Reinforcement Learning

Shan-Hung Wu
shwu@cs.nthu.edu.tw

Department of Computer Science,
National Tsing Hua University, Taiwan

Machine Learning

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 1/64

Outline

@ Introduction

(@ Markov Decision Process
o Value lteration
o Policy lteration

(3 Reinforcement Learning
o Model-Free RL using Monte Carlo Estimation
o Temporal-Difference Estimation and SARSA (Model-Free)
o Exploration Strategies
o Q-Learning (Model-Free)
o SARSA vs. Q-Learning

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning

2/64

Outline

@ Introduction

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 3/64

Reinforcement Learning |

o An agent sees states s)'s of an environment, takes actions a'!)'s,
and receives rewards R")’s (or penalties)

ENVIRONMENT

Reward

State @ Action

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 4/64

Reinforcement Learning |

o An agent sees states s)'s of an environment, takes actions a'!)'s,
and receives rewards R")’s (or penalties)
o Environment does not change over time

ENVIRONMENT

Reward

State @ Action

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 4/64

Reinforcement Learning |

o An agent sees states s)'s of an environment, takes actions a'!)'s,
and receives rewards R")’s (or penalties)
o Environment does not change over time
o The state of the environment may change due to an action

ENVIRONMENT

Reward

State @ Action

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 4/64

Reinforcement Learning |

o An agent sees states s)'s of an environment, takes actions a'!)'s,
and receives rewards R")’s (or penalties)
o Environment does not change over time
o The state of the environment may change due to an action
o Reward R® may depend on s+ s ... or g) g(=1) ...

ENVIRONMENT

Reward

State @ Action

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 4 /64

Reinforcement Learning Il

o Goal: to learn the best policy n*(s®)) = a") that maximizes the total
reward ¥, R()

ENVIRONMENT

Reward

State @ Action

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 5/64

Reinforcement Learning Il

o Goal: to learn the best policy n*(s®)) = a") that maximizes the total
reward ¥, R()
o Training:
@ Perform trial-and-error runs
@ Learn from the experience

ENVIRONMENT

Reward

State @ Action

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 5/64

Compared to Supervised /Unsupervised Learning

o m*(s®) = a® maximizing total reward ¥, R") vs. f*(x()) =y
minimizing total loss

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 6 /64

Compared to Supervised /Unsupervised Learning

o m*(s®) = a® maximizing total reward ¥, R") vs. f*(x()) =y
minimizing total loss

o Examples x@’s are i.i.d., but not in RL

+1) 1=1)

may depend on s s~V ... and al a1V ...

o sl

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 6 /64

Compared to Supervised /Unsupervised Learning

o m*(s\") =a maximizing total reward ¥, R" vs. f*(x()) = y()
minimizing total loss

o Examples x(0's are i.i.d., but not in RL

1) may depend on s, s~V ... and a®) a1V ...

?)

(

oS

o No what to predict (y)'s), just how good a prediction is (R®)'s)
o R"’s are also called the critics

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 6 /64

Applications

o Sequential decision making and control problems

Kohl and Stone, 2004 Ng et al, 2004 Tedrake et al, 2005

M umn

Silver et al, 2014 (DPG) h
Lillicrap et al, 2015 (DDPG) Schulman et al, Levine*, Finn*, et
Mnih et al 2013 (DQN) 2016 (TRPO + GAE) a'(rGZP"Sl)G

Mnih et al, 2015 (A3C)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning

Machine Learning

7/64

Applications

o Sequential decision making and control problems

Kohl and Stone, 2004 Ng et al, 2004 Tedrake et al, 2005 Kober and Peters, 2009

K

Silver et al, 2014 (DPG)
Lillicrap et al, 2015 (DDPG)

~
Schulman et al, Levine*, Finn*, et Silver*, Huang*, et
2016 (TRPO + GAE) al, 2016 al, 2016

Mnih et al 2013 (DQN) (es) (AlphaGe)

Mnih et al, 2015 (A3C)

o From machine learning to Al that changes the world

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning

7/64

Outline

(@ Markov Decision Process
o Value lteration
o Policy lteration

Shan-Hung Wu (CS, NTHU) Reinforcement Learning

Machine Learning

8/64

Markov Processes

o A random process {s}, is a collection of time-indexed random
variables

o A classic way to model dependency between input samples {s(},

o A random process is called a Markov process if it satisfies the
Markov property:

P(s |50 =1 ...y = p(stHD]| 5y

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 9/64

Markov Processes

o A random process {s}, is a collection of time-indexed random
variables

o A classic way to model dependency between input samples {s(},

o A random process is called a Markov process if it satisfies the
Markov property:

P(s |50 =1 ...y = p(stHD]| 5y

o For those who knows Markov process:**

States are fully States are partially
observable observable
Transition is Markov chains Hidden Markov models
autonomous
Transition is Markov decision Partially observable
controlled processes (MDP) MDP

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 9/64

Markov Decision Process |
o A Markov decision process (MDP) is defined by

o S the state space; A the action space

o Start state s(*)

P(s'|s; a) the transition distribution controlled by actions; fixed over
time ¢

R(s,a,s’) € R (or simply R(s’)) the deterministic reward function

Y€ 10,1] is the discount factor

o H €N the horizon; can be infinite

©

© ©

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 10 /64

Markov Decision Process |
o A Markov decision process (MDP) is defined by

o S the state space; A the action space

o Start state s(*)

P(s'|s; a) the transition distribution controlled by actions; fixed over
time ¢

R(s,a,s’) € R (or simply R(s’)) the deterministic reward function

Y€ 10,1] is the discount factor

o H €N the horizon; can be infinite

©

© ©

o An absorbing/terminal state transit to itself with probability 1

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 10 /64

Markov Decision Process Il

o Given a policy m(s) =a, an MDP proceeds as follows:

O 2% gy b dT),

with the accumulative reward

MDP

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 11/64

Markov Decision Process Il

o Given a policy m(s) =a, an MDP proceeds as follows:

0) a(o)

% sy @l e ()

s — e sV

with the accumulative reward

o To accrue rewards as soon as possible (prefer a shot path)
o Different accumulative rewards in different trials

MDP

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 11/64

Goal

o Given a policy 7, the expected accumulative reward collected by
taking actions following 7 can be express by:

H
Ve= ES(O),-",S(H) Z ’yrR(S(f), 7[(5(0)75(1—&-1)); T
=0

o Goal: to find the optimal policy

" =argmax Vp
T

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning

12/64

Goal

o Given a policy 7, the expected accumulative reward collected by
taking actions following 7 can be express by:

H
Ve= ES(O),-",S(H) Z ’yrR(S(f), 7[(5(0)75(1—&-1)); T
=0

o Goal: to find the optimal policy
" =argmax Vp
/e

o How?

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning

12/64

Outline

(@ Markov Decision Process
o Value lteration

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 13 /64

Optimal Value Function

H
Tt = argmaxByo .) (Z YR(s m(s),s(*); n)
=0

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 14 /64

Optimal Value Function

H
Tt — argmngs(o)’__’s(H) (Z y’R(s(t)7 ﬂ(s(t))’s(f-'rl)); n)
t=0

o Optimal value function:

T

h
v (g) = maxEg) . g (Z YR(sY m(s"),s(1))s@ =5, n)
=0

o Maximum expected accumulative reward when starting from state s
and acting optimally for & steps

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 14 /64

Optimal Value Function

H
Tt — argmngs(o)’__’s(H) (Z y’R(s(t)7 ﬂ(s(t))’s([-'rl)); n)
t=0

o Optimal value function:

T

h
v (g) = maxEg) . g (Z YR(sY m(s"),s(1))s@ =5, n)
t=0

o Maximum expected accumulative reward when starting from state s
and acting optimally for & steps

o Having V*(#=1)(s) for each s, we cab solve 7* easily by

m*(s) = argmax Y _P(s'|s;a)[R(s,a,s") + yV =D (¢")] s
a s/
in O([S||A]) time

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 14 /64

Optimal Value Function

H
Tt — argmngs(o)’__’s(H) (Z y’R(s(t)7 ﬂ(s(t))’s([-'rl)); n)
t=0

o Optimal value function:

T

h
v (g) = maxEg) . g (Z YR(sY m(s"),s(1))s@ =5, n)
t=0

o Maximum expected accumulative reward when starting from state s
and acting optimally for & steps

o Having V*(#=1)(s) for each s, we cab solve 7* easily by
m*(s) = argmax Y _P(s'|s;a)[R(s,a,s") + yV =D (¢")] s
a s/
in O([S||A|) time

o How to obtain V*H=1)(s) for each s?

