Shan-Hung Wu shwu@cs.nthu.edu.tw

Department of Computer Science, National Tsing Hua University, Taiwan

Machine Learning

Shan-Hung Wu (CS, NTHU)

Outline

Introduction

2 Markov Decision Process

- Value Iteration
- Policy Iteration

- Model-Free RL using Monte Carlo Estimation
- Temporal-Difference Estimation and SARSA (Model-Free)
- Exploration Strategies
- Q-Learning (Model-Free)
- SARSA vs. Q-Learning

Outline

Introduction

- 2 Markov Decision Process
 - Value Iteration
 - Policy Iteration

- Model-Free RL using Monte Carlo Estimation
- Temporal-Difference Estimation and SARSA (Model-Free)
- Exploration Strategies
- *Q*-Learning (Model-Free)
- SARSA vs. Q-Learning

An agent sees states s^(t)'s of an environment, takes actions a^(t)'s, and receives rewards R^(t)'s (or penalties)

- An agent sees states s^(t)'s of an environment, takes actions a^(t)'s, and receives rewards R^(t)'s (or penalties)
 - Environment does *not* change over time

- An agent sees *states* $s^{(t)}$'s of an environment, takes *actions* $a^{(t)}$'s, and receives *rewards* $R^{(t)}$'s (or penalties)
 - Environment does *not* change over time
 - The state of the environment may change due to an action

- An agent sees *states* $s^{(t)}$'s of an environment, takes *actions* $a^{(t)}$'s, and receives *rewards* $R^{(t)}$'s (or penalties)
 - Environment does *not* change over time
 - The state of the environment may change due to an action
 - Reward $R^{(t)}$ may depend on $s^{(t+1)}, s^{(t)}, \cdots$ or $a^{(t)}, a^{(t-1)}, \cdots$

• Goal: to learn the best *policy* $\pi^*(s^{(t)}) = a^{(t)}$ that maximizes the *total* reward $\sum_t R^{(t)}$

- Goal: to learn the best *policy* $\pi^*(s^{(t)}) = a^{(t)}$ that maximizes the *total* reward $\sum_t R^{(t)}$
- Training:
 - Perform trial-and-error runs
 - 2 Learn from the experience

Compared to Supervised/Unsupervised Learning

• $\pi^*(s^{(t)}) = a^{(t)}$ maximizing total reward $\sum_t R^{(t)}$ vs. $f^*(x^{(i)}) = y^{(i)}$ minimizing total loss

Compared to Supervised/Unsupervised Learning

- $\pi^*(s^{(t)}) = a^{(t)}$ maximizing total reward $\sum_t R^{(t)}$ vs. $f^*(x^{(i)}) = y^{(i)}$ minimizing total loss
- Examples $x^{(i)}$'s are i.i.d., but not in RL

• $s^{(t+1)}$ may depend on $s^{(t)}, s^{(t-1)}, \cdots$ and $a^{(t)}, a^{(t-1)}, \cdots$

Compared to Supervised/Unsupervised Learning

- $\pi^*(s^{(t)}) = a^{(t)}$ maximizing total reward $\sum_t R^{(t)}$ vs. $f^*(x^{(i)}) = y^{(i)}$ minimizing total loss
- Examples $x^{(i)}$'s are i.i.d., but not in RL
 - $s^{(t+1)}$ may depend on $s^{(t)}, s^{(t-1)}, \cdots$ and $a^{(t)}, a^{(t-1)}, \cdots$
- No *what* to predict (y⁽ⁱ⁾'s), just *how good* a prediction is (R^(t)'s)
 R^(t)'s are also called the *critics*

Applications

• Sequential decision making and control problems

Tedrake et al, 2005

Kober and Peters, 2009

Lillicrap et al, 2015 (DDPG)

Schulman et al, 2016 (TRPO + GAE)

(GPS)

Silver*, Huang*, et al, 2016 (AlphaGo)

Mnih et al 2013 (DQN) Mnih et al, 2015 (A3C)

Shan-Hung Wu (CS, NTHU)

Reinforcement Learning

Machine Learning 7 / 64

Applications

• Sequential decision making and control problems

Tedrake et al, 2005

Kober and Peters, 2009

Mnih et al 2013 (DQN)

Mnih et al, 2015 (A3C)

Schulman et al, 2016 (TRPO + GAE)

Levine*, Finn*, et al, 2016 (GPS)

Silver*, Huang*, et al, 2016 (AlphaGo)

• From machine learning to AI that changes the world

Lillicrap et al, 2015 (DDPG)

Shan-Hung Wu (CS, NTHU)

Outline

Introduction

Markov Decision Process Value Iteration Policy Iteration

- Model-Free RL using Monte Carlo Estimation
- Temporal-Difference Estimation and SARSA (Model-Free)
- Exploration Strategies
- *Q*-Learning (Model-Free)
- SARSA vs. Q-Learning

Markov Processes

- A random process $\{\mathbf{s}^{(t)}\}_t$ is a collection of time-indexed random variables
 - A classic way to model dependency between input samples $\{s^{(t)}\}_t$
- A random process is called a *Markov process* if it satisfies the *Markov property*:

$$P(s^{(t+1)}|s^{(t)}, s^{(t-1)}, \cdots) = P(s^{(t+1)}|s^{(t)})$$

Markov Processes

- A random process $\{\mathbf{s}^{(t)}\}_t$ is a collection of time-indexed random variables
 - A classic way to model dependency between input samples $\{s^{(t)}\}_t$
- A random process is called a *Markov process* if it satisfies the *Markov property*:

$$P(s^{(t+1)}|s^{(t)},s^{(t-1)},\cdots) = P(s^{(t+1)}|s^{(t)})$$

For those who knows Markov process:**

	States are fully observable	States are partially observable	
Transition is	Markov chains	Hidden Markov models	
autonomous			
Transition is	Markov decision	Partially observable	
controlled	processes (MDP)	MDP	

Markov Decision Process I

- A Markov decision process (MDP) is defined by
 - ${\ \bullet \ } \mathbb{S}$ the state space; \mathbb{A} the action space
 - Start state $s^{(0)}$
 - P(s'|s; a) the *transition distribution* controlled by actions; fixed over time t
 - $R(s, a, s') \in \mathbb{R}$ (or simply R(s')) the deterministic reward function
 - $\gamma \in [0,1]$ is the *discount factor*
 - $H \in \mathbb{N}$ the *horizon*; can be infinite

Markov Decision Process I

- A Markov decision process (MDP) is defined by
 - ${\ensuremath{\,\circ\,}}\xspace$ ${\ensuremath{\,\otimes\,}}\xspace$ the action space
 - Start state $s^{(0)}$
 - P(s'|s; a) the *transition distribution* controlled by actions; fixed over time t
 - $R(s, a, s') \in \mathbb{R}$ (or simply R(s')) the deterministic reward function
 - $\gamma \in [0,1]$ is the *discount factor*
 - $H \in \mathbb{N}$ the *horizon*; can be infinite
- An absorbing/terminal state transit to itself with probability 1

Markov Decision Process II

• Given a policy $\pi(s) = a$, an MDP proceeds as follows:

$$\mathbf{s}^{(0)} \xrightarrow{\mathbf{a}^{(0)}} \mathbf{s}^{(1)} \xrightarrow{\mathbf{a}^{(1)}} \cdots \xrightarrow{\mathbf{a}^{(H-1)}} \mathbf{s}^{(H)}$$

with the accumulative reward

$$R(s^{(0)}, a^{(0)}, s^{(1)}) + \gamma R(s^{(1)}, a^{(1)}, s^{(2)}) + \dots + \gamma^{H-1} R(s^{(H-1)}, a^{(H-1)}, s^{(H)})$$

Shan-Hung Wu (CS, NTHU)

Markov Decision Process II

• Given a policy $\pi(s) = a$, an MDP proceeds as follows:

$$\mathbf{s}^{(0)} \xrightarrow{\mathbf{a}^{(0)}} \mathbf{s}^{(1)} \xrightarrow{\mathbf{a}^{(1)}} \cdots \xrightarrow{\mathbf{a}^{(H-1)}} \mathbf{s}^{(H)}$$

with the accumulative reward

 $R(s^{(0)}, a^{(0)}, s^{(1)}) + \gamma R(s^{(1)}, a^{(1)}, s^{(2)}) + \dots + \gamma^{H-1} R(s^{(H-1)}, a^{(H-1)}, s^{(H)})$

- To accrue rewards as soon as possible (prefer a shot path)
- Different accumulative rewards in different trials

Shan-Hung Wu (CS, NTHU)

Goal

• Given a policy π , the expected accumulative reward collected by taking actions following π can be express by:

$$V_{\pi} = \mathbf{E}_{\mathbf{s}^{(0)}, \dots, \mathbf{s}^{(H)}} \left(\sum_{t=0}^{H} \gamma^{t} R(\mathbf{s}^{(t)}, \pi(\mathbf{s}^{(t)}), \mathbf{s}^{(t+1)}); \pi \right)$$

• Goal: to find the optimal policy

$$\pi^* = \arg \max_{\pi} V_{\pi}$$

Goal

• Given a policy π , the expected accumulative reward collected by taking actions following π can be express by:

$$V_{\boldsymbol{\pi}} = \mathbf{E}_{\mathbf{s}^{(0)}, \dots, \mathbf{s}^{(H)}} \left(\sum_{t=0}^{H} \gamma^{t} R(\mathbf{s}^{(t)}, \boldsymbol{\pi}(\mathbf{s}^{(t)}), \mathbf{s}^{(t+1)}); \boldsymbol{\pi} \right)$$

• Goal: to find the optimal policy

$$\pi^* = rg \max_{\pi} V_{\pi}$$

How?

Outline

Introduction

Markov Decision Process Value Iteration Policy Iteration

- Model-Free RL using Monte Carlo Estimation
- Temporal-Difference Estimation and SARSA (Model-Free)
- Exploration Strategies
- *Q*-Learning (Model-Free)
- SARSA vs. Q-Learning

$$\pi^* = \arg \max_{\pi} \mathbf{E}_{\mathbf{s}^{(0)}, \cdots, \mathbf{s}^{(H)}} \left(\sum_{t=0}^{H} \gamma^t R(\mathbf{s}^{(t)}, \pi(\mathbf{s}^{(t)}), \mathbf{s}^{(t+1)}); \pi \right)$$

$$\pi^* = \arg \max_{\pi} \mathrm{E}_{\mathbf{s}^{(0)}, \dots, \mathbf{s}^{(H)}} \left(\sum_{t=0}^{H} \gamma^t R(\mathbf{s}^{(t)}, \pi(\mathbf{s}^{(t)}), \mathbf{s}^{(t+1)}); \pi \right)$$

• Optimal value function:

$$V^{*(h)}(s) = \max_{\pi} \mathbb{E}_{\mathbf{s}^{(1)}, \cdots, \mathbf{s}^{(h)}} \left(\sum_{t=0}^{h} \gamma^{t} R(\mathbf{s}^{(t)}, \pi(\mathbf{s}^{(t)}), \mathbf{s}^{(t+1)}) | \mathbf{s}^{(0)} = s; \pi \right)$$

 Maximum expected accumulative reward when starting from state s and acting optimally for h steps

$$\pi^* = \arg \max_{\pi} \mathrm{E}_{\mathbf{s}^{(0)}, \cdots, \mathbf{s}^{(H)}} \left(\sum_{t=0}^{H} \gamma^t R(\mathbf{s}^{(t)}, \pi(\mathbf{s}^{(t)}), \mathbf{s}^{(t+1)}); \pi \right)$$

• Optimal value function:

$$V^{*(h)}(s) = \max_{\pi} \mathbb{E}_{\mathbf{s}^{(1)}, \cdots, \mathbf{s}^{(h)}} \left(\sum_{t=0}^{h} \gamma^{t} R(\mathbf{s}^{(t)}, \pi(\mathbf{s}^{(t)}), \mathbf{s}^{(t+1)}) | \mathbf{s}^{(0)} = s; \pi \right)$$

- Maximum expected accumulative reward when starting from state s and acting optimally for h steps
- $\bullet\,$ Having $V^{*(H-1)}(s)$ for each s, we cab solve π^* easily by

$$\pi^*(s) = \arg\max_{a} \sum_{s'} P(s'|s;a) [R(s,a,s') + \gamma V^{*(H-1)}(s')], \forall s$$

in $O(|\mathbb{S}||\mathbb{A}|)$ time

Shan-Hung Wu (CS, NTHU)

$$\pi^* = \arg \max_{\pi} \mathrm{E}_{\mathbf{s}^{(0)}, \cdots, \mathbf{s}^{(H)}} \left(\sum_{t=0}^{H} \gamma^t R(\mathbf{s}^{(t)}, \pi(\mathbf{s}^{(t)}), \mathbf{s}^{(t+1)}); \pi \right)$$

• Optimal value function:

$$V^{*(h)}(s) = \max_{\pi} \mathrm{E}_{\mathbf{s}^{(1)}, \dots, \mathbf{s}^{(h)}}\left(\sum_{t=0}^{h} \gamma^{t} R(\mathbf{s}^{(t)}, \pi(\mathbf{s}^{(t)}), \mathbf{s}^{(t+1)}) | \mathbf{s}^{(0)} = s; \pi\right)$$

 Maximum expected accumulative reward when starting from state s and acting optimally for h steps

 ${\ \bullet \ }$ Having $V^{*(H-1)}(s)$ for each s, we cab solve π^* easily by

$$\pi^*(s) = \arg\max_{a} \sum_{s'} P(s'|s;a) [R(s,a,s') + \gamma V^{*(H-1)}(s')], \forall s$$

in $O(|\mathbb{S}||\mathbb{A}|)$ time • How to obtain $V^{*(H-1)}(s)$ for each s?

