0;
repeat

foreach s do
Vπ(s)← ∑s′ P(s′|s;π(s))[R(s,π(s),s′)+ γVπ(s′)];

end
until Vπ(s)’s converge;
foreach s do

π(s)← argmaxa ∑s′ P(s′|s;a)[R(s,a,s′)+ γVπ(s′)];
end

until π(s)’s converge;
Algorithm 5: Policy iteration.
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Convergence

Theorem
Policy iteration converges and gives the optimal policy π∗ when H→ ∞.

Convergence: in every step the policy improves
Optimal policy: at convergence, Vπ(s), ∀s, satisfies the Bellman
optimality equation

V∗(s) = max
a ∑

s′
P(s′|s;a)[R(s,a,s′)+ γV∗(s′)]
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Difference from MDP
In practice, we may not be able to model the environment as an MDP

Unknown transition distribution P(s′|s; a)

Unknown reward function R(s,a,s′)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 30 / 64



Difference from MDP
In practice, we may not be able to model the environment as an MDP
Unknown transition distribution P(s′|s; a)

Unknown reward function R(s,a,s′)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 30 / 64



Difference from MDP
In practice, we may not be able to model the environment as an MDP
Unknown transition distribution P(s′|s; a)

Unknown reward function R(s,a,s′)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 30 / 64



Exploration vs. Exploitation

What would you do to get some rewards?

1 Perform actions randomly to explore P(s′|s;a) and R(s,a,s′) first
Collect samples so to estimate P(s′|s;a) and R(s,a,s′)

2 Then, perform actions to exploit the learned P(s′|s;a) and R(s,a,s′)
π∗ can be computed/planned “in mind” using value/policy iteration
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Model-based RL using Monte Carlo Estimation

1 Use some exploration policy π ′ to perform one or more
episodes/trails

Each episode records samples of P(s′|s;a) and R(s,a,s′) from start to
terminal state

s(0)
π ′(s(0))−→ s(1)

π ′(s(1))−→ ·· · π ′(s(H−1))−→ s(H)

and
R(s(0),π ′(s(0)),s(1))→ ·· · → R(s(H−1),π(s(H−1)),s(H))

2 Estimate P(s′|s;a) and R(s,a,s′) using the samples and update the
exploitation policy π

P̂(s′|s;a) = # times the action a takes state s to state s′

# times action a is taken in state s
R̂(s,a,s′) = average of reward values received when a takes s to s′

3 Repeat from Step 1, but gradually mix π into π ′

Mix-in strategy? E.g., ε-greedy (more on this later)
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Problems of Model-based RL

There may be lots of P(s′|s;a) and R(s,a,s′) to estimate
If P(s′|s;a) is low, there may be too few samples to have a good
estimate
Low P(s′|s;a) may also lead to a poor estimate of R(s,a,s′)

when R(s,a,s′) depends on s′

We estimate P(s′|s;a)’s and R(s,a,s′)’s in order to compute
V∗(s)/Vπ(s) and solve π∗

Why not estimate V∗(s)/Vπ(s) directly?
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Model-based vs. Model-Free

How to estimate E(f (x)|y) = ∑x P(x|y)f (x) given samples
(x(1),y(1)),(x(2),y(2)), · · ·?

Model-based estimation:
1 For each x, estimate P̂(x|y) = count(x(i)=x and y(i)=y)

count(y(j)=y)
2 Ê(f (x)|y) = ∑x P̂(x|y)f (x)

Model-free estimation:

Ê(f (x)|y) = 1
count(y(j) = y) ∑

i :x(i)=x and y(i)=y
f (x(i))

Why does it work? Because samples appear in right frequencies
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(x(1),y(1)),(x(2),y(2)), · · ·?
Model-based estimation:

1 For each x, estimate P̂(x|y) = count(x(i)=x and y(i)=y)
count(y(j)=y)

2 Ê(f (x)|y) = ∑x P̂(x|y)f (x)
Model-free estimation:

Ê(f (x)|y) = 1
count(y(j) = y) ∑

i :x(i)=x and y(i)=y
f (x(i))