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 14 /64

Dynamic Programming

h
V*(h) (s) — mi?XES(I);--,S(H) (Z 'J/R(S([>, ﬂ(S(t)),S(H_])”S(O) =s; 7[)
=0

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 15 /64

Dynamic Programming

h
V*(h) (s) — mi?XES(I);--,S(H) (Z 'J/R(S([>, ﬂ(S(t)),S(H_])”S(O) =s; 7[)
=0

o h=H-1:
V=H(s) = max) P(s'|s;a) [R(s,a,s") + yV* 72 (s')], Vs
a s

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 15 /64

Dynamic Programming

h
y*(h) (s) = m;;lesm)f.._,s(H) (Z VR(S@, 717(5([))75([+]))|S(0) =5, 717)
=0

o h=H-1:
V=H(s) = max) P(s'|s;a) [R(s,a,s") + yV* 72 (s')], Vs
a s

o h=H-2:
V=2 (5) = max Y P(s'|s:a)[R(s,a,s") +yV* " 3)(s)], Vs
a s

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 15 /64

Dynamic Programming

h
V*(h) (s) — mi?XES(I);--,S(H) (Z 'J/R(S(I>, ﬂ(S(I)),S(H_])”S(O) =s; 7[)
=0

o h=H-1:
V=H(s) = max) P(s'|s;a) [R(s,a,s") + yV* 72 (s')], Vs
a s

o h=H-2:
V=2 (5) = max Y P(s'|s:a)[R(s,a,s") +yV* " 3)(s)], Vs
a s

o h=0:
VO (s) = max ¥ P(s'|s;a)[R(s,a,s") +yV* " (s")], Vs
a /!

o h=-1:
V(=D (s) =0,Vs

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 15 /64

Algorithm: Value Iteration (Finite Horizon)

Input: MDP (S,A,P,R,7,H)
Output: m*(s)'s for all s's

For each state s, initialize V*(s) < 0;
for h+-0 to H—1do
foreach s do
| V*(s) < max, Xy P(s'|s:a)[R(s,a,s") + yV*(s)];
end
end
foreach s do
| 7 (s) « argmax, Yy P(s'|s;a)[R(s,a,s") + yV*(s')];
end
Algorithm 1: Value iteration with finite horizon.

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 16 / 64

Example

o MDP settings:

o Actions: “up,” "down,” “left,
o Noise of transition probability P(s’

"o "o "o

right”
s;a): 0.2,

.8 1 1
e.g., up: ’ 1 1 ‘ right: ’ 0 .8 ‘ right: ’ 0|.1].8 ‘
0 1 []
etc.
o v: 0.9

VALUES AFTER 0 ITERATIONS

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 17 /64

Example

o MDP settings:

o Actions: “up,” "down,” “left,
o Noise of transition probability P(s’

"o "o "o

right”
s;a): 0.2,

.8 1 1
e.g., up: ’ 1 1 ‘ right: ’ 0 .8 ‘ right: ’ 0|.1].8 ‘
0 1 []
etc.
o v: 0.9

VALUES AFTER 1 ITERATIONS

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 17 /64

Example

o MDP settings:
o Actions: “up,

"o "o

down,” “left,” "right”

o Noise of transition probability P(s'|s;a): 0.2,
.8 1 1
e.g., up: ’ 1 1 ‘ right: ’ 0 .8 ‘ right: ’ 0|.1].8 ‘
0 1 |
etc.
o v: 0.9

VALUES AFTER 2 ITERATIONS

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 17 /64

Example

o MDP settings:
o Actions: “up,

"o "o

down,” “left,” "right”

o Noise of transition probability P(s'|s;a): 0.2,
.8 1 1
e.g., up: ’ 1 1 ‘ right: ’ 0 .8 ‘ right: ’ 0|.1].8 ‘
0 1 |
etc.
o v: 0.9

VALUES AFTER 3 ITERATIONS

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 17 /64

Example

o MDP settings:
o Actions: “up,

"o "o "o

down,” “left,” “right”

o Noise of transition probability P(s'|s;a): 0.2,
.8 1 1
e.g., up: ‘ 1 1 ,right:‘ 0 .8 ,right:‘ 0.1 .8}
0 1 []
etc.
oY 0.9

VALUES AFTER 4 ITERATIONS

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 17 /64

Example

o MDP settings:

o Actions: “up,” “down,” “left,” “right”
o Noise of transition probability P(s'|s; a): 0.2,

"o "o "o

.8 1 1
e.g., up: ‘ 1 1 ,right:‘ 0 .8 ,right:‘ 0.1 .8}
0 1 []
etc.
oY 0.9

VALUES AFTER 5 ITERATIONS

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 17 /64

Example

o MDP settings:

o Actions: “up,” “down,” “left,” “right”
o Noise of transition probability P(s'|s; a): 0.2,

"o "o "o

.8 1 1
e.g., up: ‘ 1 1 ,right:‘ 0 .8 ,right:‘ 0.1 .8}
0 1 []
etc.
oY 0.9

VALUES AFTER 100 ITERATIONS

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 17 /64

Infinite Horizon & Bellman Optimality Equation

o Recurrence of optimal values:

v (s) = max Y P(s'|s:a)[R(s,a,s") + yv* =1 (s")], Vs
s/

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 18 /64

Infinite Horizon & Bellman Optimality Equation

o Recurrence of optimal values:

Vi (s) = max Y P(s'|s:a)[R(s,a,s") + yv* =1 ("], Vs
s/

o When h — o, we have the Bellman optimality equation:

Vi(s) = m‘?xZP(s'|s;a) [R(s,a,s") +yV*(s")],Vs

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 18 /64

Infinite Horizon & Bellman Optimality Equation

o Recurrence of optimal values:

Vi (s) = max Y P(s'|s:a)[R(s,a,s") + yv* =1 ("], Vs
s/

o When h — o, we have the Bellman optimality equation:

Vi(s) = m‘?xZP(s'\s;a) [R(s,a,s") +yV*(s")],Vs

o Optimal policy:

m*(s) = argmax Y P(s'|s;a)[R(s,a,s") + yV*(s)], Vs

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning

18 /64

Infinite Horizon & Bellman Optimality Equation

o Recurrence of optimal values:

Vi (s) = max Y P(s'|s:a)[R(s,a,s") + yv* =1 ("], Vs
s/

o When h — o, we have the Bellman optimality equation:

Vi(s) = m‘?xZP(s'|s;a) [R(s,a,s") +yV*(s")],Vs

o Optimal policy:

m*(s) = argmax Y P(s'|s;a)[R(s,a,s") + yV*(s)], Vs
a
s/
o When h — o0, T* is
o Stationary: the optimal action at a state s is the same at all times

(efficient to store)
o Memoryless: independent with s

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 18 /64

Algorithm: Value Iteration (Infinite Horizon)

Input: MDP (S,A,P,R,y,H —)
Output: m*(s)'s for all s's

For each state s, initialize V*(s) < 0;
repeat
foreach s do
| V*(s) < max, Xy P(s'|s:a)[R(s,a,s") + yV*(s)];
end
until V*(s)'s converge;
foreach s do
| 7 (s) « argmax, Yy P(s'|s;a)[R(s,a,s") + yV*(s')];
end
Algorithm 2: Value iteration with infinite horizon.