Shan-Hung Wu (CS, NTHU)

$$V^{*(h)}(s) = \max_{\pi} \mathrm{E}_{\mathbf{s}^{(1)}, \cdots, \mathbf{s}^{(H)}}\left(\sum_{t=0}^{h} \gamma^{t} R(\mathbf{s}^{(t)}, \pi(\mathbf{s}^{(t)}), \mathbf{s}^{(t+1)}) | \mathbf{s}^{(0)} = s; \pi\right)$$

$$V^{*(h)}(s) = \max_{\pi} E_{\mathbf{s}^{(1)}, \cdots, \mathbf{s}^{(H)}} \left(\sum_{t=0}^{h} \gamma^{t} R(\mathbf{s}^{(t)}, \pi(\mathbf{s}^{(t)}), \mathbf{s}^{(t+1)}) | \mathbf{s}^{(0)} = s; \pi \right)$$

• $h = H - 1$:

$$V^{*(H-1)}(s) = \max_{a} \sum_{s'} P(s'|s;a) [R(s,a,s') + \gamma V^{*(H-2)}(s')], \forall s$$

$$V^{*(h)}(s) = \max_{\pi} E_{\mathbf{s}^{(1)}, \dots, \mathbf{s}^{(H)}} \left(\sum_{t=0}^{h} \gamma^{t} R(\mathbf{s}^{(t)}, \pi(\mathbf{s}^{(t)}), \mathbf{s}^{(t+1)}) | \mathbf{s}^{(0)} = s; \pi \right)$$

• $h = H - 1$:

$$V^{*(H-1)}(s) = \max_{a} \sum_{s'} \mathbf{P}(s'|s;a) [R(s,a,s') + \gamma V^{*(H-2)}(s')], \forall s$$

• h = H - 2:

$$V^{*(H-2)}(s) = \max_{a} \sum_{s'} P(s'|s;a) [R(s,a,s') + \gamma V^{*(H-3)}(s')], \forall s$$

Shan-Hung Wu (CS, NTHU)

$$V^{*(h)}(s) = \max_{\pi} E_{\mathbf{s}^{(1)}, \dots, \mathbf{s}^{(H)}} \left(\sum_{t=0}^{h} \gamma^{t} R(\mathbf{s}^{(t)}, \pi(\mathbf{s}^{(t)}), \mathbf{s}^{(t+1)}) | \mathbf{s}^{(0)} = s; \pi \right)$$

• $h = H - 1$:

 $V^{*(H-1)}(s) = \max_{a} \sum_{s'} P(s'|s;a) [R(s,a,s') + \gamma V^{*(H-2)}(s')], \forall s$

•
$$h = H - 2$$
:
 $V^{*(H-2)}(s) = \max_{a} \sum_{s'} P(s'|s;a) [R(s,a,s') + \gamma V^{*(H-3)}(s')], \forall s$

• h = 0:

$$V^{*(0)}(s) = \max_{a} \sum_{s'} \mathbf{P}(s'|s;a) [R(s,a,s') + \gamma V^{*(-1)}(s')], \forall s$$

• h = -1:

$$V^{*(-1)}(\boldsymbol{s}) = 0, \forall \boldsymbol{s}$$

Shan-Hung Wu (CS, NTHU)

Algorithm: Value Iteration (Finite Horizon)

```
Input: MDP (S, A, P, R, \gamma, H)
Output: \pi^*(s)'s for all s's
For each state s, initialize V^*(s) \leftarrow 0;
for h \leftarrow 0 to H - 1 do
    foreach s do
     | V^*(s) \leftarrow \max_{a} \sum_{s'} P(s'|s;a) [R(s,a,s') + \gamma V^*(s')];
    end
end
foreach s do
  \pi^*(s) \leftarrow \arg \max_{a} \sum_{s'} P(s'|s;a) [R(s,a,s') + \gamma V^*(s')];
end
```

Algorithm 1: Value iteration with finite horizon.

Shan-Hung Wu (CS, NTHU)

Example

- MDP settings:
 - Actions: "up," "down," "left," "right"
 - Noise of transition probability P(s'|s;a): 0.2,

0.00	0.00	0.00	0.00
0.00		0.00	0.00
0.00	0.00	0.00	0.00
VALUES AFTER 0 ITERATIONS			

Example

- MDP settings:
 - Actions: "up," "down," "left," "right"
 - Noise of transition probability P(s'|s;a): 0.2,

0.00	0.00	0.00	1.00
0.00		0.00	-1.00
0.00	0.00	0.00	0.00
VALUES AFTER 1 ITERATIONS			

Example

- MDP settings:
 - Actions: "up," "down," "left," "right"
 - Noise of transition probability P(s'|s;a): 0.2,

e.g., up:
$$.1$$
 $.1$, right: 0 $.8$, right: 0 $.1$ $.1$,
etc.
 γ : 0.9

0.00	0.00	0.72	1.00
0.00		0.00	-1.00
0.00	0.00	0.00	0.00
VALUES AFTER 2 ITERATIONS			
- MDP settings:
 - Actions: "up," "down," "left," "right"
 - Noise of transition probability P(s'|s;a): 0.2,

e.g., up:
$$.1$$
 $.1$, right: 0 $.8$, right: 0 $.1$ $.1$, etc.
• γ : 0.9

0.00	0.52	0.78	1.00	
0.00		0.43	-1.00	
0.00	0.00	0.00	0.00	
VALUES AFTER 3 ITERATIONS				

- MDP settings:
 - Actions: "up," "down," "left," "right"
 - Noise of transition probability P(s'|s;a): 0.2,

e.g., up:
$$.1$$
 $.1$, right: 0 $.8$, right: 0 $.1$ $.1$,
etc.
 γ : 0.9

0.37	0.66	0.83	1.00	
0.00		0.51	-1.00	
0.00	0.00	0.31	0.00	
VALUES AFTER 4 ITERATIONS				

- MDP settings:
 - Actions: "up," "down," "left," "right"
 - Noise of transition probability P(s'|s;a): 0.2,

0.51	0.72	0.84	1.00
0.27		0.55	-1.00
0.00	0.22	0.37	0.13
VALUES AFTER 5 ITERATIONS			

- MDP settings:
 - Actions: "up," "down," "left," "right"
 - Noise of transition probability P(s'|s;a): 0.2,

0.64	0.74	0.85	1.00
0.57		0.57	-1.00
0.49	0.43	0.48	0.28
VALUES AFTER 100 ITERATIONS			

• Recurrence of optimal values:

$$V^{*(h)}(s) = \max_{a} \sum_{s'} \mathbf{P}(s'|s;a) [R(s,a,s') + \gamma V^{*(h-1)}(s')], \forall s$$

• Recurrence of optimal values:

$$V^{*(h)}(s) = \max_{a} \sum_{s'} \mathbf{P}(s'|s;a) [R(s,a,s') + \gamma V^{*(h-1)}(s')], \forall s$$

• When $h \rightarrow \infty$, we have the **Bellman optimality equation**:

$$V^*(s) = \max_{a} \sum_{s'} \mathbf{P}(s'|s;a) [R(s,a,s') + \gamma V^*(s')], \forall s$$

• Recurrence of optimal values:

$$V^{*(h)}(\boldsymbol{s}) = \max_{\boldsymbol{a}} \sum_{\boldsymbol{s}'} \mathbf{P}(\boldsymbol{s}'|\boldsymbol{s};\boldsymbol{a}) [R(\boldsymbol{s},\boldsymbol{a},\boldsymbol{s}') + \gamma V^{*(h-1)}(\boldsymbol{s}')], \forall \boldsymbol{s}$$

• When $h \rightarrow \infty$, we have the **Bellman optimality equation**:

$$V^*(s) = \max_{a} \sum_{s'} \mathbf{P}(s'|s;a) [R(s,a,s') + \gamma V^*(s')], \forall s$$

• Optimal policy:

$$\pi^*(s) = rg\max_{a} \sum_{s'} \mathbf{P}(s'|s;a)[R(s,a,s') + \gamma V^*(s')], \forall s$$

Shan-Hung Wu (CS, NTHU)

• Recurrence of optimal values:

$$V^{*(h)}(\boldsymbol{s}) = \max_{\boldsymbol{a}} \sum_{\boldsymbol{s}'} \mathbf{P}(\boldsymbol{s}'|\boldsymbol{s};\boldsymbol{a}) [R(\boldsymbol{s},\boldsymbol{a},\boldsymbol{s}') + \gamma V^{*(h-1)}(\boldsymbol{s}')], \forall \boldsymbol{s}$$

• When $h \rightarrow \infty$, we have the **Bellman optimality equation**:

$$V^*(s) = \max_{a} \sum_{s'} \mathbf{P}(s'|s;a) [R(s,a,s') + \gamma V^*(s')], \forall s$$

• Optimal policy:

$$\pi^*(s) = rg\max_{a} \sum_{s'} \mathbf{P}(s'|s;a)[R(s,a,s') + \gamma V^*(s')], \forall s$$

- When $h \to \infty$, π^* is
 - **Stationary**: the optimal action at a state *s* is the same at all times (efficient to store)
 - *Memoryless*: independent with $s^{(0)}$

Shan-Hung Wu (CS, NTHU)

Reinforcement Learning

Algorithm: Value Iteration (Infinite Horizon)

```
Input: MDP (\mathbb{S}, \mathbb{A}, \mathbb{P}, \mathbb{R}, \gamma, \mathbb{H} \to \infty)
Output: \pi^*(s)'s for all s's
For each state s, initialize V^*(s) \leftarrow 0;
repeat
     foreach s do
      | V^*(s) \leftarrow \max_{a} \sum_{s'} P(s'|s;a) [R(s,a,s') + \gamma V^*(s')];
     end
until V^*(s)'s converge;
foreach s do
    \pi^*(s) \leftarrow \arg \max_{a} \sum_{s'} P(s'|s;a) [R(s,a,s') + \gamma V^*(s')];
end
```

Algorithm 2: Value iteration with infinite horizon.

Theorem

Value iteration converges and gives the optimal policy π^* when $H \rightarrow \infty$.

Theorem

Value iteration converges and gives the optimal policy π^* when $H \rightarrow \infty$.

Intuition:

$$V^{*}(s) - V^{*(H)}(s) = \gamma^{H+1} R(s^{(H+1)}, a^{(H+1)}, s^{(H+2)}) + \gamma^{H+2} R(s^{(H+2)}, a^{(H+2)}, s^{(H+3)}) + \cdots \leq \gamma^{H+1} R_{\max} + \gamma^{H+2} R_{\max} + \cdots = \frac{\gamma^{H+1}}{1-\gamma} R_{\max}$$

• Goes to 0 as
$$H \to \infty$$

• Hence, $V^{*(H)}(s) \xrightarrow{H \to \infty} V^*(s)$

Theorem

Value iteration converges and gives the optimal policy π^* when $H \rightarrow \infty$.