Why does it work? Because samples appear in right frequencies
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Challenges of Model-Free RL

Value iteration: start from V∗(s)← 0
1 Iterate V∗(s)←maxa ∑s′ P(s′|s;a)[R(s,a,s′)+ γV∗(s′)] until converge

/ Not easy to estimate V∗(s) = maxπ E
(

∑t γ tR(t)|s(0) = s; π

)

2 Solve π∗(s)← argmaxa ∑s′ P(s′|s;a)[R(s,a,s′)+ γV∗(s′)]

/ Need model to solve

Policy iteration: start from a random π, repeat until converge:
1 Iterate Vπ(s)← ∑s′ P(s′|s;π(s))[R(s,π(s),s′)+ γVπ(s′)] until converge

, Can estimate Vπ(s) = E
(

∑t γ tR(t)|s(0) = s; π

)
using MC est.

2 Solve π(s)← argmaxa ∑s′ P(s′|s;a)[R(s,a,s′)+ γVπ(s′)]

/ Need model to solve
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Q Function for π

Value function for a given π:

Vπ (s) = Es(1),···

(
∞

∑
t=0

γ
tR(s(t),π(s(t)),s(t+1)) |s(0) = s; π

)
with recurrence (Bellman expectation equation):

Vπ (s) = ∑
s′

P(s′|s;π(s))[R(s,π(s),s′)+ γVπ (s′)],∀s

Maximum expected accumulative reward when starting from state s
and acting based on π onward

Define Q function for π:

Qπ (s,a) = Es(1),···

(
R(s,a,s(1))+

∞

∑
t=1

γ
tR(s(t),π(s(t)),s(t+1)); s,a,π

)
such that Vπ(s) = Qπ(s,π(s)) with recurrence:

Qπ (s,a) = ∑
s′

P(s′|s;a)[R(s,a,s′)+ γQπ (s′,π(s′))],∀s,a

Maximum expected accumulative reward when starting from state s,
taking action a, and then acting based on π

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 37 / 64



Q Function for π

Value function for a given π:

Vπ (s) = Es(1),···

(
∞

∑
t=0

γ
tR(s(t),π(s(t)),s(t+1)) |s(0) = s; π

)
with recurrence (Bellman expectation equation):

Vπ (s) = ∑
s′

P(s′|s;π(s))[R(s,π(s),s′)+ γVπ (s′)],∀s

Maximum expected accumulative reward when starting from state s
and acting based on π onward

Define Q function for π:

Qπ (s,a) = Es(1),···

(
R(s,a,s(1))+

∞

∑
t=1

γ
tR(s(t),π(s(t)),s(t+1)); s,a,π

)
such that Vπ(s) = Qπ(s,π(s)) with recurrence:

Qπ (s,a) = ∑
s′

P(s′|s;a)[R(s,a,s′)+ γQπ (s′,π(s′))],∀s,a

Maximum expected accumulative reward when starting from state s,
taking action a, and then acting based on π

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 37 / 64



Algorithm: Policy Iteration based on Qπ

Input: MDP (S,A,P,R,γ,H→ ∞)
Output: π(s)’s for all s’s

For each state s, initialize π(s) randomly;
repeat

For each state s, initialize Vπ(s)← 0 Initialize Qπ(s,a) = 0,∀s,a;
repeat

foreach s and a do
Vπ(s)← ∑s′ P(s′|s;π(s))[R(s,π(s),s′)+ γVπ(s′)]
Qπ(s,a)← ∑s′ P(s′|s;a)[R(s,a,s′)+ γQπ(s′,π(s′))];

end
until Vπ(s)’s Qπ(s,a)’s converge;
foreach s do

π(s)← argmaxa ∑s′ P(s′|s;a)[R(s,a,s′)+ γVπ(s′)]
π(s)← argmaxa Qπ(s,a);

end
until π(s)’s converge;

Algorithm 6: Policy iteration.
Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 38 / 64



Example

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 39 / 64



Policy Iteration and Model-Free RL

Policy iteration: start from a random π, repeat until converge:
1 Iterate Qπ(s,a)← ∑s′ P(s′|s;π(s))[R(s,π(s),s′)+ γQπ(s′,π(s′))] until

converge

, Can estimate Qπ(s,a) = E
(

R(0)+∑t=1 γ tR(t)
)

using MC est.