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 19 /64

Convergence

Theorem J

Value iteration converges and gives the optimal policy m* when H — oo.

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 20 /64

Convergence

Theorem
Value iteration converges and gives the optimal policy m* when H — oo. J
o Intuition:
VE(s) — = PHHIR(s(H+1) q(H+1) g(H+2))

},H+2 R(sH+2)_q(H+2), S(H+3)) 4
S '}’H—HRmax + 7’H+2Rmax + -
+1

= Ty ftmax

o Goesto 0 as H— =
H—sc0

o Hence, V) (5) 2255 v*(s)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 20 /64

Convergence

Theorem

Value iteration converges and gives the optimal policy m* when H — oo.

o Intuition:

Vi(s) — = PIHIR(sH+) q(H+1) g(H+2))

+'}’H+2R (H+2)7a(H+2)7s(H+3)) 4.

< VHTIRmax + Y Ripax + -
+

= Ty ftmax

o Goesto 0 as H— =
H—sc0

o Hence, V) (5) 2255 v*(s)
o Assumed that R(-) > 0; still holds if rewards can be negative
o by using max|R(-)| and bounding from both sides

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning

20/ 64

Effect of MDP Parameters

o How does the noise of P(s'|s; a) and y affect 7*7

@ y=0.99, noise =0.5
@ y=0.99, noise =0
@ v=0.1, noise=0.5
@ y=0.1, noise =0

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 21 /64

Effect of MDP Parameters

o How does the noise of P(s'|s; a) and y affect 7*7

@ y=0.99, noise =0.5
@ y=0.99, noise =0
@ v=0.1, noise=0.5
@ y=0.1, noise =0

m* prefers the close exit (+1); risking the cliff (—10)7

m* prefers the close exit (+1); avoiding the cliff (—10)?

m* prefers the distant exit (410); risking the cliff (—10)?
m* prefers the distant exit (410); avoiding the cliff (—10)?

© © o0 o

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 21 /64

Effect of MDP Parameters

o How does the noise of P(s'|s; a) and y affect 7*7

@ y=0.99, noise =0.5
@ y=0.99, noise =0
@ v=0.1, noise=0.5
@ y=0.1, noise =0

m* prefers the close exit (+1); risking the cliff (—10)7 (4)
m* prefers the close exit (+1); avoiding the cliff (—10)?

m* prefers the distant exit (410); risking the cliff (—10)?
m* prefers the distant exit (410); avoiding the cliff (—10)?

© © o0 o

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 21 /64

Effect of MDP Parameters

o How does the noise of P(s'|s; a) and y affect 7*7

@ y=0.99, noise=0.5
@ y=0.99, noise =0
@ y=0.1, noise =0.5
@ v=0.1, noise=0

m* prefers the close exit (+1); risking the cliff (—10)7 (4)
m* prefers the close exit (+1); avoiding the cliff (—10)? (3)
m* prefers the distant exit (410); risking the cliff (—10)?

m* prefers the distant exit (+10); avoiding the cliff (—10)?

© © o0 o

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 21 /64

Effect of MDP Parameters

o How does the noise of P(s'|s; a) and y affect 7*7

@ y=0.99, noise=0.5
@ y=0.99, noise =0
@ y=0.1, noise =0.5
@ v=0.1, noise=0

m* prefers the close exit (+1); risking the cliff (—10)7 (4)
m* prefers the close exit (+1); avoiding the cliff (—10)? (3)
m* prefers the distant exit (+10); risking the cliff (—10)? (2)
m* prefers the distant exit (+10); avoiding the cliff (—10)?

© © o0 o

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 21 /64

Effect of MDP Parameters

o How does the noise of P(s'|s; a) and y affect 7*7

@ y=0.99, noise=0.5
@ y=0.99, noise =0
@ y=0.1, noise =0.5
@ v=0.1, noise=0

m* prefers the close exit (+1); risking the cliff (—10)7 (4)
m* prefers the close exit (+1); avoiding the cliff (—10)? (3)

m* prefers the distant exit (+10); risking the cliff (—10)? (2)
m* prefers the distant exit (+10); avoiding the cliff (—10)7 (1)

© © o0 o

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 21 /64

Outline

(@ Markov Decision Process

o Policy lteration

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 22 /64

Goal

o Given an MDP (S,A,P,R,y,H — oo)

o Expected accumulative reward collected by taking actions following a
policy 7

Ve= s(o <Z ’)/R l (H—l)); 7'C>

o Goal: to find the optimal policy

" = argmax Vy
T

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 23 /64

Algorithm: Policy Iteration (Simplified)

o Given a 7, define its value function:

Vals) =g, (ZV’R (s), <’“>>|s<°>:s;n>

o Expected accumulative reward when starting from state s and acting
based on &

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 24 /64

Algorithm: Policy Iteration (Simplified)

o Given a 7, define its value function:

Vals) =g, (ZV’R (s), <’“>>|s<°>:s;n>

o Expected accumulative reward when starting from state s and acting
based on &

Input: MDP (S,A,P,R,y,H —)
Output: 7(s)'s for all s's
For each state s, initialize 7(s) randomly;
repeat

Evaluate Vi (s),Vs;

Improve m such that Vi(s), Vs, becomes higher;
until (s)'s converge;

Algorithm 4: Policy iteration.

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 24 /64

Evaluating Vi(s)

o How to evaluate the value function of a given 77

Vz(s) = Eq .. (Z YR(sY, m(s?),s)[s©) =s; n)
=0

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 25 /64

Evaluating Vi(s)

o How to evaluate the value function of a given 77

Vz(s) = Eq .. <Z YR(sY, m(s?),s)[s©) =s; n)
=0

o Bellman expectation equation:

Va(s) = ZP(S’]S; 7e(s))[R(s, 7(s),s") + yVr(s')], Vs

M1 Solve the system of linear equations

o |S] linear equations and |S| variables
o Time complexity: O(|S]?)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 25 /64

Evaluating Vi(s)

o How to evaluate the value function of a given 77

Vz(s) = Eq .. <Z YR(sY, m(s?),s)[s©) =s; n)
=0

o Bellman expectation equation:

Va(s) = ZP(S’]S; 7e(s))[R(s, 7(s),s") + yVr(s')], Vs

M1 Solve the system of linear equations
o |S] linear equations and |S| variables
o Time complexity: O(|S]?)
M2 Dynamic programming (just like value iteration):
o Initializes V(s) = 0,Vs
o Va(s) < Yo P(s'|s;(s))[R(s, (s),s") + ¥Vr(s')], Vs

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 25 /64

Policy Improvement

o How to find 7 such that Vi (s) > Vz(s) for all 57

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 26 /64

Policy Improvement

o How to find 7 such that Vi (s) > Vz(s) for all 57

o Update rule: for all s do

#(s) + argm‘?xZP(s’ s;a)[R(s,a,s") +yVz(s")]

o Why?

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning

26/ 64

Policy Improvement

o How to find 7 such that Vi (s) > Vz(s) for all 57

o Update rule: for all s do

#(s) + argm‘?xZP(s’ s;a)[R(s,a,s") +yVz(s")]

o Why?

Va(s) = XoP(s'ls:7(s))[R(s, 7(s),5") + ¥Va(s)]

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning

26/ 64

Policy Improvement

o How to find 7 such that Vi (s) > Vz(s) for all 57

o Update rule: for all s do

#(s) + argm‘;axZP(s’|s;a)[R(s,a,s') +YVar(s")]

o Why?