Intuition:

$$V^{*}(s) - V^{*(H)}(s) = \gamma^{H+1} R(s^{(H+1)}, a^{(H+1)}, s^{(H+2)}) + \gamma^{H+2} R(s^{(H+2)}, a^{(H+2)}, s^{(H+3)}) + \cdots \leq \gamma^{H+1} R_{\max} + \gamma^{H+2} R_{\max} + \cdots = \frac{\gamma^{H+1}}{1-\gamma} R_{\max}$$

• Goes to 0 as $H \to \infty$ • Hence, $V^{*(H)}(s) \xrightarrow{H \to \infty} V^*(s)$

• Assumed that $R(\cdot) \ge 0$; still holds if rewards can be negative

• by using $\max |R(\cdot)|$ and bounding from both sides

Shan-Hung Wu (CS, NTHU)

• How does the noise of P(s'|s; a) and γ affect π^* ?

1 $\gamma = 0.99$, noise = 0.5

2
$$\gamma = 0.99$$
, noise = 0

3
$$\gamma = 0.1$$
, noise = 0.5

• How does the noise of P(s'|s; a) and γ affect π^* ?

1 $\gamma = 0.99$, noise = 0.5

2
$$\gamma = 0.99$$
, noise = 0

3
$$\gamma = 0.1$$
, noise = 0.5

- π^* prefers the close exit (+1); risking the cliff (-10)?
- π^* prefers the close exit (+1); avoiding the cliff (-10)?
- π^* prefers the distant exit (+10); risking the cliff (-10)?
- π^* prefers the distant exit (+10); avoiding the cliff (-10)?

• How does the noise of P(s'|s; a) and γ affect π^* ?

1) $\gamma = 0.99$, noise = 0.5

2
$$\gamma = 0.99$$
, noise = 0

3
$$\gamma = 0.1$$
, noise = 0.5

- π^* prefers the close exit (+1); risking the cliff (-10)? (4)
- π^* prefers the close exit (+1); avoiding the cliff (-10)?
- π^* prefers the distant exit (+10); risking the cliff (-10)?
- π^* prefers the distant exit (+10); avoiding the cliff (-10)?

• How does the noise of P(s'|s; a) and γ affect π^* ?

1 $\gamma = 0.99$, noise = 0.5

2
$$\gamma = 0.99$$
, noise = 0

3
$$\gamma = 0.1$$
, noise = 0.5

- π^* prefers the close exit (+1); risking the cliff (-10)? (4)
- π^* prefers the close exit (+1); avoiding the cliff (-10)? (3)
- π^* prefers the distant exit (+10); risking the cliff (-10)?
- π^* prefers the distant exit (+10); avoiding the cliff (-10)?

• How does the noise of P(s'|s; a) and γ affect π^* ?

1) $\gamma = 0.99$, noise = 0.5

2
$$\gamma = 0.99$$
, noise = 0

3
$$\gamma = 0.1$$
, noise = 0.5

- π^* prefers the close exit (+1); risking the cliff (-10)? (4)
- π^* prefers the close exit (+1); avoiding the cliff (-10)? (3)
- π^* prefers the distant exit (+10); risking the cliff (-10)? (2)
- π^* prefers the distant exit (+10); avoiding the cliff (-10)?

• How does the noise of P(s'|s; a) and γ affect π^* ?

- **1** $\gamma = 0.99$, noise = 0.5
- 2 $\gamma = 0.99$, noise = 0

3
$$\gamma = 0.1$$
, noise = 0.5

- π^* prefers the close exit (+1); risking the cliff (-10)? (4)
- π^* prefers the close exit (+1); avoiding the cliff (-10)? (3)
- π^* prefers the distant exit (+10); risking the cliff (-10)? (2)
- π^* prefers the distant exit (+10); avoiding the cliff (-10)? (1)

Outline

Introduction

2 Markov Decision Process • Value Iteration • Policy Iteration

3 Reinforcement Learning

- Model-Free RL using Monte Carlo Estimation
- Temporal-Difference Estimation and SARSA (Model-Free)
- Exploration Strategies
- *Q*-Learning (Model-Free)
- SARSA vs. Q-Learning

Goal

- Given an MDP $(\mathbb{S}, \mathbb{A}, \mathbb{P}, R, \gamma, H \to \infty)$
- Expected accumulative reward collected by taking actions following a policy π:

$$V_{\boldsymbol{\pi}} = \mathbf{E}_{\mathbf{s}^{(0)}, \dots, \mathbf{s}^{(H)}} \left(\sum_{t=0}^{\infty} \gamma^{t} R(\mathbf{s}^{(t)}, \boldsymbol{\pi}(\mathbf{s}^{(t)}), \mathbf{s}^{(t+1)}); \boldsymbol{\pi} \right)$$

• Goal: to find the optimal policy

$$\pi^* = \arg \max_{\pi} V_{\pi}$$

Shan-Hung Wu (CS, NTHU)

Algorithm: Policy Iteration (Simplified)

• Given a π , define its *value function*:

$$V_{\pi}(s) = \mathbf{E}_{\mathbf{s}^{(1)}, \dots} \left(\sum_{t=0}^{\infty} \gamma^{t} R(\mathbf{s}^{(t)}, \pi(\mathbf{s}^{(t)}), \mathbf{s}^{(t+1)}) | \mathbf{s}^{(0)} = s; \pi \right)$$

 $\bullet\,$ Expected accumulative reward when starting from state s and acting based on $\pi\,$

Algorithm: Policy Iteration (Simplified)

• Given a π , define its value function:

$$V_{\pi}(s) = \mathbf{E}_{\mathbf{s}^{(1)}, \dots} \left(\sum_{t=0}^{\infty} \gamma^{t} R(\mathbf{s}^{(t)}, \pi(\mathbf{s}^{(t)}), \mathbf{s}^{(t+1)}) | \mathbf{s}^{(0)} = s; \pi \right)$$

• Expected accumulative reward when starting from state s and acting based on π

Input: MDP $(\mathbb{S}, \mathbb{A}, \mathbb{P}, \mathbb{R}, \gamma, \mathbb{H} \to \infty)$ **Output:** $\pi(s)$'s for all s's

For each state s, initialize $\pi(s)$ randomly;

repeat

Evaluate $V_{\pi}(s), \forall s;$ Improve π such that $V_{\pi}(s), \forall s,$ becomes higher;

until $\pi(s)$'s converge;

Algorithm 4: Policy iteration.

Shan-Hung Wu (CS, NTHU)

Reinforcement Learning

Evaluating $V_{\pi}(s)$

• How to evaluate the value function of a given π ?

$$V_{\pi}(s) = \mathbf{E}_{\mathbf{s}^{(1)}, \dots} \left(\sum_{t=0}^{\infty} \gamma^{t} R(\mathbf{s}^{(t)}, \pi(\mathbf{s}^{(t)}), \mathbf{s}^{(t+1)}) | \mathbf{s}^{(0)} = s; \pi \right)$$

Evaluating $V_{\pi}(s)$

• How to evaluate the value function of a given π ?

$$V_{\pi}(\mathbf{s}) = \mathbf{E}_{\mathbf{s}^{(1)},\dots} \left(\sum_{t=0}^{\infty} \gamma^{t} R(\mathbf{s}^{(t)}, \pi(\mathbf{s}^{(t)}), \mathbf{s}^{(t+1)}) | \mathbf{s}^{(0)} = \mathbf{s}; \pi \right)$$

• Bellman expectation equation:

$$V_{\pi}(s) = \sum_{s'} \mathrm{P}(s'|s;\pi(s))[R(s,\pi(s),s') + \gamma V_{\pi}(s')], \forall s$$

M1 Solve the system of linear equations

- $|\mathbb{S}|$ linear equations and $|\mathbb{S}|$ variables
- Time complexity: $O(|\mathbb{S}|^3)$

Evaluating $V_{\pi}(s)$

• How to evaluate the value function of a given π ?

$$V_{\pi}(\mathbf{s}) = \mathbf{E}_{\mathbf{s}^{(1)},\dots} \left(\sum_{t=0}^{\infty} \gamma^{t} R(\mathbf{s}^{(t)}, \pi(\mathbf{s}^{(t)}), \mathbf{s}^{(t+1)}) | \mathbf{s}^{(0)} = \mathbf{s}; \pi \right)$$

• Bellman expectation equation:

$$V_{\pi}(s) = \sum_{s'} \mathrm{P}(s'|s;\pi(s))[R(s,\pi(s),s') + \gamma V_{\pi}(s')], orall s$$

M1 Solve the system of linear equations

- $|\mathbb{S}|$ linear equations and $|\mathbb{S}|$ variables
- Time complexity: $O(|\mathbb{S}|^3)$

M2 Dynamic programming (just like value iteration):

• Initializes
$$V_{\pi}(s) = 0, \forall s$$

•
$$V_{\pi}(s) \leftarrow \sum_{s'} \mathbf{P}(s'|s;\pi(s))[R(s,\pi(s),s') + \gamma V_{\pi}(s')], \forall s$$

Shan-Hung Wu (CS, NTHU)

Reinforcement Learning

• How to find $\hat{\pi}$ such that $V_{\hat{\pi}}(s) \geq V_{\pi}(s)$ for all s?

- How to find $\hat{\pi}$ such that $V_{\hat{\pi}}(s) \geq V_{\pi}(s)$ for all s?
- Update rule: for all s do

$$\hat{\pi}(s) \leftarrow \arg\max_{a} \sum_{s'} \mathrm{P}(s'|s;a)[R(s,a,s') + \gamma V_{\pi}(s')]$$

- How to find $\hat{\pi}$ such that $V_{\hat{\pi}}(s) \geq V_{\pi}(s)$ for all s?
- Update rule: for all s do

$$\hat{\pi}(s) \leftarrow \arg\max_{a} \sum_{s'} \mathrm{P}(s'|s;a)[R(s,a,s') + \gamma V_{\pi}(s')]$$

$$V_{\pi}(s) = \sum_{s'} \mathbf{P}(s'|s;\pi(s))[R(s,\pi(s),s') + \gamma V_{\pi}(s')]$$

- How to find $\hat{\pi}$ such that $V_{\hat{\pi}}(s) \geq V_{\pi}(s)$ for all s?
- Update rule: for all s do

$$\hat{\pi}(s) \leftarrow \arg\max_{a} \sum_{s'} \mathrm{P}(s'|s;a)[R(s,a,s') + \gamma V_{\pi}(s')]$$

$$\begin{array}{ll} V_{\pi}(s) &= \sum_{s'} \mathrm{P}(s'|s;\pi(s))[R(s,\pi(s),s') + \gamma V_{\pi}(s')] \\ &\leq \sum_{s'} \mathrm{P}(s'|s;\hat{\pi}(s))[R(s,\hat{\pi}(s),s') + \gamma V_{\pi}(s')] \end{array}$$

- How to find $\hat{\pi}$ such that $V_{\hat{\pi}}(s) \geq V_{\pi}(s)$ for all s?
- Update rule: for all s do

$$\hat{\pi}(s) \leftarrow \arg\max_{a} \sum_{s'} \mathrm{P}(s'|s;a)[R(s,a,s') + \gamma V_{\pi}(s')]$$

$$\begin{array}{ll} V_{\pi}(s) &= \sum_{s'} \mathrm{P}(s'|s;\pi(s))[R(s,\pi(s),s') + \gamma V_{\pi}(s')] \\ &\leq \sum_{s'} \mathrm{P}(s'|s;\hat{\pi}(s))[R(s,\hat{\pi}(s),s') + \gamma V_{\pi}(s')] \\ &\leq \sum_{s'} \mathrm{P}(s'|s;\hat{\pi}(s)) \left\{ R(s,\hat{\pi}(s),s') + \gamma V_{\pi}(s'') \right\} \end{array}$$