2 Solve π(s)← argmaxa Qπ(s,a)

, No need for model to solve
RL: start from a random π for both exploration & exploitation,
repeat until converge:

1 Create episodes using π and get MC estimates Q̂π(s,a),∀s,a
2 Update π by π(s)← argmaxa Q̂π(s,a),∀s

Problem: π improves little after running lots of trials
Can we improve π right after each action?
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Value Iteration
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3 Reinforcement Learning
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Q-Learning (Model-Free)
SARSA vs. Q-Learning
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Policy Iteration Revisited

Policy iteration: start from a random π, repeat until converge:
1 Iterate Qπ(s,a)← ∑s′ P(s′|s;π(s))[R(s,π(s),s′)+ γQπ(s′,π(s′))] until

converge

, Can estimate Qπ(s,a) = E
(

R(0)+∑t=1 γ tR(t)
)

using MC est.
, Can also estimate Qπ(s,a) based on the recurrence

2 Solve π(s)← argmaxa Qπ(s,a)

, No need for model to solve
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Temporal Difference Estimation I

Qπ(s,a)←∑
s′

P(s′|s;π(s))[R(s,π(s),s′)+ γQπ(s′,π(s′))]

Given the samples

s(0) a(0)−→ s(1) a(1)−→ ·· · a(H−1)

−→ s(H)

and
R(s(0),a(0),s(1))→ ··· → R(s(H−1),a(H−1),s(H))

Temporal difference (TD) estimation of Qπ(s,a):
1 Q̂π(s,a)← randon value,∀s,a
2 Repeat until converge for each action a(t):

Q̂π(s(t),a(t))← Q̂π(s(t),a(t))+
η

[
(R(s(t),a(t),s(t+1))+ γQ̂π(s(t+1),π(s(t+1))))− Q̂π(s(t),a(t))

]

Q̂π(s,a) can be updated on the fly during an episode
η the “learning rate”?
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Temporal Difference Estimation II

Q̂π(s,a)← Q̂π(s,a)+η
[
(R(s,a,s′)+ γQ̂π(s′,π(s′)))− Q̂π(s,a)

]
= η(R(s,a,s′)+ γQ̂π(s′,π(s′)))+(1−η)Q̂π(s,a)

,

Exponential moving average:

xn =
x(n)+(1−η)x(n−1)+(1−η)2x(n−2)+ · · ·

1+(1−η)+(1−η)2 + · · ·
,

where η ∈ [0,1] is the “forget rate”
Recent samples are exponentially more important

Since 1/η = 1+(1−η)+(1−η)2 + · · · , we have
xn = ηx(n)+(1−η)xn−1 [Proof]
As long as η gradually decreases to 0:

Q̂π(s,a) degenerates to average of accumulative rewards
Q̂π(s,a) converges to Qπ(s,a) (more on this later)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 44 / 64



Temporal Difference Estimation II

Q̂π(s,a)← Q̂π(s,a)+η
[
(R(s,a,s′)+ γQ̂π(s′,π(s′)))− Q̂π(s,a)

]
= η(R(s,a,s′)+ γQ̂π(s′,π(s′)))+(1−η)Q̂π(s,a)

,

Exponential moving average:

xn =
x(n)+(1−η)x(n−1)+(1−η)2x(n−2)+ · · ·

1+(1−η)+(1−η)2 + · · ·
,

where η ∈ [0,1] is the “forget rate”
Recent samples are exponentially more important

Since 1/η = 1+(1−η)+(1−η)2 + · · · , we have
xn = ηx(n)+(1−η)xn−1 [Proof]
As long as η gradually decreases to 0:

Q̂π(s,a) degenerates to average of accumulative rewards
Q̂π(s,a) converges to Qπ(s,a) (more on this later)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 44 / 64