Va(s) =Yg P(s'ls:7(s))[R(s, 7(s),5") + ¥Va(s)]
< Ly P(s'ls: 2(s))[R(s, 2(s),8") + ¥V (s")]

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning

26/ 64

Policy Improvement

o How to find 7 such that Vi (s) > Vz(s) for all 57
o Update rule: for all s do

#(s) + argm‘?xZP(s’|s;a)[R(s,a,s') +YVar(s")]

o Why?
Va(s) =XyP(s|s:m(s))[R(s, 7(s),s') + yVal(s')]
< Yy P(s'|s: 2(s))[R(s, & (s),8") + ¥V (s')]
<Y P(s'|s; 2 (s)) {R(s, 7(s),s')+
Y o P(s"[s"s 2 (s"))[R(s", (s"),8") + YV (s")]}
Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning

26/ 64

Policy Improvement

o How to find 7 such that Vi (s) > Vz(s) for all 57

o Update rule: for all s do

#(s) + argm‘?xZP(s’|s;a)[R(s,a,s') +YVar(s")]

o Why?
Va(s) =Yg P(s'|s;7(s))[R(s,7(s),s") +yVz(s')]
<Yy P(s'|s; &(s))[R(s, A (s),8") + ¥Vz(s")]
<Y P(s'|s; 2 (s)) {R(s, 7(s),s')+
Yeo P(s"|s"s & (s"))[R(s", &(s"),s") + yVa(s")]}

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 26 /64

Algorithm: Policy Iteration

Input: MDP (S,A,P,R,y,H —)
Output: 7(s)'s for all s's

For each state s, initialize 7(s) randomly;
repeat
For each state s, initialize V(s) < 0;
repeat
foreach s do
| Vals) « Lo P(s'lss m(s)[R(5, 7(5),") + PVa(s'):
end
until Vz(s)'s converge;
foreach s do
| 7(s) argmax, Yo P(s'|s:a) [R(s,a,s") + YV (s')];
end

until (s)'s converge;
Algorithm 5: Policy iteration.

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 27 /64

Convergence

Theorem
Policy iteration converges and gives the optimal policy n* when H — oo, J

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 28 /64

Convergence

Theorem
Policy iteration converges and gives the optimal policy n* when H — oo, J

o Convergence: in every step the policy improves

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 28 /64

Convergence

Theorem
Policy iteration converges and gives the optimal policy n* when H — oo, J

o Convergence: in every step the policy improves

o Optimal policy: at convergence, V(s), Vs, satisfies the Bellman
optimality equation

Vi(s) = mt?XZP(s’\s;a) [R(s,a,s’) +yV*(s')]

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 28 /64

Outline

(3 Reinforcement Learning
o Model-Free RL using Monte Carlo Estimation
o Temporal-Difference Estimation and SARSA (Model-Free)
o Exploration Strategies
o Q-Learning (Model-Free)
o SARSA vs. Q-Learning

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 20 /64

Difference from MDP

o In practice, we may not be able to model the environment as an MDP

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 30/64

Difference from MDP

o In practice, we may not be able to model the environment as an MDP
o Unknown transition distribution P(s'|s; a)

Kohl and Stone, 2004 Ng et al, 2004 Tedrake et al, 2005 Kober and Peters, 2009

;—l B :

Silver et al, 2014 (DPG) N

Lillicrap et al, 2015 (DDPG) _ Schulmanetal, Levine®, Finn*, et Silver*, Huang*, et
Mnih et al 2013 D) 2016 (TRPO + GAE) al,GzPosls :II 50(135
Mnih et al, 2015 (A3C) (GPs) (AlphaGo)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 30/64

Difference from MDP

o In practice, we may not be able to model the environment as an MDP
o Unknown transition distribution P(s'|s; a)

Kohl and Stone, 2004 Ng et al, 2004 Tedrake et al, 2005 Kober and Peters, 2009

Silver et al, 2014 (DPG) ~
Lillicrap et al, 2015 (DDPG) _ Schulmaneetal, Levine®, Finn*, et Silver*, Huang*, et
; 2016 (TRPO + GAE) al, 2016 al, 2016
Mnih et al 2013 (DQN) (ops) (A1phaGe)

Mnih et al, 2015 (A3C)

o Unknown reward function R(s,a,s’)

Shan-Hung Wu (CS, NTHU) Reinforcement earning Machine Learning 30/64

Exploration vs. Exploitation

o What would you do to get some rewards?

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 31/64

Exploration vs. Exploitation

o What would you do to get some rewards?

@ Perform actions randomly to explore P(s'|s;a) and R(s,a,s’) first
o Collect samples so to estimate P(s'|s;a) and R(s,a,s’)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 31/64

Exploration vs. Exploitation

o What would you do to get some rewards?

@ Perform actions randomly to explore P(s'|s;a) and R(s,a,s’) first
o Collect samples so to estimate P(s'|s;a) and R(s,a,s’)

@ Then, perform actions to exploit the learned P(s'|s;a) and R(s,a,s’)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 31/64

Model-based RL using Monte Carlo Estimation

@ Use some exploration policy 7' to perform one or more
episodes/trails
o Each episode records samples of P(s’
terminal state

s;a) and R(s,a,s’) from start to

and
R(sO 7/ (s, s1)) — ... 5 R(sW=D) m(sH-1) ()

@ Estimate P(s'|s;a) and R(s,a,s’) using the samples and update the
exploitation policy &
ALy # times the action « takes state s to state ¢’
o P(s = - - - -
times action « is taken in state s
o R(s,a,s’) = average of reward values received when a takes s to s’

s;a)

® Repeat from Step 1, but gradually mix 7 into 7/
o Mix-in strategy? E.g., e-greedy (more on this later)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 32/64

Problems of Model-based RL

o There may be lots of P(s|s;a) and R(s,a,s’) to estimate

o If P(s'|s;a) is low, there may be too few samples to have a good
estimate

o Low P(s'|s;a) may also lead to a poor estimate of R(s,a,s’)
o when R(s,a,s’) depends on s’

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 33/64

Problems of Model-based RL

o There may be lots of P(s|s;a) and R(s,a,s’) to estimate

o If P(s'|s;a) is low, there may be too few samples to have a good
estimate

o Low P(s'|s;a) may also lead to a poor estimate of R(s,a,s’)

o when R(s,a,s’) depends on s’

o We estimate P(s'|s;a)’s and R(s,a,s’)'s in order to compute
V*(s)/Vz(s) and solve 7*

o Why not estimate V*(s)/Vz(s) directly?

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 33/64

Outline

(3 Reinforcement Learning
o Model-Free RL using Monte Carlo Estimation

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 34 /64

Model-based vs. Model-Free

o How to estimate E(f(x)|y) = Y. P(x|y)f(x) given samples
(x(1)7y(1))7 (x(2),y(2)),...7

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 35 /64

Model-based vs. Model-Free

o How to estimate E(f(x)|y) = Y. P(x|y)f(x) given samples
(x(1)7y(1))7 (x(2)7y(2)),...7
o Model-based estimation:

count(. U*x and y() =y)
count(yl)=y)

@ For each x, estimate P(x|y) =

@ E(f(x)|y) = L P(xly)f(x)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning

35/64

Model-based vs. Model-Free

o How to estimate E(f(x)|y) = Y. P(x|y)f(x) given samples
(x(1)7y(1))7 (x(2)7y(2)),...7
o Model-based estimation:

count(. U*x and y() =y)

@ For each x, estimate P(x|y) = comnt0)

@ E(f(x)|y) = L P(xly)f(x)

o Model-free estimation:

1 Y i)

count(y(f) :y) i:x()=x and y()=y

E(fx)ly) =

o Why does it work?