- How to find $\hat{\pi}$ such that $V_{\hat{\pi}}(s) \geq V_{\pi}(s)$ for all s?
- Update rule: for all s do

$$\hat{\pi}(s) \leftarrow \arg\max_{a} \sum_{s'} \mathrm{P}(s'|s;a)[R(s,a,s') + \gamma V_{\pi}(s')]$$

$$\begin{array}{ll} V_{\pi}(s) &= \sum_{s'} \mathrm{P}(s'|s;\pi(s)) [R(s,\pi(s),s') + \gamma V_{\pi}(s')] \\ &\leq \sum_{s'} \mathrm{P}(s'|s;\hat{\pi}(s)) [R(s,\hat{\pi}(s),s') + \gamma V_{\pi}(s')] \\ &\leq \sum_{s'} \mathrm{P}(s'|s;\hat{\pi}(s)) \{R(s,\hat{\pi}(s),s') + \gamma V_{\pi}(s'),s'') + \gamma V_{\pi}(s'')\} \\ &\qquad \gamma \sum_{s''} \mathrm{P}(s''|s';\hat{\pi}(s')) [R(s',\hat{\pi}(s'),s'') + \gamma V_{\pi}(s'')] \} \\ &\cdots \\ &\leq \mathrm{E}_{s',s'',\cdots} \left(R(s,\hat{\pi}(s),s') + \gamma R(s',\hat{\pi}(s'),s'') + \cdots | \mathbf{s}^{(0)} = s; \hat{\pi} \right) \\ &= V_{\hat{\pi}}(s), \forall s \end{array}$$

Algorithm: Policy Iteration

For each state s, initialize $\pi(s)$ randomly;

repeat

```
For each state s, initialize V_{\pi}(s) \leftarrow 0;
     repeat
          foreach s do
           | V_{\pi}(s) \leftarrow \sum_{s'} \mathbf{P}(s'|s;\pi(s))[R(s,\pi(s),s') + \gamma V_{\pi}(s')];
          end
     until V_{\pi}(s)'s converge;
     foreach s do
          \pi(s) \leftarrow \arg \max_{a} \sum_{s'} \mathbf{P}(s'|s;a) [R(s,a,s') + \gamma V_{\pi}(s')];
     end
until \pi(s)'s converge;
```

```
Algorithm 5: Policy iteration.
```

```
Shan-Hung Wu (CS, NTHU)
```

Reinforcement Learning

Theorem

Policy iteration converges and gives the optimal policy π^* when $H \rightarrow \infty$.

Theorem

Policy iteration converges and gives the optimal policy π^* when $H \to \infty$.

• Convergence: in every step the policy improves

Theorem

Policy iteration converges and gives the optimal policy π^* when $H \to \infty$.

- Convergence: in every step the policy improves
- Optimal policy: at convergence, $V_{\pi}(s)$, $\forall s$, satisfies the Bellman optimality equation

$$V^*(s) = \max_{a} \sum_{s'} \mathbf{P}(s'|s;a) [R(s,a,s') + \gamma V^*(s')]$$

Shan-Hung Wu (CS, NTHU)

Outline

1 Introduction

- 2 Markov Decision Process
 - Value Iteration
 - Policy Iteration

3 Reinforcement Learning

- Model-Free RL using Monte Carlo Estimation
- Temporal-Difference Estimation and SARSA (Model-Free)
- Exploration Strategies
- Q-Learning (Model-Free)
- SARSA vs. Q-Learning
Difference from MDP

• In practice, we may not be able to model the environment as an MDP

Difference from MDP

- In practice, we may not be able to model the environment as an MDP
- Unknown transition distribution P(s'|s; a)

Kohl and Stone, 2004

Ng et al, 2004

Tedrake et al, 2005

Kober and Peters, 2009

1 Fr D

Silver et al, 2014 (DPG) Lillicrap et al, 2015 (DDPG)

Mnih et al 2013 (DQN) Mnih et al. 2015 (A3C)

Schulman et al, 2016 (TRPO + GAE)

Levine*, Finn*, et al, 2016 (GPS)

Silver*, Huang*, et al, 2016 (AlphaGo)

Difference from MDP

- In practice, we may not be able to model the environment as an MDP
- Unknown transition distribution P(s'|s; a)

Kohl and Stone, 2004

Ng et al, 2004

Tedrake et al, 2005

Kober and Peters, 2009

Silver et al, 2014 (DPG) Lillicrap et al, 2015 (DDPG)

Neration 0

Schulman et al, 2016 (TRPO + GAE)

Levine*, Finn*, et al, 2016 (GPS)

Silver*, Huang*, et al, 2016 (AlphaGo)

Mnih et al 2013 (DQN) Mnih et al, 2015 (A3C)

• Unknown reward function R(s, a, s')

Shan-Hung Wu (CS, NTHU)

Reinforcement Learning

Exploration vs. Exploitation

• What would you do to get some rewards?

Exploration vs. Exploitation

- What would you do to get some rewards?
- Perform actions randomly to *explore* P(s'|s;a) and R(s,a,s') first
 Collect samples so to estimate P(s'|s;a) and R(s,a,s')

Exploration vs. Exploitation

- What would you do to get some rewards?
- Perform actions randomly to *explore* P(s'|s;a) and R(s,a,s') first
 Collect samples so to estimate P(s'|s;a) and R(s,a,s')
- ② Then, perform actions to *exploit* the learned P(s'|s;a) and R(s,a,s')
 - $\circ~\pi^*$ can be computed/planned "in mind" using value/policy iteration

Model-based RL using Monte Carlo Estimation

- Use some *exploration policy* π' to perform one or more *episodes*/*trails*
 - Each episode records samples of P(s'|s;a) and R(s,a,s') from start to terminal state

$$\mathbf{s}^{(0)} \xrightarrow{\pi'(\mathbf{s}^{(0)})} \mathbf{s}^{(1)} \xrightarrow{\pi'(\mathbf{s}^{(1)})} \cdots \xrightarrow{\pi'(\mathbf{s}^{(H-1)})} \mathbf{s}^{(H)}$$

and

$$R(s^{(0)}, \pi'(s^{(0)}), s^{(1)}) \to \cdots \to R(s^{(H-1)}, \pi(s^{(H-1)}), s^{(H)})$$

Estimate P(s'|s;a) and R(s,a,s') using the samples and update the exploitation policy π

• $\hat{\mathbf{P}}(s'|s;a) = \frac{\# \text{ times the action } a \text{ takes state } s \text{ to state } s'}{\# \text{ times action } a \text{ is taken in state } s}$

• $\hat{R}(s, a, s') =$ average of reward values received when a takes s to s'

- (3) Repeat from Step 1, but gradually mix π into π'
 - Mix-in strategy? E.g., ε -greedy (more on this later)

Shan-Hung Wu (CS, NTHU)

Problems of Model-based RL

- There may be lots of P(s'|s;a) and R(s,a,s') to estimate
- If P(s'|s;a) is low, there may be too few samples to have a good estimate
- Low P(s'|s;a) may also lead to a poor estimate of R(s,a,s')
 when R(s,a,s') depends on s'

Problems of Model-based RL

- There may be lots of P(s'|s;a) and R(s,a,s') to estimate
- If P(s'|s;a) is low, there may be too few samples to have a good estimate
- Low P(s'|s;a) may also lead to a poor estimate of R(s,a,s')
 when R(s,a,s') depends on s'
- We estimate P(s'|s;a)'s and R(s,a,s')'s in order to compute $V^*(s)/V_{\pi}(s)$ and solve π^*
- Why not estimate $V^*(s)/V_{\pi}(s)$ directly?

Shan-Hung Wu (CS, NTHU)

Outline

1 Introduction

- 2 Markov Decision Process
 - Value Iteration
 - Policy Iteration

3 Reinforcement Learning

Model-Free RL using Monte Carlo Estimation

- Temporal-Difference Estimation and SARSA (Model-Free)
- Exploration Strategies
- *Q*-Learning (Model-Free)
- SARSA vs. Q-Learning

• How to estimate $E(f(\mathbf{x})|\mathbf{y}) = \sum_{\mathbf{x}} P(\mathbf{x}|\mathbf{y}) f(\mathbf{x})$ given samples $(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots$?

- How to estimate $E(f(\mathbf{x})|\mathbf{y}) = \sum_{\mathbf{x}} P(\mathbf{x}|\mathbf{y}) f(\mathbf{x})$ given samples $(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots$?
- Model-based estimation:
 - 1 For each x, estimate $\hat{P}(x|y) = \frac{\operatorname{count}(x^{(i)}=x \text{ and } y^{(i)}=y)}{\operatorname{count}(y^{(i)}=y)}$

2
$$\hat{\mathbf{E}}(f(\mathbf{x})|\mathbf{y}) = \sum_{\mathbf{x}} \hat{\mathbf{P}}(\mathbf{x}|\mathbf{y}) f(\mathbf{x})$$

- How to estimate $E(f(\mathbf{x})|\mathbf{y}) = \sum_{\mathbf{x}} P(\mathbf{x}|\mathbf{y}) f(\mathbf{x})$ given samples $(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \cdots$?
- Model-based estimation:
 - 1 For each x, estimate $\hat{P}(x|y) = \frac{\operatorname{count}(x^{(i)}=x \text{ and } y^{(i)}=y)}{\operatorname{count}(y^{(i)}=y)}$

2
$$\hat{\mathbf{E}}(f(\mathbf{x})|\mathbf{y}) = \sum_{\mathbf{x}} \hat{\mathbf{P}}(\mathbf{x}|\mathbf{y}) f(\mathbf{x})$$

Model-free estimation:

$$\hat{\mathbf{E}}(f(\mathbf{x})|\mathbf{y}) = \frac{1}{\operatorname{count}(\mathbf{y}^{(j)} = \mathbf{y})} \sum_{i: \mathbf{x}^{(i)} = \mathbf{x} \text{ and } \mathbf{y}^{(i)} = \mathbf{y}} f(\mathbf{x}^{(i)})$$

Why does it work?

- How to estimate $E(f(\mathbf{x})|\mathbf{y}) = \sum_{\mathbf{x}} P(\mathbf{x}|\mathbf{y}) f(\mathbf{x})$ given samples $(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \cdots$?
- Model-based estimation:
 - 1 For each x, estimate $\hat{P}(x|y) = \frac{\operatorname{count}(x^{(i)}=x \text{ and } y^{(i)}=y)}{\operatorname{count}(y^{(j)}=y)}$

2
$$\hat{\mathbf{E}}(f(\mathbf{x})|\mathbf{y}) = \sum_{\mathbf{x}} \hat{\mathbf{P}}(\mathbf{x}|\mathbf{y}) f(\mathbf{x})$$

Model-free estimation:

$$\hat{\mathbf{E}}(f(\mathbf{x})|\mathbf{y}) = \frac{1}{\operatorname{count}(\mathbf{y}^{(j)} = \mathbf{y})} \sum_{i:\mathbf{x}^{(i)} = \mathbf{x} \text{ and } \mathbf{y}^{(i)} = \mathbf{y}} f(\mathbf{x}^{(i)})$$

• Why does it work? Because samples appear in right frequencies

Shan-Hung Wu (CS, NTHU)

Challenges of Model-Free RL

- Value iteration: start from $V^*(s) \leftarrow 0$
 - 1 Iterate $V^*(s) \leftarrow \max_{a} \sum_{s'} P(s'|s;a)[R(s,a,s') + \gamma V^*(s')]$ until converge

2 Solve
$$\pi^*(s) \leftarrow \operatorname{arg\,max}_a \sum_{s'} P(s'|s;a)[R(s,a,s') + \gamma V^*(s')]$$

• Policy iteration: start from a random π , repeat until converge: 1 Iterate $V_{\pi}(s) \leftarrow \sum_{s'} P(s'|s; \pi(s))[R(s, \pi(s), s') + \gamma V_{\pi}(s')]$ until converge

2 Solve
$$\pi(s) \leftarrow \arg \max_{a} \sum_{s'} P(s'|s;a) [R(s,a,s') + \gamma V_{\pi}(s')]$$

Shan-Hung Wu (CS, NTHU)

Challenges of Model-Free RL

• Value iteration: start from $V^*(s) \leftarrow 0$

1 Iterate $V^*(s) \leftarrow \max_{a} \sum_{s'} P(s'|s;a)[R(s,a,s') + \gamma V^*(s')]$ until converge

 \odot Not easy to estimate $V^*(s) = \max_{\pi} \mathbb{E}\left(\sum_t \gamma^t R^{(t)} | s^{(0)} = s; \pi\right)$

2 Solve $\pi^*(s) \leftarrow \arg \max_a \sum_{s'} P(s'|s;a)[R(s,a,s') + \gamma V^*(s')]$: Need model to solve

• Policy iteration: start from a random π , repeat until converge:

1 Iterate $V_{\pi}(s) \leftarrow \sum_{s'} P(s'|s; \pi(s))[R(s, \pi(s), s') + \gamma V_{\pi}(s')]$ until converge

 \odot Can estimate $V_{\pi}(s) = \mathbb{E}\left(\sum_{t} \gamma^{t} R^{(t)} | s^{(0)} = s; \pi\right)$ using MC est.