Temporal Difference Estimation II

Q̂π(s,a)← Q̂π(s,a)+η
[
(R(s,a,s′)+ γQ̂π(s′,π(s′)))− Q̂π(s,a)

]
= η(R(s,a,s′)+ γQ̂π(s′,π(s′)))+(1−η)Q̂π(s,a)

,

Exponential moving average:

xn =
x(n)+(1−η)x(n−1)+(1−η)2x(n−2)+ · · ·

1+(1−η)+(1−η)2 + · · ·
,

where η ∈ [0,1] is the “forget rate”
Recent samples are exponentially more important

Since 1/η = 1+(1−η)+(1−η)2 + · · · , we have
xn = ηx(n)+(1−η)xn−1 [Proof]

As long as η gradually decreases to 0:
Q̂π(s,a) degenerates to average of accumulative rewards
Q̂π(s,a) converges to Qπ(s,a) (more on this later)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 44 / 64



Temporal Difference Estimation II

Q̂π(s,a)← Q̂π(s,a)+η
[
(R(s,a,s′)+ γQ̂π(s′,π(s′)))− Q̂π(s,a)

]
= η(R(s,a,s′)+ γQ̂π(s′,π(s′)))+(1−η)Q̂π(s,a)

,

Exponential moving average:

xn =
x(n)+(1−η)x(n−1)+(1−η)2x(n−2)+ · · ·

1+(1−η)+(1−η)2 + · · ·
,

where η ∈ [0,1] is the “forget rate”
Recent samples are exponentially more important

Since 1/η = 1+(1−η)+(1−η)2 + · · · , we have
xn = ηx(n)+(1−η)xn−1 [Proof]
As long as η gradually decreases to 0:

Q̂π(s,a) degenerates to average of accumulative rewards
Q̂π(s,a) converges to Qπ(s,a) (more on this later)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 44 / 64



Algorithm: SARSA (Simplified)
Input: S, A, and γ

Output: π∗(s)’s for all s’s

For each state s and a, initialize Qπ(s,a) arbitrarily;
foreach episode do

Set s to initial state;
repeat

Take action a← argmaxa′ Qπ(s,a′);
Observe s′ and reward R(s,a,s′);
Qπ(s,a)←
Qπ(s,a)+η [(R(s,a,s′)+ γQπ(s′,π(s′)))−Qπ(s,a)];

s← s′;
until s is terminal state;

end
Algorithm 7: State-Action-Reward-State-Action (SARSA).

Policy improves each time when deciding the next action a
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Convergence

Theorem
SARSA converges and gives the optimal policy π∗ almost surely if

1) π is GLIE (Greedy in the Limit with Infinite Exploration);
2) η small enough eventually, but not decreasing too fast.

Greedy in the limit: the policy π converges (in the limit) to the
exploitation/greedy policy

At each step, we choose a← argmaxa′Qπ(s,a′)
Infinite exploration: all (s,a) pairs are visited infinite times

a← argmaxa′Qπ(s,a′) cannot guarantee this
Need a better way (next section)

Furthermore, η should satisfy: ∑t η(t) = ∞ and ∑t η(t)2 < ∞

E.g., η(t) = O( 1
t )

∑t
1
t is a harmonic series known to diverge

∑t(
1
t )

p, p > 1, is a p-series converging to Riemann zeta ζ (p)
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General RL Steps

Repeat until converge:
1 Use some exploration policy π ′ to run episodes/trails
2 Estimate targets (e.g., P(s′|s;a), R(s,a,s′), or Qπ(s,a)) and update the

exploitation policy π

3 Gradually mix π into π ′

Goals of mix-in/exploration strategy:
Infinite exploration with π ′

π ′ is greedy/exploitative in the end
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ε-Greedy Strategy

At every time step, flip a coin
With probability ε, act randomly (explore)
With probability (1− ε), compute/update the exploitation policy and
act accordingly (exploit)

Gradually decrease ε over time
At each time step, the action is at either of two extremes

Exploration or exploitation

“Soft” policy between the two extremes?
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Softmax Strategy

Idea: perform action a more often if a gives more accumulative rewards
E.g., in SARSA, choose a from s by sampling from the distribution:

P(a|s) = exp(Qπ(s,a)/t)
∑a′(expQπ(s,a′)/t)

, ∀a

Softmax function converts Qπ(s,a)’s to probabilities

Temperature t starts from a high value (exploration), and decreases
over time (exploitation)
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Exploration Function
Idea: to explore areas with fewest samples
E.g., in each step of SARSA, define an exploration function

f (q,n) = q+K/n,

where
q the estimated Q-value
n the number of samples for the estimate
K some positive constant

Instead of:

Qπ (s,a)← Qπ (s,a)+η
[
(R(s,a,s′)+ γQπ (s′,a′))−Qπ (s,a)

]
Use f when updating Qπ(s,a):

Qπ (s,a)← Qπ (s,a)+
η {[R(s,a,s′)+ γf (Qπ (s′,a′),count(s′,a′))]−Qπ (s,a)}

Infinite exploration
Exploit once exploring enough
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Model-Free RL with Value Iteration?

Value iteration: start from V∗(s)← 0
1 Iterate V∗(s)←maxa ∑s′ P(s′|s;a)[R(s,a,s′)+ γV∗(s′)] until converge

/ Not easy to estimate V∗(s) = maxπ E
(

∑t γ tR(t)|s(0) = s; π

)
2 Solve π∗(s)← argmaxa ∑s′ P(s′|s;a)[R(s,a,s′)+ γV∗(s′)]

/ Need model to solve

Q-version that helps sample-based estimation?

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 53 / 64



Model-Free RL with Value Iteration?

Value iteration: start from V∗(s)← 0
1 Iterate V∗(s)←maxa ∑s′ P(s′|s;a)[R(s,a,s′)+ γV∗(s′)] until converge

/ Not easy to estimate V∗(s) = maxπ E
(

∑t γ tR(t)|s(0) = s; π

)
2 Solve π∗(s)← argmaxa ∑s′ P(s′|s;a)[R(s,a,s′)+ γV∗(s′)]

/ Need model to solve

Q-version that helps sample-based estimation?

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 53 / 64



Optimal Q Function
Optimal value function:

V∗(s) = max
π

Es(1),···

(
∞

∑
t=0

γ
tR(s(t),π(s(t)),s(t+1)) |s(0) = s; π

)
with recurrence

V∗(s) = max
a ∑

s′
P(s′|s;a)[R(s,a,s′)+ γV∗(s′)],∀s

Maximum expected accumulative reward when starting from state s
and acting optimally onward

Q∗ function:

Q∗(s,a) = max
π

Es(1),···

(
R(s,a,s(1))+

∞

∑
t=1

γ
tR(s(t),π(s(t)),s(t+1)); s,a,π

)
such that V∗(s) = maxa Q∗(s,a) with recurrence:

Q∗(s,a) = ∑
s′

P(s′|s;a)[R(s,a,s′)+ γ max
a′

Q∗(s′,a′)],∀s

Maximum expected accumulative reward when starting from state s,
taking actin a, and then acting optimally onward
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Algorithm: Q-Value Iteration

Input: MDP (S,A,P,R,γ,H→ ∞)
Output: π∗(s)’s for all s’s

For each state s, initialize V∗(s)← 0 Initialize Q∗(s,a) = 0,∀s,a;
repeat

foreach s and a do
V∗(s)←maxa ∑s′ P(s′|s;a)[R(s,a,s′)+ γV∗(s′)]
Q∗(s,a)← ∑s′ P(s′|s;a)[R(s,a,s′)+ γ maxa′ Q∗(s′,a′)];

end
until V∗(s)’s Q∗(s,a)’s converge;
foreach s do

π∗(s)← argmaxa ∑s′ P(s′|s;a)[R(s,a,s′)+ γV∗(s′)]
π∗(s)← argmaxa Q∗(s,a);

end
Algorithm 9: Q-Value iteration with infinite horizon.