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning

35/64

Model-based vs. Model-Free

o How to estimate E(f(x)|y) = Y. P(x|y)f(x) given samples
(x(1)7y(1))7 (x(2)7y(2)),...7
o Model-based estimation:

count(. U*x and y() =y)
count(yl)=y)

@ For each x, estimate P(x|y) =

@ E(f(x)|y) = L P(xly)f(x)

o Model-free estimation:

1 Y i)

count(y(f) :y) i:x()=x and y()=y

E(fx)ly) =

o Why does it work? Because samples appear in right frequencies

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning

35/ 64

Challenges of Model-Free RL

o Value iteration: start from V*(s) + 0
@ lterate V*(s) < max, Yo P(s'|s;a)[R(s,a,s) + yV*(s")] until converge

@ Solve *(s) < argmax, Y P(s'|s;a)[R(s,a,s’) + yV*(s')]

o Policy iteration: start from a random 7, repeat until converge:
@ lterate Vi (s) < Yy P(s'|s; (s))[R(s, (s),s") + yYVz(s")] until converge

@ Solve 7(s) < argmax, Y P(s'|s;a)[R(s,a,s') + YV (s')]

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 36 /64

Challenges of Model-Free RL

o Value iteration: start from V*(s) < 0
@ lterate V*(s) < max, Yy P(s'|s;a)[R(s,a,s") + yV*(s')] until converge
® Not easy to estimate V*(s) = maxzE (Z, YRV s =§; 7'[)
@ Solve *(s) + argmax, Yo P(s'|s;a)[R(s,a,s’) + yV*(s')]
® Need model to solve
o Policy iteration: start from a random 7, repeat until converge:
@ lterate Vy(s) < Yo P(s'|s; (s))[R(s, m(s),s") + YVz(s")] until converge
© Can estimate V(s) =E (Z, ¥YR[s©) =g; 7r> using MC est.
@ Solve 7(s) < argmax, Yo P(s'|s;a)[R(s,a,s") + YV (s")]
® Need model to solve

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 36 /64

O Function for
o Value function for a given 7:

Va(s) =Equ ... (Z VR(S(’),E(S(’))7S(’+1)) ‘S(O) =5 ﬂ)
=0

with recurrence (Bellman expectation equation):
Va(s) =) P(s'ls: m(s)) [R(s, 7(s),8") + ¥V (s")], Vs
sl

o Maximum expected accumulative reward when starting from state s
and acting based on 7 onward

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 37/64

O Function for
o Value function for a given 7:

Va(s) =Equ ... (Z VR(S(’),n(s(’)Ls(f“)) ‘S(O) =5 ﬂ)
=0

with recurrence (Bellman expectation equation):

= ZP(S/\S;n‘(s))[R(s,n(s).,s') +YVr(s))], Vs

o Maximum expected accumulative reward when starting from state s
and acting based on 7 onward
o Define Q function for m:

Ox(s,a) =Eg .. <R (s,a,s"")) + Zy’R (s, (s, s(’+l));s7a,7r>

such that Vz(s) = Qx(s,(s)) with recurrence:
=) P(s'Is;a)[R(s,a,5") +yQx(s', 7(s"))], ¥s.a

o Maximum expected accumulative reward when starting from state s,
taking action a, and then acting based on 7

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 37/64

Algorithm: Policy Iteration based on Q;
Input: MDP (S,A,P,R,y,H —)
Output: 7(s)'s for all s's

For each state s, initialize 7(s) randomly;
repeat
For-cach-states—initialize Varfs1~—0 Initialize O (s,a) =0,Vs,a;
repeat
foreach s and a do
Qr(s,a) < Ly P(s'[s:a)[R(s,a,s") + yOx (s, 7(s"))];

end

until ¥{s¥s O (s,a)’s converge,;

foreach s do

AP !/ /
a LS R Phad] T

nt(s) < argmax, Qx(s,a);

end
until z(s)'s converge;
Algorithm 6: Policy iteration.
Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 38/64

Example

DPPRDC

VALUES AFTER 100 ITERATIONS Q-VALUES AFTER 100 ITERATIONS

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 39/64

Policy Iteration and Model-Free RL

o Policy iteration: start from a random 7, repeat until converge:

@ lterate Oz (s,a) < Yo P(s'|s;(s))[R(s, m(s),s") + yOr(s', (s"))] until
converge

@ Solve m(s) + argmax, Qr(s,a)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 40 /64

Policy Iteration and Model-Free RL

o Policy iteration: start from a random 7, repeat until converge:

@ lterate Oz (s,a) < Yo P(s'|s;(s))[R(s, m(s),s") + yOr(s', (s"))] until
converge

© Can estimate Q(s,a) =E (R(O) +¥,)/’Rm) using MC est.

@ Solve m(s) + argmax, Qr(s,a)
® No need for model to solve

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 40 /64

Policy Iteration and Model-Free RL

o Policy iteration: start from a random 7, repeat until converge:

@ lterate Oz (s,a) < Yo P(s'|s;(s))[R(s, m(s),s") + yOr(s', (s"))] until
converge

© Can estimate Q(s,a) =E (R(()> +¥)/’Rm) using MC est.

@ Solve m(s) + argmax, Qr(s,a)
® No need for model to solve

o RL: start from a random & for both exploration & exploitation,
repeat until converge:

@ Create episodes using w and get MC estimates Qn(s,a),Vs,a
@ Update & by n(s) < argmax, Oz (s,a),Vs

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 40 /64

Policy Iteration and Model-Free RL

o Policy iteration: start from a random 7, repeat until converge:

@ lterate Oz (s,a) < Yo P(s'|s;(s))[R(s, m(s),s") + yOr(s', (s"))] until
converge

© Can estimate Q(s,a) =E (R(O) +¥,)/’Rm) using MC est.

@ Solve m(s) + argmax, Qr(s,a)
® No need for model to solve

o RL: start from a random & for both exploration & exploitation,
repeat until converge:

@ Create episodes using w and get MC estimates Qn(s,a),Vs,a
@ Update & by n(s) < argmax, Oz (s,a),Vs

o Problem: 7 improves little after running lots of trials

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 40 /64

Policy Iteration and Model-Free RL

©

Policy iteration: start from a random 7, repeat until converge:
@ lterate Oz (s,a) < Yo P(s'|s;(s))[R(s, m(s),s") + yOr(s', (s"))] until
converge
© Can estimate Q(s,a) =E (R(O) +¥,)/’Rm) using MC est.
@ Solve 7(s) « argmax, Qx(s,a)
® No need for model to solve

©

RL: start from a random & for both exploration & exploitation,
repeat until converge:

@ Create episodes using w and get MC estimates Qn(s,a),Vs,a

@ Update 7 by n(s) < argmax, Qz(s,a),Vs

©

Problem: 7 improves little after running lots of trials

o Can we improve 7 right after each action?

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 40 /64

Outline

(3 Reinforcement Learning

o Temporal-Difference Estimation and SARSA (Model-Free)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 41 /64

Policy Iteration Revisited

o Policy iteration: start from a random 7, repeat until converge:

@ lterate Qg (s,a) < Yo P(s'|s;(s))[R(s, (s),s") + yOr(s', (s"))] until
converge

@ Solve m(s) + argmax, Qr(s,a)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 42 /64

Policy Iteration Revisited

o Policy iteration: start from a random 7, repeat until converge:

@ lterate Qg (s,a) < Yo P(s'|s;(s))[R(s, (s),s") + yOr(s', (s"))] until
converge

© Can estimate Q(s,a) =E (R<0> +Y)/R(’)> using MC est.