2 Solve $\pi(s) \leftarrow \arg \max_{a} \sum_{s'} P(s'|s;a) [R(s,a,s') + \gamma V_{\pi}(s')]$ © Need model to solve

Q Function for π

• Value function for a given π :

$$V_{\pi}(s) = \mathbf{E}_{\mathbf{s}^{(1)}, \dots} \left(\sum_{t=0}^{\infty} \gamma^{t} R(\mathbf{s}^{(t)}, \pi(\mathbf{s}^{(t)}), \mathbf{s}^{(t+1)}) \, | \, \mathbf{s}^{(0)} = s; \, \pi \right)$$

with recurrence (Bellman expectation equation):

$$V_{\pi}(s) = \sum_{s'} \mathbf{P}(s'|s;\pi(s))[R(s,\pi(s),s') + \gamma V_{\pi}(s')], \forall s$$

• Maximum expected accumulative reward when starting from state s and acting based on π onward

Q Function for π

• Value function for a given π :

$$V_{\pi}(s) = \mathbf{E}_{\mathbf{s}^{(1)}, \dots} \left(\sum_{t=0}^{\infty} \gamma^{t} R(\mathbf{s}^{(t)}, \pi(\mathbf{s}^{(t)}), \mathbf{s}^{(t+1)}) \, | \, \mathbf{s}^{(0)} = s; \, \pi \right)$$

with recurrence (Bellman expectation equation):

$$V_{\pi}(s) = \sum_{s'} \mathbf{P}(s'|s; \pi(s))[R(s, \pi(s), s') + \gamma V_{\pi}(s')], \forall s$$

- $\,\circ\,$ Maximum expected accumulative reward when starting from state s and acting based on π onward
- Define *Q* function for π :

$$Q_{\pi}(s,a) = \mathbf{E}_{\mathbf{s}^{(1)},\dots} \left(R(s,a,\mathbf{s}^{(1)}) + \sum_{t=1}^{\infty} \gamma^{t} R(\mathbf{s}^{(t)},\pi(\mathbf{s}^{(t)}),\mathbf{s}^{(t+1)}); s,a,\pi \right)$$

such that $V_{\pi}(s) = Q_{\pi}(s,\pi(s))$ with recurrence:

$$Q_{\pi}(s, a) = \sum_{s'} \mathbf{P}(s'|s; a) [R(s, a, s') + \gamma Q_{\pi}(s', \pi(s'))], \forall s, a$$

• Maximum expected accumulative reward when starting from state s, taking action a, and then acting based on π

Shan-Hung Wu (CS, NTHU)

Algorithm: Policy Iteration based on Q_{π}

```
Input: MDP (\mathbb{S}, \mathbb{A}, \mathbf{P}, R, \gamma, H \to \infty)
Output: \pi(s)'s for all s's
```

For each state s, initialize $\pi(s)$ randomly;

repeat

```
For each state s, initialize V_{\pi}(s) \leftarrow 0 Initialize Q_{\pi}(s, a) = 0, \forall s, a;
     repeat
           foreach s and a do
                V_{\pi}(s) \leftarrow \sum_{s'} \mathbf{P}(s'|s;\pi(s))[R(s,\pi(s),s') + \gamma V_{\pi}(s')]
                O_{\pi}(s, a) \leftarrow \sum_{s'} P(s'|s; a) [R(s, a, s') + \gamma Q_{\pi}(s', \pi(s'))];
           end
     until V_{\pi}(s)'s Q_{\pi}(s,a)'s converge;
     foreach s do
           \pi(s) \leftarrow \arg \max_{a} \sum_{s'} \mathbf{P}(s'|s;a) [R(s,a,s') + \gamma V_{\pi}(s')]
          \pi(s) \leftarrow \arg \max_{a} Q_{\pi}(s, a);
     end
until \pi(s)'s converge;
                          Algorithm 6: Policy iteration.
```

Shan-Hung Wu (CS, NTHU)

Example

0.64	0.74	0.85	1.00
0.57		0.57	-1.00
0.49	0.43	0.48	0.28
VALUES AFTER 100 ITERATIONS			

Shan-Hung Wu (CS, NTHU)

- Policy iteration: start from a random π , repeat until converge:
 - $\texttt{1} \text{ lterate } Q_{\pi}(s, a) \leftarrow \sum_{s'} \mathsf{P}(s'|s; \pi(s))[R(s, \pi(s), s') + \gamma Q_{\pi}(s', \pi(s'))] \text{ until converge}$

2 Solve
$$\pi(s) \leftarrow \arg \max_{a} Q_{\pi}(s, a)$$

- Policy iteration: start from a random π , repeat until converge:
 - $\textbf{1} \text{ Iterate } Q_{\pi}(s, a) \leftarrow \sum_{s'} \mathbf{P}(s'|s; \pi(s))[R(s, \pi(s), s') + \gamma Q_{\pi}(s', \pi(s'))] \text{ until converge}$
 - \odot Can estimate $Q_{\pi}(s,a) = \mathbb{E}\left(R^{(0)} + \sum_{t=1} \gamma^t R^{(t)}\right)$ using MC est.
 - 2 Solve $\pi(s) \leftarrow \arg \max_a Q_{\pi}(s, a)$ © No need for model to solve

- Policy iteration: start from a random π , repeat until converge:
 - $\textbf{1} \text{ Iterate } Q_{\pi}(s, a) \leftarrow \sum_{s'} P(s'|s; \pi(s))[R(s, \pi(s), s') + \gamma Q_{\pi}(s', \pi(s'))] \text{ until converge}$
 - \odot Can estimate $Q_{\pi}(s,a) = \mathbb{E}\left(R^{(0)} + \sum_{t=1} \gamma^t R^{(t)}\right)$ using MC est.
 - 2 Solve $\pi(s) \leftarrow \arg \max_a Q_{\pi}(s, a)$ © No need for model to solve
- RL: start from a random π for both exploration & exploitation, repeat until converge:
 - (1) Create episodes using π and get MC estimates $\hat{Q}_{\pi}(s, a), \forall s, a$
 - 2 Update π by $\pi(s) \leftarrow \arg \max_a \hat{Q}_{\pi}(s, a), \forall s$

- Policy iteration: start from a random π , repeat until converge:
 - $\textbf{1} \text{ Iterate } Q_{\pi}(s, a) \leftarrow \sum_{s'} \mathbf{P}(s'|s; \pi(s))[R(s, \pi(s), s') + \gamma Q_{\pi}(s', \pi(s'))] \text{ until converge}$
 - \odot Can estimate $Q_{\pi}(s,a) = \mathbb{E}\left(R^{(0)} + \sum_{t=1} \gamma^t R^{(t)}\right)$ using MC est.
 - 2 Solve $\pi(s) \leftarrow \arg \max_a Q_{\pi}(s, a)$ © No need for model to solve
- RL: start from a random π for both exploration & exploitation, repeat until converge:
 - (1) Create episodes using π and get MC estimates $\hat{Q}_{\pi}(s, a), \forall s, a$
 - 2 Update π by $\pi(s) \leftarrow \arg \max_{a} \hat{Q}_{\pi}(s, a), \forall s$
- Problem: π improves little after running lots of trials

- Policy iteration: start from a random π , repeat until converge:
 - $\textbf{1} \text{ lterate } Q_{\pi}(s, a) \leftarrow \sum_{s'} \mathbf{P}(s'|s; \pi(s))[R(s, \pi(s), s') + \gamma Q_{\pi}(s', \pi(s'))] \text{ until converge}$
 - \odot Can estimate $Q_{\pi}(s,a) = \mathbb{E}\left(R^{(0)} + \sum_{t=1} \gamma^t R^{(t)}\right)$ using MC est.
 - 2 Solve $\pi(s) \leftarrow \arg \max_a Q_{\pi}(s, a)$ © No need for model to solve
- RL: start from a random π for both exploration & exploitation, repeat until converge:
 - (1) Create episodes using π and get MC estimates $\hat{Q}_{\pi}(s, a), \forall s, a$
 - 2 Update π by $\pi(s) \leftarrow \arg \max_{a} \hat{Q}_{\pi}(s, a), \forall s$
- Problem: π improves little after running lots of trials
- Can we improve π right after each action?

Shan-Hung Wu (CS, NTHU)

Outline

1 Introduction

- 2 Markov Decision Process
 - Value Iteration
 - Policy Iteration

3 Reinforcement Learning

Model-Free RL using Monte Carlo Estimation

• Temporal-Difference Estimation and SARSA (Model-Free)

- Exploration Strategies
- *Q*-Learning (Model-Free)
- SARSA vs. Q-Learning

Policy Iteration Revisited

- Policy iteration: start from a random π , repeat until converge:
 - $\textbf{1} \text{ Iterate } Q_{\pi}(s, a) \leftarrow \sum_{s'} P(s'|s; \pi(s)) [R(s, \pi(s), s') + \gamma Q_{\pi}(s', \pi(s'))] \text{ until converge}$

2 Solve
$$\pi(s) \leftarrow \arg \max_{a} Q_{\pi}(s, a)$$

Policy Iteration Revisited

- Policy iteration: start from a random π , repeat until converge:
 - $\textbf{1} \text{ Iterate } Q_{\pi}(s, a) \leftarrow \sum_{s'} P(s'|s; \pi(s)) [R(s, \pi(s), s') + \gamma Q_{\pi}(s', \pi(s'))] \text{ until converge}$
 - \odot Can estimate $Q_{\pi}(s,a) = E\left(R^{(0)} + \sum_{t=1} \gamma^{t} R^{(t)}\right)$ using MC est.