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 55 / 64



Example
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Q-Value Iteration

Value iteration: start from Q∗(s,a)← 0
1 Iterate Q∗(s,a)← ∑s′ P(s′|s;a)[R(s,a,s′)+ γ maxa′Q∗(s′,a′)] until

converge

/ Still not easy to estimate Q∗(s,a) = maxπ E
(

R(0)+∑t γ tR(t)
)

, But we can estimate Q∗(s,a) based on the recurrence now!

2 Solve π∗(s)← argmaxa Q∗(s,a)

, No need for model to solve
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Temporal Difference Estimation

Q∗(s,a)←∑
s′

P(s′|s;a)[R(s,a,s′)+ γ max
a′

Q∗(s′,a′)]

Given an exploration policy π ′ and samples

s(0) a(0)−→ s(1) a(1)−→ ·· · a(H−1)

−→ s(H)

and
R(s(0),a(0),s(1))→ ··· → R(s(H−1),a(H−1),s(H))

Temporal difference (TD) estimation of Q∗(s,a) for exploitation
policy π:

1 Q̂∗(s,a)← randon value,∀s,a
2 Repeat until converge for each action a(t):

Q̂∗(s(t),a(t))← Q̂∗(s(t),a(t))+
η

[
(R(s(t),a(t),s(t+1))+ γ maxa Q̂∗(s(t+1),a))− Q̂∗(s(t),a(t))

]

Q̂∗(s,a) can be updated on the fly during exploration
η the “forget rate” of moving avg. that gradually decreases
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Algorithm: Q-Learning

Input: S, A, and γ

Output: π∗(s)’s for all s’s

For each state s and a, initialize Q∗(s,a) arbitrarily;
foreach episode do

Set s to initial state;
repeat

Take action a from s using some exploration policy π ′

derived from Q∗ (e.g., ε-greedy);
Observe s′ and reward R(s,a,s′);
Q∗(s,a)←
Q∗(s,a)+η [(R(s,a,s′)+ γ maxa′ Q∗(s′,a′))−Q∗(s,a)];

s← s′;
until s is terminal state;

end
Algorithm 10: Q-learning.
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Convergence

Theorem
Q-learning converges and gives the optimal policy π∗ if

1) π ′ has explored enough;
2) η small enough eventually, but not decreasing too fast.

π ′ has explored enough:
All states and actions are visited infinitely often
Does not matter how π ′ selects actions!

η satisfies ∑t η(t) = ∞ and ∑t η(t)2 < ∞

E.g., η(t) = O( 1
t )
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Off-Policy vs. On-Policy RL
General RL steps: repeat until converge:

1 Use some exploration policy π ′ to run episodes/trails
2 Use smaples to update the exploitation policy π

3 Gradually mix π into π ′

Off-policy: π updated toward a greedy policy independent with π ′

Q-learning:
Q∗(s,a)← Q∗(s,a)+η [(R(s,a,s′)+ γ maxa′Q∗(s′,a′))−Q∗(s,a)]

On-policy: π updated to improve (and depends on) π ′

SARSA: Qπ(s,a)← Qπ(s,a)+η [(R(s,a,s′)+ γQπ(s′,π(s′)))−Qπ(s,a)]

π ′ π
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Practical Results

SARSA has the capability to avoid the mistakes due to exploration
E.g., the maze-with-cliff problem
Advantageous when ε > 0 with ε-greedy exploration strategy
Converges to optimal policy π∗ (as Q-learning) when ε → 0

But Q-learning has the capability to continue learning while
changing the exploration policy

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 63 / 64
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Remarks

Update rule for Q∗ (or Qπ) takes terminal states differently:

Q∗(s,a)←
{

(1−η)Q∗(s,a)+ηR(s,a,s′) if s′ is terminal
(1−η)Q∗(s,a)+η [R(s,a,s′)+ γ maxa′ Q∗(s′,a′)] , otherwise

Better convergence in practice

Watch out your memory usage!
Space complexity for SARSA/Q-learning: O(|S||A|)

Store Q∗(s,a)’s or Qπ(s,a)’s for all (s,a) combinations
Why not train a (deep) regressor for Q∗(s,a)’s or Qπ(s,a)’s?

Space reduction due to the generalizability of the regressor
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