@ Solve n(s) < argmax, Oz (s,a)
® No need for model to solve

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 42 /64

Policy Iteration Revisited

o Policy iteration: start from a random 7, repeat until converge:
@ lterate Qg (s,a) < Yo P(s'|s;(s))[R(s, (s),s") + yOr(s', (s"))] until
converge
© Can estimate Q(s,a) =E (R((D +¥.)/R(’)> using MC est.
©® Can also estimate Qr(s,a) based on the recurrence
@ Solve n(s) < argmax, Oz (s,a)
® No need for model to solve

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 42 /64

Temporal Difference Estimation |
Qx(s,a) < Y P(s'|s;m(s)) [R(s, w(s),5") + ¥Qx(s', 7(s"))]

o Given the samples

and
o Temporal difference (TD) estimation of Q(s,a):

@ Ox(s,a) < randon value,Vs,a
@ Repeat until converge for each action a'’):
0r(s),a) - 0x(51,al0) +

n [(R(s(t)#(f)?s(t—}—l)+VQ ((t+1) ﬂ(s(t+1))))an(sm,a(t))]

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 43 /64

Temporal Difference Estimation |
Qx(s,a) < Y P(s'|s;m(s)) [R(s, w(s),5") + ¥Qx(s', 7(s"))]

o Given the samples

and
o Temporal difference (TD) estimation of Q(s,a):

@ Ox(s,a) < randon value,Vs,a
@ Repeat until converge for each action a'’):
0r(s),a) - 0x(51,al0) +

n [(R(s(t)#(f)?s(t—}—l)+VQ ((t+1) ﬂ(s(t+1))))an(sm,a(t))]

o Oy (s,a) can be updated on the fly during an episode

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 43 /64

Temporal Difference Estimation |
Qx(s,a) < Y P(s'|s;m(s)) [R(s, w(s),5") + ¥Qx(s', 7(s"))]

o Given the samples

and
o Temporal difference (TD) estimation of Q(s,a):

@ Ox(s,a) < randon value,Vs,a
@ Repeat until converge for each action a'’):
0r(s),a) - 0x(51,al0) +

0 [(RG.a)s00) +0a(s0 4D, (s 1)) - 0a(s,a)]
o Oy (s,a) can be updated on the fly during an episode

o 1 the “learning rate?

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 43 /64

Temporal Difference Estimation |l

s.a)+n [(R(s,a,s")+

s £904(5,7(5))) — Oxls,a)]
n(R(s,a)"’}’Qn(s m(s"))

Qn(s,a)<— Ox ,
=)+ (1=1)0x(s.a@) ~

Machine Learning 44 / 64

Shan-Hung Wu (CS, NTHU) Reinforcement Learning

Temporal Difference Estimation |l

On(s,a) «— Ox(s,a)+1 [(R(s,a,s") +y0x(s', (")) — Ox(s,a)]
:U(R(sa“asl)+?’Qn(s/77f(sl>))+(1—U)Qn(&a) ’
o Exponential moving average:

- _x(”)+(1—n)x(”—1)+(1—n)zx(”—2)+~-
n I+ (I=n)+(1=n)2+-

)

where) € [0,1] is the “forget rate”
o Recent samples are exponentially more important

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 44 / 64

Temporal Difference Estimation |l

Q)((s'))) — Oals.)]

s,a)+ [(R(sas) ;
)+ (1=1)Qx(s,a)

Ox(s,a) «— Oxls,
=TI(()+7Qn(s 77:
o Exponential moving average:
- _x(”)+(1—n)x(”—1)+(1—n)zx(”—2)+~-
n I+ (I=n)+(1=n)2+-

where) € [0,1] is the “forget rate”
o Recent samples are exponentially more important
o Since I/n=1+(1-n)+(1-1n)>+---, we have
%, = Nx" + (1 —=n)%,_; [Proof]

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning

44 /64

Temporal Difference Estimation |l
Qﬂ(saa) A Q;-;(S,a) + n [(R(SvAa?s/) + YQﬂ(slﬂ TC(S/))) T Qﬂ(sva)]
=N(R(s,a,5") +yQ0x(s",n(s"))) + (1 =1)Qx(s.@) ~

o Exponential moving average:

- _x(”)+(1—n)x(”—1)+(1—n)zx(”—2)+~-
n I+ (I=n)+(1=n)2+-

)

where) € [0,1] is the “forget rate”
o Recent samples are exponentially more important

o Since I/n=1+(1-n)+(1-1n)>+---, we have
%, = Nx" + (1 —=n)%,_; [Proof]
o As long as 1 gradually decreases to 0:
° Qﬂ(s,a) degenerates to average of accumulative rewards
o Qr(s,a) converges to O (s,a) (more on this later)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning

44 /64

Algorithm: SARSA (Simplified)

Input: S, A, and v
Output: m*(s)'s for all s's

For each state s and a, initialize Qz(s,a) arbitrarily;
foreach episode do
Set s to initial state;
repeat
Take action a < argmax, Qx(s,a’);
Observe s’ and reward R(s,a,s’);
Oxr(s,a) <
0x(5,) + 1 [(R(5,a,5") + Y0x(5', 7(5"))) — Qx(s,a)];
s« s';
until s is terminal state;

end
Algorithm 7: State-Action-Reward-State-Action (SARSA).

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 45 / 64

Algorithm: SARSA (Simplified)

Input: S, A, and v
Output: m*(s)'s for all s's

For each state s and a, initialize Qz(s,a) arbitrarily;
foreach episode do
Set s to initial state;
repeat
Take action a < argmax, Qx(s,a’);
Observe s’ and reward R(s,a,s’);
Oxr(s,a) <
0x(5,) + 1 [(R(5,a,5") + Y0x(5', 7(5"))) — Qx(s,a)];
s« s';
until s is terminal state;

end
Algorithm 8: State-Action-Reward-State-Action (SARSA).

o Policy improves each time when deciding the next action a

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 45 / 64

Convergence

Theorem

SARSA converges and gives the optimal policy n* almost surely if
1) & is GLIE (Greedy in the Limit with Infinite Exploration);
2) n small enough eventually, but not decreasing too fast.

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 46 / 64

https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)
https://en.wikipedia.org/wiki/Riemann_zeta_function

Convergence

Theorem

SARSA converges and gives the optimal policy n* almost surely if
1) & is GLIE (Greedy in the Limit with Infinite Exploration);
2) n small enough eventually, but not decreasing too fast.

o Greedy in the limit: the policy m converges (in the limit) to the
exploitation/greedy policy
o At each step, we choose a < argmax, Q(s,a’)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning

46 / 64

https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)
https://en.wikipedia.org/wiki/Riemann_zeta_function

Convergence

Theorem

SARSA converges and gives the optimal policy n* almost surely if
1) & is GLIE (Greedy in the Limit with Infinite Exploration);
2) n small enough eventually, but not decreasing too fast.

o Greedy in the limit: the policy m converges (in the limit) to the
exploitation/greedy policy

o At each step, we choose a < argmax, Q(s,a’)
o Infinite exploration: all (s,a) pairs are visited infinite times

o a <+ argmax, Qr(s,a’) cannot guarantee this
o Need a better way (next section)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning

46 / 64

https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)
https://en.wikipedia.org/wiki/Riemann_zeta_function

Convergence

Theorem

SARSA converges and gives the optimal policy n* almost surely if
1) & is GLIE (Greedy in the Limit with Infinite Exploration);
2) n small enough eventually, but not decreasing too fast.

o Greedy in the limit: the policy m converges (in the limit) to the
exploitation/greedy policy

o At each step, we choose a < argmax, Q(s,a’)
o Infinite exploration: all (s,a) pairs are visited infinite times
o a <+ argmax, Qr(s,a’) cannot guarantee this
o Need a better way (next section)
o Furthermore, 1 should satisfy: ¥,n() =co and ¥,n? < o
o Eg. 0 =0(})
°):,% is a harmonic series known to diverge
°):t(%)p, p> 1, is a p-series converging to Riemann zeta {(p)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning

46 / 64

https://en.wikipedia.org/wiki/Harmonic_series_(mathematics)
https://en.wikipedia.org/wiki/Riemann_zeta_function

Outline

(3 Reinforcement Learning

o Exploration Strategies

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 47 / 64

General RL Steps

o Repeat until converge:
@ Use some exploration policy 7’ to run episodes/trails
@ Estimate targets (e.g., P(s'|s;a), R(s,a,s’), or Oz(s,a)) and update the
exploitation policy w
@ Gradually mix 7 into 7’/

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 48 / 64

General RL Steps

o Repeat until converge:
@ Use some exploration policy 7’ to run episodes/trails
@ Estimate targets (e.g., P(s'|s;a), R(s,a,s’), or Oz(s,a)) and update the
exploitation policy w
@ Gradually mix 7 into 7’/
o Goals of mix-in/exploration strategy:

o Infinite exploration with 7’/
o 7' is greedy/exploitative in the end

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 48 / 64

e-Greedy Strategy

o At every time step, flip a coin

o With probability €, act randomly (explore)
o With probability (1 — &), compute/update the exploitation policy and
act accordingly (exploit)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 49 /64

e-Greedy Strategy

o At every time step, flip a coin

o With probability €, act randomly (explore)
o With probability (1 — &), compute/update the exploitation policy and
act accordingly (exploit)

o Gradually decrease € over time

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 49 /64

e-Greedy Strategy

©

At every time step, flip a coin
o With probability €, act randomly (explore)
o With probability (1 — &), compute/update the exploitation policy and
act accordingly (exploit)

(]

Gradually decrease € over time

©

At each time step, the action is at either of two extremes
o Exploration or exploitation

©

“Soft” policy between the two extremes?

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 49 /64

Softmax Strategy

o lIdea: perform action a more often if a gives more accumulative rewards

o E.g., in SARSA, choose a from s by sampling from the distribution:

 exp(Qals.a)/1)
Plals) = & lexp On(s.a) /1)

Va

o Softmax function converts Q(s,a)’s to probabilities

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 50 /64

Softmax Strategy

o lIdea: perform action a more often if a gives more accumulative rewards

o E.g., in SARSA, choose a from s by sampling from the distribution:

 exp(Qals.a)/1)
Plal) = & lexp Oxs.a)) ™

o Softmax function converts Q(s,a)’s to probabilities

o Temperature t starts from a high value (exploration), and decreases
over time (exploitation)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 50 /64

Exploration Function

o Idea: to explore areas with fewest samples
o E.g., in each step of SARSA, define an exploration function

fla:n) =q+K/n,

where

o g the estimated Q-value
o n the number of samples for the estimate
o K some positive constant

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning

51/64

Exploration Function

o Idea: to explore areas with fewest samples
o E.g., in each step of SARSA, define an exploration function

fla:n) =q+K/n,

where

o g the estimated Q-value
o n the number of samples for the estimate
o K some positive constant

o Instead of:
Qﬂ(s7a) — Qﬂ(sva) +n [(R(s,a,s/) +YQﬂ(s/7a/)) - Qﬂ(s7a):|
o Use f when updating Qx(s,a):

Ox(s,a) < Ox(s,a)+
77 {[R(s.,a,s’) +)o‘(Qn(s’,a’),count(s’,a’))] - Qﬂ'(sva)}

o Infinite exploration
o Exploit once exploring enough

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning

51/64

Outline

(3 Reinforcement Learning

o Q-Learning (Model-Free)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 52 /64

Model-Free RL with Value lteration?

o Value iteration: start from V*(s) < 0
@ lterate V*(s) < max, Yo P(s'|s;a)[R(s,a,s) + yV*(s')] until converge
® Not easy to estimate V*(s) = max; E <Z, ¥RW[sO) =g; n)

@ Solve m*(s) < argmax, Yo P(s'|s;a)[R(s,a,s") + yV*(s')]
® Need model to solve

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 53 /64

Model-Free RL with Value lteration?

o Value iteration: start from V*(s) < 0
@ lterate V*(s) < max, Yo P(s'|s;a)[R(s,a,s) + yV*(s')] until converge
® Not easy to estimate V*(s) = max; E (Z, ¥RW[sO) =g; n)
@ Solve w*(s) « argmax, Yo P(s'|s;a)[R(s,a,s’) + yV*(s')]
® Need model to solve

o Q-version that helps sample-based estimation?

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 53 /64

Optimal Q Function

o Optimal value function:

V¥(s) = maxE, (Z YR(s! sy 50 — n)

with recurrence

(s.a,8") +yV*(s')], Vs

_ /
= m;lx;P(s s;a)[R

o Maximum expected accumulative reward when starting from state s
and acting optimally onward

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 54 /64

Optimal Q Function

o Optimal value function:

V¥(s) = maxE, (Z YR(s! sy 50 — n)

with recurrence

(s.a,8") +yV*(s')], Vs

_ /
= m;lx;P(s s;a)[R

o Maximum expected accumulative reward when starting from state s
and acting optimally onward
o Q* function:

Q*(s,a) = mngs(1)7,,, < s.a,s!)) + Z)/R (’“));s,a,n)
such that V*(s) = max, Q*(s a) with recurrence:
ZP

o Maximum expected accumulative reward when starting from state s,
taking actin a, and then acting optimally onward

[Rsas)—b—}/maxQ (s',a")],vs

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 54 /64

Algorithm: (O-Value Iteration

Input: MDP (S,A,P,R,y,H —)
Output: 7*(s)'s for all s's

For-cach-states—initialize V- {s)<—0 Initialize Q" (s,a) = 0,Vs,a;
repeat
foreach s and a do
Q*(s,a) « Yo P(s'|s;a)[R(s,a,s") + ymax, Q*(s',a’)];
end
ntil ¥s3s O*(s,a) s converge;

foreach s do
% /e / % (ol
a A) 2))

¥ (s) < argmax, Q*(s,a);

c

end
Algorithm 9: Q-Value iteration with infinite horizon.

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 55 /64

Example

DPPRDC

VALUES AFTER 100 ITERATIONS Q-VALUES AFTER 100 ITERATIONS

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 56 / 64

0-Value lteration

o Value iteration: start from Q*(s,a) < 0
@ lterate Q*(s,a) < Y ¢ P(s'|s;a)[R(s,a,s’) + ymax, Q*(s',a’)] until
converge

@ Solve m*(s) < argmax, Q*(s,a)

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 57 /64

0-Value lteration

o Value iteration: start from Q*(s,a) < 0
@ lterate Q*(s,a) < Y ¢ P(s'|s;a)[R(s,a,s’) + ymax, Q*(s',a’)] until
converge
® Still not easy to estimate Q*(s,a) = max; E (R“” +Y, VR“))

@ Solve *(s) + argmax, Q*(s,a)
® No need for model to solve

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 57 /64

0-Value lteration

o Value iteration: start from Q*(s,a) < 0
@ lterate Q*(s,a) < Y ¢ P(s'|s;a)[R(s,a,s’) + ymax, Q*(s',a’)] until
converge
® Still not easy to estimate Q*(s,a) = max; E (R(()) +Y, y’Rm)
® But we can estimate Q*(s,a) based on the recurrence now!
@ Solve n*(s) <+ argmax, Q*(s,a)
® No need for model to solve