Policy Iteration Revisited

- Policy iteration: start from a random π , repeat until converge:
 - 1 Iterate $Q_{\pi}(s, a) \leftarrow \sum_{s'} P(s'|s; \pi(s))[R(s, \pi(s), s') + \gamma Q_{\pi}(s', \pi(s'))]$ until converge
 - \odot Can estimate $Q_{\pi}(s,a) = \mathbb{E}\left(R^{(0)} + \sum_{t=1} \gamma^t R^{(t)}\right)$ using MC est.
 - \odot Can also estimate $Q_{\pi}(s,a)$ based on the recurrence
 - 2 Solve $\pi(s) \leftarrow \arg \max_a Q_{\pi}(s, a)$ © No need for model to solve

$$Q_{\pi}(s, a) \leftarrow \sum_{s'} \mathbb{P}(s'|s; \pi(s))[R(s, \pi(s), s') + \gamma Q_{\pi}(s', \pi(s'))]$$

• Given the samples

$$\mathbf{s}^{(0)} \xrightarrow{\mathbf{a}^{(0)}} \mathbf{s}^{(1)} \xrightarrow{\mathbf{a}^{(1)}} \cdots \xrightarrow{\mathbf{a}^{(H-1)}} \mathbf{s}^{(H)}$$

and

$$R(\mathbf{s}^{(0)}, \mathbf{a}^{(0)}, \mathbf{s}^{(1)}) \rightarrow \cdots \rightarrow R(\mathbf{s}^{(H-1)}, \mathbf{a}^{(H-1)}, \mathbf{s}^{(H)})$$

• Temporal difference (TD) estimation of $Q_{\pi}(s, a)$:

1
$$\hat{Q}_{\pi}(s, a) \leftarrow \text{randon value}, \forall s, a$$

2 Repeat until converge for each action $a^{(t)}$:
 $\hat{Q}_{\pi}(s^{(t)}, a^{(t)}) \leftarrow \hat{Q}_{\pi}(s^{(t)}, a^{(t)}) + \eta \left[(R(s^{(t)}, a^{(t)}, s^{(t+1)}) + \gamma \hat{Q}_{\pi}(s^{(t+1)}, \pi(s^{(t+1)}))) - \hat{Q}_{\pi}(s^{(t)}, a^{(t)}) \right]$

Shan-Hung Wu (CS, NTHU)

$$Q_{\pi}(s, a) \leftarrow \sum_{s'} \mathbf{P}(s'|s; \pi(s))[R(s, \pi(s), s') + \gamma Q_{\pi}(s', \pi(s'))]$$

Given the samples

$$\mathbf{s}^{(0)} \xrightarrow{\mathbf{a}^{(0)}} \mathbf{s}^{(1)} \xrightarrow{\mathbf{a}^{(1)}} \cdots \xrightarrow{\mathbf{a}^{(H-1)}} \mathbf{s}^{(H)}$$

and

$$R(\mathbf{s}^{(0)}, \mathbf{a}^{(0)}, \mathbf{s}^{(1)}) \rightarrow \cdots \rightarrow R(\mathbf{s}^{(H-1)}, \mathbf{a}^{(H-1)}, \mathbf{s}^{(H)})$$

- Temporal difference (TD) estimation of $Q_{\pi}(s, a)$:
 - $\begin{array}{c} \textcircled{1} \quad \hat{Q}_{\pi}(s,a) \leftarrow \text{randon value}, \forall s, a \\ \textcircled{2} \quad \text{Repeat until converge for each action } a^{(t)}: \\ \quad \hat{Q}_{\pi}(s^{(t)}, a^{(t)}) \leftarrow \hat{Q}_{\pi}(s^{(t)}, a^{(t)}) + \\ \quad \eta \left[(R(s^{(t)}, a^{(t)}, s^{(t+1)}) + \gamma \hat{Q}_{\pi}(s^{(t+1)}, \pi(s^{(t+1)}))) \hat{Q}_{\pi}(s^{(t)}, a^{(t)}) \right] \end{aligned}$
- $\hat{Q}_{\pi}(s, a)$ can be updated *on the fly* during an episode

Shan-Hung Wu (CS, NTHU)

$$Q_{\pi}(s, a) \leftarrow \sum_{s'} \mathbf{P}(s'|s; \pi(s))[R(s, \pi(s), s') + \gamma Q_{\pi}(s', \pi(s'))]$$

Given the samples

$$\mathbf{s}^{(0)} \xrightarrow{\mathbf{a}^{(0)}} \mathbf{s}^{(1)} \xrightarrow{\mathbf{a}^{(1)}} \cdots \xrightarrow{\mathbf{a}^{(H-1)}} \mathbf{s}^{(H)}$$

and

$$R(\mathbf{s}^{(0)}, \mathbf{a}^{(0)}, \mathbf{s}^{(1)}) \rightarrow \cdots \rightarrow R(\mathbf{s}^{(H-1)}, \mathbf{a}^{(H-1)}, \mathbf{s}^{(H)})$$

- Temporal difference (TD) estimation of $Q_{\pi}(s, a)$:
 - $\hat{Q}_{\pi}(s, a) \leftarrow \text{randon value}, \forall s, a$

2 Repeat until converge for each action $\boldsymbol{a}^{(t)}$: $\hat{Q}_{\pi}(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}) \leftarrow \hat{Q}_{\pi}(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}) + \eta \left[(R(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}, \boldsymbol{s}^{(t+1)}) + \gamma \hat{Q}_{\pi}(\boldsymbol{s}^{(t+1)}, \pi(\boldsymbol{s}^{(t+1)}))) - \hat{Q}_{\pi}(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}) \right]$

- $\hat{Q}_{\pi}(s,a)$ can be updated *on the fly* during an episode
- η the "learning rate"?

Shan-Hung Wu (CS, NTHU)

$$\hat{Q}_{\pi}(s, \boldsymbol{a}) \leftarrow \quad \hat{Q}_{\pi}(s, \boldsymbol{a}) + \eta \left[(R(s, \boldsymbol{a}, s') + \gamma \hat{Q}_{\pi}(s', \pi(s'))) - \hat{Q}_{\pi}(s, \boldsymbol{a}) \right] \\ \quad = \eta (R(s, \boldsymbol{a}, s') + \gamma \hat{Q}_{\pi}(s', \pi(s'))) + (1 - \eta) \hat{Q}_{\pi}(s, \boldsymbol{a}) \quad ,$$

$$\hat{Q}_{\pi}(s, \boldsymbol{a}) \leftarrow \quad \hat{Q}_{\pi}(s, \boldsymbol{a}) + \eta \left[(R(s, \boldsymbol{a}, \boldsymbol{s}') + \gamma \hat{Q}_{\pi}(s', \pi(s'))) - \hat{Q}_{\pi}(s, \boldsymbol{a}) \right] \\ = \eta (R(s, \boldsymbol{a}, \boldsymbol{s}') + \gamma \hat{Q}_{\pi}(s', \pi(s'))) + (1 - \eta) \hat{Q}_{\pi}(s, \boldsymbol{a}) \quad ,$$

• Exponential moving average:

$$\overline{x}_n = \frac{x^{(n)} + (1-\eta)x^{(n-1)} + (1-\eta)^2 x^{(n-2)} + \cdots}{1 + (1-\eta) + (1-\eta)^2 + \cdots},$$

where $\eta \in [0,1]$ is the "forget rate"

Recent samples are exponentially more important

Shan-Hung Wu (CS, NTHU)

$$\hat{Q}_{\pi}(s, \boldsymbol{a}) \leftarrow \quad \hat{Q}_{\pi}(s, \boldsymbol{a}) + \eta \left[(R(s, \boldsymbol{a}, s') + \gamma \hat{Q}_{\pi}(s', \pi(s'))) - \hat{Q}_{\pi}(s, \boldsymbol{a}) \right] \\ = \eta (R(s, \boldsymbol{a}, s') + \gamma \hat{Q}_{\pi}(s', \pi(s'))) + (1 - \eta) \hat{Q}_{\pi}(s, \boldsymbol{a}) \quad ,$$

• Exponential moving average:

$$\overline{x}_n = \frac{x^{(n)} + (1-\eta)x^{(n-1)} + (1-\eta)^2 x^{(n-2)} + \cdots}{1 + (1-\eta) + (1-\eta)^2 + \cdots},$$

where $\eta \in [0,1]$ is the "forget rate"

Recent samples are exponentially more important

• Since
$$1/\eta = 1 + (1 - \eta) + (1 - \eta)^2 + \cdots$$
, we have $\overline{x}_n = \eta x^{(n)} + (1 - \eta)\overline{x}_{n-1}$ [Proof]

Shan-Hung Wu (CS, NTHU)

$$\hat{Q}_{\pi}(s, \boldsymbol{a}) \leftarrow \quad \hat{Q}_{\pi}(s, \boldsymbol{a}) + \eta \left[(R(s, \boldsymbol{a}, \boldsymbol{s}') + \gamma \hat{Q}_{\pi}(s', \pi(s'))) - \hat{Q}_{\pi}(s, \boldsymbol{a}) \right] \\ = \eta (R(s, \boldsymbol{a}, \boldsymbol{s}') + \gamma \hat{Q}_{\pi}(s', \pi(s'))) + (1 - \eta) \hat{Q}_{\pi}(s, \boldsymbol{a}) \quad ,$$

Exponential moving average:

$$\overline{x}_n = \frac{x^{(n)} + (1-\eta)x^{(n-1)} + (1-\eta)^2 x^{(n-2)} + \cdots}{1 + (1-\eta) + (1-\eta)^2 + \cdots},$$

where $\eta \in [0,1]$ is the "forget rate"

Recent samples are exponentially more important

• Since
$$1/\eta = 1 + (1 - \eta) + (1 - \eta)^2 + \cdots$$
, we have $\overline{x}_n = \eta x^{(n)} + (1 - \eta)\overline{x}_{n-1}$ [Proof]

• As long as η gradually decreases to 0:

- $\hat{Q}_{\pi}(s, a)$ degenerates to average of accumulative rewards
- $\hat{Q}_{\pi}(s, a)$ converges to $Q_{\pi}(s, a)$ (more on this later)

Shan-Hung Wu (CS, NTHU)
Algorithm: SARSA (Simplified)

```
Input: S, A, and \gamma
Output: \pi^*(s)'s for all s's
```

For each state s and a, initialize $Q_{\pi}(s, a)$ arbitrarily; foreach episode do

```
Set s to initial state;
```

repeat

Take action $a \leftarrow \arg \max_{a'} Q_{\pi}(s, a')$; Observe s' and reward R(s, a, s'); $Q_{\pi}(s, a) \leftarrow$ $Q_{\pi}(s, a) + \eta [(R(s, a, s') + \gamma Q_{\pi}(s', \pi(s'))) - Q_{\pi}(s, a)];$ $s \leftarrow s'$;

until s is terminal state;

end

Algorithm 7: State-Action-Reward-State-Action (SARSA).

Shan-Hung Wu (CS, NTHU)

Algorithm: SARSA (Simplified)

```
Input: S, A, and \gamma
Output: \pi^*(s)'s for all s's
```

For each state s and a, initialize $Q_{\pi}(s, a)$ arbitrarily; foreach episode do

```
Set s to initial state;
```

repeat

Take action $a \leftarrow \arg \max_{a'} Q_{\pi}(s, a')$; Observe s' and reward R(s, a, s'); $Q_{\pi}(s, a) \leftarrow Q_{\pi}(s, a) + \eta \left[(R(s, a, s') + \gamma Q_{\pi}(s', \pi(s'))) - Q_{\pi}(s, a) \right]$; $s \leftarrow s'$;

until s is terminal state;

end

Algorithm 8: State-Action-Reward-State-Action (SARSA).

Policy improves each time when deciding the next action a

Theorem

SARSA converges and gives the optimal policy π^* almost surely if 1) π is GLIE (Greedy in the Limit with Infinite Exploration); 2) η small enough eventually, but not decreasing too fast.

Theorem

SARSA converges and gives the optimal policy π^* almost surely if 1) π is GLIE (Greedy in the Limit with Infinite Exploration); 2) η small enough eventually, but not decreasing too fast.

• Greedy in the limit: the policy π converges (in the limit) to the exploitation/greedy policy

• At each step, we choose $\pmb{a} \leftarrow rg\max_{\pmb{a}'} Q_{\pi}(\pmb{s}, \pmb{a}')$

Theorem

SARSA converges and gives the optimal policy π^* almost surely if 1) π is GLIE (Greedy in the Limit with Infinite Exploration); 2) η small enough eventually, but not decreasing too fast.

- Greedy in the limit: the policy π converges (in the limit) to the exploitation/greedy policy
 - At each step, we choose $\pmb{a} \leftarrow rg\max_{\pmb{a}'} Q_{\pi}(\pmb{s}, \pmb{a}')$
- Infinite exploration: all (s, a) pairs are visited infinite times
 - $\pmb{a} \leftarrow rg\max_{\pmb{a}'} Q_{\pi}(\pmb{s}, \pmb{a}')$ cannot guarantee this
 - Need a better way (next section)

Theorem

SARSA converges and gives the optimal policy π^* almost surely if 1) π is GLIE (Greedy in the Limit with Infinite Exploration); 2) η small enough eventually, but not decreasing too fast.