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 57 /64

Temporal Difference Estimation
Q*(s,a) <) P(s'[s;a)[R(s,a,s") + ymax Q" (s',a)]

o Given an exploration policy &’ and samples

(0) % cy a0 ()

s — s

and
R(S(O),a(o),s(l)) DU R(S(Hfl)’a(Hfl)’s(H))
o Temporal difference (TD) estimation of Q*(s,a) for exploitation
policy 7:
@ O*(s,a) < randon value,Vs,a
@ Repeat unt|| converge for each action a'!:
0 (s",a) 0" (s ,a)+
n [(R(s,a),sH)) + ymax, 0* (s, a)) - 0" (s),a)]

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 58 /64

Temporal Difference Estimation
Q*(s,a) <) P(s'[s;a)[R(s,a,s") + ymax Q" (s',a)]

o Given an exploration policy &’ and samples

(0) % cy a0 ()

s — s

and
R(s(o),a(o),s(l)) DU R(S(Hfl)’a(Hfl)’s(H))
o Temporal difference (TD) estimation of Q*(s,a) for exploitation
policy 7:
@ O*(s,a) < randon value,Vs,a
@ Repeat unt|| converge for each action a'!:
0 (s",a) 0" (s ,a)+
n [(R(s(t)#(z)’ (1)) 4 ymaxg O (s))7@*(s(t)7a(t))i|

o O*(s,a) can be updated on the fly during exploration

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 58 /64

Temporal Difference Estimation
Q*(s,a) <) P(s'[s;a)[R(s,a,s") + ymax Q" (s',a)]

o Given an exploration policy &’ and samples

(0) % cy a0 ()

s — s

and
R(s(o),a(o),s(l)) SN R(S(Hfl)’a(Hfl)’s(H))
o Temporal difference (TD) estimation of Q*(s,a) for exploitation
policy 7:
@ O*(s,a) < randon value,Vs,a
@ Repeat unt|| converge for each action a'!:
0°(s,a") + 0*(sV,a)+
n [(R(s,a),sH)) + ymax, 0* (s, a)) - 0" (s),a)]
o O*(s,a) can be updated on the fly during exploration
o 1 the “forget rate” of moving avg. that gradually decreases

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 58 /64

Algorithm: Q-Learning

Input: S, A, and v
Output: m*(s)'s for all s's

For each state s and a, initialize Q*(s,a) arbitrarily;

foreach episode do

Set s to initial state;

repeat

Take action a from s using some exploration policy 7’/
derived from Q* (e.g., e-greedy);

Observe s’ and reward R(s,a,s’);

Q' (s,a) <
Q*(s,a) + 1 [(R(s,a,s") + ymaxy Q*(s',a’)) — Q" (s,a)];

s+ s,

until s is terminal state;

end
Algorithm 10: Q-learning.

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 59 /64

Convergence

Theorem
Q-learning converges and gives the optimal policy n* if
1) n' has explored enough;
2) n small enough eventually, but not decreasing too fast.

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 60 / 64

Convergence

Theorem
Q-learning converges and gives the optimal policy n* if
1) n' has explored enough;
2) n small enough eventually, but not decreasing too fast.

o 7' has explored enough:

o All states and actions are visited infinitely often
o Does not matter how 7’ selects actions!

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 60 / 64

Convergence

Theorem
Q-learning converges and gives the optimal policy n* if

1) n' has explored enough;
2) n small enough eventually, but not decreasing too fast.

o 7' has explored enough:
o All states and actions are visited infinitely often

o Does not matter how 7’ selects actions!
o 7 satisfies Ztn(t) =oo and Z,n(’)z <o
° Eg, n"=0(})

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning

60/ 64

Outline

(3 Reinforcement Learning

o SARSA vs. Q-Learning

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 61 /64

Off-Policy vs. On-Policy RL

o General RL steps: repeat until converge:
@ Use some exploration policy 7’ to run episodes/trails
@ Use smaples to update the exploitation policy &
@ Gradually mix 7 into 7’/

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 62 /64

Off-Policy vs. On-Policy RL

o General RL steps: repeat until converge:
@ Use some exploration policy 7’ to run episodes/trails
@ Use smaples to update the exploitation policy &
@ Gradually mix 7 into 7/
o OfF-policy: m updated toward a greedy policy independent with '
o Q-learning:
Q" (s,a) < Q"(s,a) + N [(R(s.a.s") + ymax, Q" (s".a’)) — Q" (s,a)]
o On-policy: m updated to improve (and depends on) '
o SARSA: Ox(s,a) < Qx(s,a) + 1 [(R(s,a,s") + v0z(s', w(s'))) — Oz (s,a)]

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 62 /64

Off-Policy vs. On-Policy RL

o General RL steps: repeat until converge:

@ Use some exploration policy &’ to run episodes/trails
@ Use smaples to update the exploitation policy &
@ Gradually mix 7 into 7’
o OfF-policy: m updated toward a greedy policy independent with '
o Q-learning:
Q*(s.a) < Q*(s,a) + N [(R(s,a.s") + ymaxy O*(s'.a")) — Q*(s,a)]
o On-policy: m updated to improve (and depends on) '
o SARSA: Qx(s,a) < Qx(s,a) + n[(R(s,a,s") +y0x(s',7(s"))) — Ox(s,a)]

i

T

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 62 /64

Practical Results

o SARSA has the capability to avoid the mistakes due to exploration

o E.g., the maze-with-cliff problem
o Advantageous when € > 0 with e-greedy exploration strategy
o Converges to optimal policy 7* (as Q-learning) when € — 0

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 63 /64

https://studywolf.wordpress.com/2013/07/01/reinforcement-learning-sarsa-vs-q-learning/

Practical Results

o SARSA has the capability to avoid the mistakes due to exploration

o E.g., the maze-with-cliff problem
o Advantageous when € > 0 with e-greedy exploration strategy
o Converges to optimal policy 7* (as Q-learning) when € — 0

o But Q-learning has the capability to continue learning while
changing the exploration policy

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning

63 /64

https://studywolf.wordpress.com/2013/07/01/reinforcement-learning-sarsa-vs-q-learning/

Remarks

o Update rule for O* (or Q) takes terminal states differently:

* (1=m)Q*(s,a) +NR(s,a,s") if s’ is terminal
Q0’(sa) <_{ (1—n)0*(s,a) + N [R(s,a,s") + ymaxy Q*(s’,a’)], otherwise

o Better convergence in practice

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 64 /64

Remarks

o Update rule for O* (or Q) takes terminal states differently:

0% (s,a) + { (1=m)0"(s,a) + nR(s,a,5") if s’ is terminal

(1—n)0*(s,a) + N [R(s,a,s") + ymaxy Q*(s’,a’)], otherwise

o Better convergence in practice

o Watch out your memory usage!
o Space complexity for SARSA/Q-learning: O(|S||A|)

o Store Q*(s,a)'s or Qx(s,a)’s for all (s,a) combinations

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning

64 /64

Remarks

o Update rule for O* (or Q) takes terminal states differently:
0*(s,a) (1—-m)Q*(s,a) + NR(s,a,s") if s’ is terminal
’ (1—n)0*(s,a) + N [R(s,a,s") + ymaxy Q*(s’,a’)], otherwise
o Better convergence in practice
o Watch out your memory usage!

(%]

Space complexity for SARSA/Q-learning: O(|S||A|)

o Store Q*(s,a)'s or Qx(s,a)’s for all (s,a) combinations

©

Why not train a (deep) regressor for Q*(s,a)’s or Q(s,a)'s?
o Space reduction due to the generalizability of the regressor

Shan-Hung Wu (CS, NTHU) Reinforcement Learning Machine Learning 64 /64

	Introduction
	Markov Decision Process
	Value Iteration
	Policy Iteration

	Reinforcement Learning
	Model-Free RL using Monte Carlo Estimation
	Temporal-Difference Estimation and SARSA (Model-Free)
	Exploration Strategies
	Q-Learning (Model-Free)
	SARSA vs. Q-Learning