- \bullet Greedy in the limit: the policy π converges (in the limit) to the exploitation/greedy policy
 - At each step, we choose $\pmb{a} \leftarrow \arg\max_{\pmb{a}'} Q_{\pi}(\pmb{s}, \pmb{a}')$
- Infinite exploration: all (s, a) pairs are visited infinite times
 - $\pmb{a} \leftarrow rg\max_{\pmb{a}'} Q_{\pi}(\pmb{s}, \pmb{a}')$ cannot guarantee this
 - Need a better way (next section)
- Furthermore, η should satisfy: $\sum_t \eta^{(t)} = \infty$ and $\sum_t \eta^{(t)2} < \infty$

• E.g.,
$$\eta^{(t)} = O(\frac{1}{t})$$

- $\sum_{t=1}^{t} \frac{1}{t}$ is a harmonic series known to diverge
- $\sum_t (\frac{1}{t})^p$, p>1, is a p-series converging to Riemann zeta $\zeta(p)$

Outline

1 Introduction

- 2 Markov Decision Process
 - Value Iteration
 - Policy Iteration

- Model-Free RL using Monte Carlo Estimation
- Temporal-Difference Estimation and SARSA (Model-Free)
- Exploration Strategies
- *Q*-Learning (Model-Free)
- SARSA vs. Q-Learning

General RL Steps

- Repeat until converge:
 - 1 Use some exploration policy π' to run episodes/trails
 - 2 Estimate targets (e.g., P(s'|s;a), R(s,a,s'), or $Q_{\pi}(s,a)$) and update the exploitation policy π
 - 3 Gradually mix π into π'

General RL Steps

- Repeat until converge:
 - 1 Use some exploration policy π' to run episodes/trails
 - 2 Estimate targets (e.g., P(s'|s;a), R(s,a,s'), or $Q_{\pi}(s,a)$) and update the exploitation policy π
 - 3 Gradually mix π into π'
- Goals of mix-in/exploration strategy:
 - Infinite exploration with π'
 - π' is greedy/exploitative in the end

ɛ-Greedy Strategy

- At every time step, flip a coin
 - With probability ε , act randomly (explore)
 - With probability (1ε) , compute/update the exploitation policy and act accordingly (exploit)

ɛ-Greedy Strategy

- At every time step, flip a coin
 - With probability ε , act randomly (explore)
 - With probability (1ε) , compute/update the exploitation policy and act accordingly (exploit)
- Gradually decrease arepsilon over time

ɛ-Greedy Strategy

- At every time step, flip a coin
 - With probability ε , act randomly (explore)
 - With probability (1ε) , compute/update the exploitation policy and act accordingly (exploit)
- Gradually decrease arepsilon over time
- At each time step, the action is at either of two extremes
 - Exploration or exploitation
- "Soft" policy between the two extremes?

Softmax Strategy

Idea: perform action *a* more often if *a* gives more accumulative rewards
E.g., in SARSA, choose *a* from *s* by sampling from the distribution:

$$\mathbf{P}(\boldsymbol{a}|\boldsymbol{s}) = \frac{\exp(\mathcal{Q}_{\pi}(\boldsymbol{s},\boldsymbol{a})/t)}{\sum_{\boldsymbol{a}'}(\exp\mathcal{Q}_{\pi}(\boldsymbol{s},\boldsymbol{a}')/t)}, \,\forall \boldsymbol{a}$$

• Softmax function converts $Q_{\pi}(s, a)$'s to probabilities

Softmax Strategy

- Idea: perform action a more often if a gives more accumulative rewards
- E.g., in SARSA, choose a from s by sampling from the distribution:

$$\mathbf{P}(\boldsymbol{a}|\boldsymbol{s}) = \frac{\exp(\mathcal{Q}_{\pi}(\boldsymbol{s},\boldsymbol{a})/t)}{\sum_{\boldsymbol{a}'}(\exp\mathcal{Q}_{\pi}(\boldsymbol{s},\boldsymbol{a}')/t)}, \,\forall \boldsymbol{a}$$

- Softmax function converts $Q_{\pi}(s, a)$'s to probabilities
- **Temperature** *t* starts from a high value (exploration), and decreases over time (exploitation)

Exploration Function

- Idea: to explore areas with fewest samples
- E.g., in each step of SARSA, define an exploration function

$$f(q,n) = q + K/n,$$

where

- q the estimated Q-value
- *n* the number of samples for the estimate
- K some positive constant

Exploration Function

- Idea: to explore areas with fewest samples
- E.g., in each step of SARSA, define an exploration function

$$f(q,n) = q + K/n,$$

where

- q the estimated Q-value
- *n* the number of samples for the estimate
- K some positive constant
- Instead of:

$$Q_{\pi}(s, a) \leftarrow Q_{\pi}(s, a) + \eta \left[(R(s, a, s') + \gamma Q_{\pi}(s', a')) - Q_{\pi}(s, a) \right]$$

• Use f when updating $Q_{\pi}(s, a)$:

$$\begin{array}{l} Q_{\pi}(s, \textbf{\textit{a}}) \leftarrow Q_{\pi}(s, \textbf{\textit{a}}) + \\ \eta \left\{ [R(s, \textbf{\textit{a}}, s') + \gamma f(Q_{\pi}(s', \textbf{\textit{a}}'), \texttt{count}(s', \textbf{\textit{a}}'))] - Q_{\pi}(s, \textbf{\textit{a}}) \right\} \end{array}$$

- Infinite exploration
- Exploit once exploring enough

Shan-Hung Wu (CS, NTHU)

Outline

1 Introduction

- 2 Markov Decision Process
 - Value Iteration
 - Policy Iteration

- Model-Free RL using Monte Carlo Estimation
- Temporal-Difference Estimation and SARSA (Model-Free)
- Exploration Strategies
- Q-Learning (Model-Free)
- SARSA vs. Q-Learning

Model-Free RL with Value Iteration?

• Value iteration: start from $V^*(s) \leftarrow 0$

1 Iterate $V^*(s) \leftarrow \max_a \sum_{s'} P(s'|s;a)[R(s,a,s') + \gamma V^*(s')]$ until converge

 \odot Not easy to estimate $V^*(s) = \max_{\pi} \mathbb{E}\left(\sum_t \gamma^t R^{(t)} | \mathbf{s}^{(0)} = s; \pi\right)$

2 Solve $\pi^*(s) \leftarrow \arg \max_{a} \sum_{s'} P(s'|s;a)[R(s,a,s') + \gamma V^*(s')]$: Need model to solve

Model-Free RL with Value Iteration?

- Value iteration: start from $V^*(s) \leftarrow 0$
 - $\textbf{1} \text{ Iterate } V^*(s) \leftarrow \max_{a} \sum_{s'} \mathsf{P}(s'|s;a)[R(s,a,s') + \gamma V^*(s')] \text{ until converge}$

 \odot Not easy to estimate $V^*(s) = \max_{\pi} \mathbb{E}\left(\sum_t \gamma^t R^{(t)} | \mathbf{s}^{(0)} = s; \pi\right)$

- 2 Solve $\pi^*(s) \leftarrow \arg \max_{a} \sum_{s'} P(s'|s;a)[R(s,a,s') + \gamma V^*(s')]$: Need model to solve
- Q-version that helps sample-based estimation?

Optimal Q Function

• Optimal value function:

$$V^{*}(s) = \max_{\pi} \mathrm{E}_{\mathbf{s}^{(1)}, \dots} \left(\sum_{t=0}^{\infty} \gamma^{t} R(\mathbf{s}^{(t)}, \pi(\mathbf{s}^{(t)}), \mathbf{s}^{(t+1)}) \, | \, \mathbf{s}^{(0)} = s; \, \pi \right)$$

with recurrence

$$V^*(s) = \max_{a} \sum_{s'} \mathbf{P}(s'|s;a) [R(s,a,s') + \gamma V^*(s')], \forall s$$

• Maximum expected accumulative reward when starting from state *s* and acting optimally onward

Optimal Q Function

• Optimal value function:

$$V^{*}(s) = \max_{\pi} \mathrm{E}_{\mathbf{s}^{(1)}, \dots} \left(\sum_{t=0}^{\infty} \gamma^{t} R(\mathbf{s}^{(t)}, \pi(\mathbf{s}^{(t)}), \mathbf{s}^{(t+1)}) \, | \, \mathbf{s}^{(0)} = s; \, \pi \right)$$

with recurrence

$$V^*(s) = \max_{a} \sum_{s'} \mathbf{P}(s'|s;a) [R(s,a,s') + \gamma V^*(s')], \forall s$$

 Maximum expected accumulative reward when starting from state s and acting optimally onward

• Q^* function:

$$Q^*(s, a) = \max_{\pi} E_{\mathbf{s}^{(1)}, \dots} \left(R(s, a, \mathbf{s}^{(1)}) + \sum_{t=1}^{\infty} \gamma^t R(\mathbf{s}^{(t)}, \pi(\mathbf{s}^{(t)}), \mathbf{s}^{(t+1)}); s, a, \pi \right)$$

such that $V^*(s) = \max_a Q^*(s, a)$ with recurrence:

$$Q^*(s, a) = \sum_{s'} P(s'|s; a) [R(s, a, s') + \gamma \max_{a'} Q^*(s', a')], \forall s$$

• Maximum expected accumulative reward when starting from state *s*, taking actin *a*, and then acting optimally onward

Shan-Hung Wu (CS, NTHU)

Algorithm: *Q*-Value Iteration

For each state s, initialize $V^*(s) \leftarrow 0$ Initialize $Q^*(s, a) = 0, \forall s, a$; repeat

 $\left| \begin{array}{c} \text{foreach } s \text{ and } a \text{ do} \\ \left| \begin{array}{c} \frac{V^*(s) \leftarrow \max_a \sum_{s'} P(s'|s;a)[R(s,a,s') + \gamma V^*(s')]}{Q^*(s,a) \leftarrow \sum_{s'} P(s'|s;a)[R(s,a,s') + \gamma \max_{a'} Q^*(s',a')];} \\ \text{end} \\ \text{until } \frac{V^*(s) \cdot s}{s} Q^*(s,a) \text{ 's converge}; \\ \text{foreach } s \text{ do} \\ \left| \begin{array}{c} \pi^*(s) \leftarrow \arg \max_a \sum_{s'} P(s'|s;a)[R(s,a,s') + \gamma V^*(s')] \\ \pi^*(s) \leftarrow \arg \max_a Q^*(s,a); \end{array} \right|$

Algorithm 9: Q-Value iteration with infinite horizon.

Shan-Hung Wu (CS, NTHU)

Example

0.64	0.74	0.85	1.00
0.57		0.57	-1.00
0.49	0.43	0.48	0.28
VALUES AFTER 100 ITERATIONS			

Shan-Hung Wu (CS, NTHU)

Q-Value Iteration

- Value iteration: start from $Q^*(s, a) \leftarrow 0$
 - $\textcircled{1} \quad \texttt{Iterate } Q^*(s, a) \leftarrow \sum_{s'} \mathsf{P}(s'|s; a) [R(s, a, s') + \gamma \max_{a'} Q^*(s', a')] \text{ until converge}$

2 Solve
$$\pi^*(s) \leftarrow \operatorname{arg\,max}_a Q^*(s, a)$$

Q-Value Iteration

- Value iteration: start from $Q^*(s, a) \leftarrow 0$
 - $\textbf{1} \text{ Iterate } Q^*(s, a) \leftarrow \sum_{s'} P(s'|s; a) [R(s, a, s') + \gamma \max_{a'} Q^*(s', a')] \text{ until converge}$

 \odot Still not easy to estimate $Q^*(s,a) = \max_{\pi} \mathbb{E}\left(R^{(0)} + \sum_l \gamma^l R^{(l)}\right)$

2 Solve
$$\pi^*(s) \leftarrow \arg \max_a Q^*(s, a)$$

 © No need for model to solve

Q-Value Iteration

- Value iteration: start from $Q^*(s, a) \leftarrow 0$
 - 1 Iterate $Q^*(s, a) \leftarrow \sum_{s'} P(s'|s; a) [R(s, a, s') + \gamma \max_{a'} Q^*(s', a')]$ until converge

 \odot Still not easy to estimate $Q^*(s,a) = \max_{\pi} \mathbb{E}\left(R^{(0)} + \sum_l \gamma^l R^{(l)}\right)$

But we can estimate Q*(s,a) based on the recurrence now!
Solve π*(s) ← arg max_a Q*(s,a)
No need for model to solve

Temporal Difference Estimation

$$Q^*(s, a) \leftarrow \sum_{s'} P(s'|s; a) [R(s, a, s') + \gamma \max_{a'} Q^*(s', a')]$$

• Given an exploration policy π' and samples

$$\mathbf{s}^{(0)} \xrightarrow{\mathbf{a}^{(0)}} \mathbf{s}^{(1)} \xrightarrow{\mathbf{a}^{(1)}} \cdots \xrightarrow{\mathbf{a}^{(H-1)}} \mathbf{s}^{(H)}$$

and

$$R(\mathbf{s}^{(0)}, \mathbf{a}^{(0)}, \mathbf{s}^{(1)}) \rightarrow \cdots \rightarrow R(\mathbf{s}^{(H-1)}, \mathbf{a}^{(H-1)}, \mathbf{s}^{(H)})$$

- Temporal difference (TD) estimation of Q^{*}(s, a) for exploitation policy π:
 - $\widehat{Q}^*(s, a) \leftarrow randon \ value, \forall s, a$
 - 2 Repeat until converge for each action $\boldsymbol{a}^{(t)}$: $\hat{Q}^*(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}) \leftarrow \hat{Q}^*(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}) + \eta \left[(R(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}, \boldsymbol{s}^{(t+1)}) + \gamma \max_{\boldsymbol{a}} \hat{Q}^*(\boldsymbol{s}^{(t+1)}, \boldsymbol{a})) - \hat{Q}^*(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}) \right]$

Temporal Difference Estimation

$$Q^*(s,a) \leftarrow \sum_{s'} P(s'|s;a) [R(s,a,s') + \gamma \max_{a'} Q^*(s',a')]$$

ullet Given an exploration policy π' and samples

$$\mathbf{s}^{(0)} \xrightarrow{\mathbf{a}^{(0)}} \mathbf{s}^{(1)} \xrightarrow{\mathbf{a}^{(1)}} \cdots \xrightarrow{\mathbf{a}^{(H-1)}} \mathbf{s}^{(H)}$$

and

$$R(\mathbf{s}^{(0)}, \mathbf{a}^{(0)}, \mathbf{s}^{(1)}) \rightarrow \cdots \rightarrow R(\mathbf{s}^{(H-1)}, \mathbf{a}^{(H-1)}, \mathbf{s}^{(H)})$$

- Temporal difference (TD) estimation of Q^{*}(s, a) for exploitation policy π:
 - $\hat{Q}^*(s, a) \leftarrow randon value, \forall s, a$
 - 2 Repeat until converge for each action $\boldsymbol{a}^{(t)}$: $\hat{Q}^*(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}) \leftarrow \hat{Q}^*(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}) + \eta \left[(R(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}, \boldsymbol{s}^{(t+1)}) + \gamma \max_{\boldsymbol{a}} \hat{Q}^*(\boldsymbol{s}^{(t+1)}, \boldsymbol{a})) - \hat{Q}^*(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}) \right]$
- $\hat{Q}^*(s,a)$ can be updated *on the fly* during exploration

Shan-Hung Wu (CS, NTHU)

Temporal Difference Estimation

$$Q^*(s,a) \leftarrow \sum_{s'} P(s'|s;a) [R(s,a,s') + \gamma \max_{a'} Q^*(s',a')]$$

ullet Given an exploration policy π' and samples

$$\mathbf{s}^{(0)} \xrightarrow{\mathbf{a}^{(0)}} \mathbf{s}^{(1)} \xrightarrow{\mathbf{a}^{(1)}} \cdots \xrightarrow{\mathbf{a}^{(H-1)}} \mathbf{s}^{(H)}$$

and

$$R(\mathbf{s}^{(0)}, \mathbf{a}^{(0)}, \mathbf{s}^{(1)}) \rightarrow \cdots \rightarrow R(\mathbf{s}^{(H-1)}, \mathbf{a}^{(H-1)}, \mathbf{s}^{(H)})$$

- Temporal difference (TD) estimation of Q^{*}(s, a) for exploitation policy π:
 - $\hat{Q}^*(s, a) \leftarrow randon value, \forall s, a$
 - $\begin{array}{l} \textcircled{2} \quad \text{Repeat until converge for each action } \boldsymbol{a}^{(t)}: \\ \hat{Q}^*(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}) \leftarrow \hat{Q}^*(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}) + \\ \eta \left[(R(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}, \boldsymbol{s}^{(t+1)}) + \gamma \max_{\boldsymbol{a}} \hat{Q}^*(\boldsymbol{s}^{(t+1)}, \boldsymbol{a})) \hat{Q}^*(\boldsymbol{s}^{(t)}, \boldsymbol{a}^{(t)}) \right] \end{array}$
- $\hat{Q}^*(s,a)$ can be updated *on the fly* during exploration
- η the "forget rate" of moving avg. that gradually decreases

Shan-Hung Wu (CS, NTHU)

Algorithm: Q-Learning

```
Input: S, A, and \gamma
Output: \pi^*(s)'s for all s's
For each state s and a, initialize Q^*(s,a) arbitrarily;
foreach episode do
    Set s to initial state:
    repeat
         Take action a from s using some exploration policy \pi'
          derived from Q^* (e.g., \varepsilon-greedy);
         Observe s' and reward R(s, a, s');
        Q^*(s, a) \leftarrow
         Q^*(s,a) + \eta \left[ \left( R(s,a,s') + \gamma \max_{a'} Q^*(s',a') \right) - Q^*(s,a) \right];
        s \leftarrow s':
    until s is terminal state;
end
```

Algorithm 10: Q-learning.

Shan-Hung Wu (CS, NTHU)

Theorem

Q-learning converges and gives the optimal policy π* if
1) π' has explored enough;
2) η small enough eventually, but not decreasing too fast.

Theorem

Q-learning converges and gives the optimal policy π* if
1) π' has explored enough;
2) η small enough eventually, but not decreasing too fast.

- π' has explored enough:
 - All states and actions are visited infinitely often
 - Does *not* matter how π' selects actions!

Theorem

Q-learning converges and gives the optimal policy π* if
1) π' has explored enough;
2) η small enough eventually, but not decreasing too fast.

- π' has explored enough:
 - All states and actions are visited infinitely often
 - Does *not* matter how π' selects actions!

•
$$\eta$$
 satisfies $\sum_t \eta^{(t)} = \infty$ and $\sum_t \eta^{(t)2} < \infty$
• E.g., $\eta^{(t)} = O(\frac{1}{t})$

Shan-Hung Wu (CS, NTHU)

Outline

1 Introduction

- 2 Markov Decision Process
 - Value Iteration
 - Policy Iteration

- Model-Free RL using Monte Carlo Estimation
- Temporal-Difference Estimation and SARSA (Model-Free)
- Exploration Strategies
- *Q*-Learning (Model-Free)
- SARSA vs. Q-Learning

Off-Policy vs. On-Policy RL

- General RL steps: repeat until converge:
 - 1 Use some exploration policy π' to run episodes/trails
 - 2 Use smaples to update the exploitation policy π
 - (3) Gradually mix π into π'

Off-Policy vs. On-Policy RL

- General RL steps: repeat until converge:
 - 1 Use some exploration policy π' to run episodes/trails
 - 2 Use smaples to update the exploitation policy π
 - (3) Gradually mix π into π'
- **Off-policy**: π updated toward a greedy policy **independent** with π'
 - Q-learning:
 - $Q^*(s, a) \leftarrow Q^*(s, a) + \eta \left[\left(R(s, a, s') + \gamma \max_{a'} Q^*(s', a') \right) Q^*(s, a) \right]$
- **On-policy**: π updated to improve (and **depends on**) π'
 - SARSA: $Q_{\pi}(s, a) \leftarrow Q_{\pi}(s, a) + \eta \left[\left(R(s, a, s') + \gamma Q_{\pi}(s', \pi(s')) \right) Q_{\pi}(s, a) \right]$
Off-Policy vs. On-Policy RL

- General RL steps: repeat until converge:
 - 1 Use some exploration policy π' to run episodes/trails
 - 2 Use smaples to update the exploitation policy π
 - 3 Gradually mix π into π'
- Off-policy: π updated toward a greedy policy independent with π'
 - Q-learning:
 - $Q^*(s, a) \leftarrow Q^*(s, a) + \eta \left[\left(R(s, a, s') + \gamma \max_{a'} Q^*(s', a') \right) Q^*(s, a) \right]$
- **On-policy**: π updated to improve (and **depends on**) π'
 - SARSA: $Q_{\pi}(s, a) \leftarrow Q_{\pi}(s, a) + \eta \left[\left(R(s, a, s') + \gamma Q_{\pi}(s', \pi(s')) \right) Q_{\pi}(s, a) \right]$

Shan-Hung Wu (CS, NTHU)

Practical Results

- SARSA has the capability to avoid the mistakes due to exploration
 - E.g., the maze-with-cliff problem
 - Advantageous when ${\cal E}>0$ with ${\cal E}$ -greedy exploration strategy
 - Converges to optimal policy π^* (as Q-learning) when ${m arepsilon} o 0$

Practical Results

- SARSA has the capability to avoid the mistakes due to exploration
 - E.g., the maze-with-cliff problem
 - Advantageous when ${\cal E}>0$ with ${\cal E}$ -greedy exploration strategy
 - Converges to optimal policy π^* (as Q-learning) when ${m arepsilon} o 0$
- But *Q*-learning has the capability to *continue learning while changing the exploration policy*

Remarks

• Update rule for Q^* (or Q_{π}) takes terminal states differently:

$$\mathcal{Q}^*(s, \boldsymbol{a}) \leftarrow \begin{cases} (1 - \eta)\mathcal{Q}^*(s, \boldsymbol{a}) + \eta R(s, \boldsymbol{a}, s') & \text{if } s' \text{ is terminal} \\ (1 - \eta)\mathcal{Q}^*(s, \boldsymbol{a}) + \eta \left[R(s, \boldsymbol{a}, s') + \gamma \max_{\boldsymbol{a}'} \mathcal{Q}^*(s', \boldsymbol{a}') \right], & \text{otherwise} \end{cases}$$

• Better convergence in practice

Remarks

• Update rule for Q^* (or Q_{π}) takes terminal states differently:

$$\mathcal{Q}^*(s, \mathbf{a}) \leftarrow \left\{ \begin{array}{ll} (1 - \eta) \mathcal{Q}^*(s, \mathbf{a}) + \eta \mathcal{R}(s, \mathbf{a}, s') & \text{if } s' \text{ is terminal} \\ (1 - \eta) \mathcal{Q}^*(s, \mathbf{a}) + \eta \left[\mathcal{R}(s, \mathbf{a}, s') + \gamma \max_{\mathbf{a}'} \mathcal{Q}^*(s', \mathbf{a}') \right], & \text{otherwise} \end{array} \right.$$

• Better convergence in practice

- Watch out your memory usage!
- Space complexity for SARSA/Q-learning: $O(|\mathbb{S}||\mathbb{A}|)$
 - ${\ }$ Store $Q^*(s,{\it a})$'s or $Q_\pi(s,{\it a})$'s for all $(s,{\it a})$ combinations

Remarks

• Update rule for Q^* (or Q_{π}) takes terminal states differently:

$$\mathcal{Q}^*(s, \boldsymbol{a}) \leftarrow \begin{cases} (1 - \eta)\mathcal{Q}^*(s, \boldsymbol{a}) + \eta R(s, \boldsymbol{a}, s') & \text{if } s' \text{ is terminal} \\ (1 - \eta)\mathcal{Q}^*(s, \boldsymbol{a}) + \eta \left[R(s, \boldsymbol{a}, s') + \gamma \max_{\boldsymbol{a}'} \mathcal{Q}^*(s', \boldsymbol{a}') \right], & \text{otherwise} \end{cases}$$

• Better convergence in practice

Watch out your memory usage!

- Space complexity for SARSA/Q-learning: $O(|\mathbb{S}||\mathbb{A}|)$
 - Store $Q^*(s, a)$'s or $Q_{\pi}(s, a)$'s for all (s, a) combinations
- Why not train a (deep) regressor for $Q^*(s, a)$'s or $Q_{\pi}(s, a)$'s?
 - Space reduction due to the generalizability of the regressor

Shan-Hung Wu (CS, NTHU)