Deep Reinforcement Learning

Shan-Hung Wu
shwu@cs.nthu.edu.tw

Department of Computer Science,
National Tsing Hua University, Taiwan

Machine Learning

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 1/57

Outline

@ Introduction

(@ Value-based Deep RL
o Deep O-Network
o Improvements

(3 Policy-based Deep RL
o Pathwise Derivative Methods
o Policy Gradient/Optimization Methods
o Variance Reduction and Actor-Critic

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning

Machine Learning

2/57

Outline

@ Introduction

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 3/57

(Tabular) RL
o Q-learning:
Q*(s,a) + Q*(s.a) + N [(R(s,a,s") + ymaxy Q*(s',a’)) — 0" (s,a)]
o SARSA:
Oz (s.a) < Qu(s,a) + N [(R(s,a,s") + yQx(s", n(s"))) — Ox(s,a)]

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 4 /57

(Tabular) RL

o Q-learning:
Q*(s,a) < Q*(s,a) + N [(R(s,a,s") + ymax, Q*(s',a’)) — O*(s,a)]

o SARSA:
Qx(s,a) < QOx(s,a) + 1 [(R(s,a,s') +YQx(s', 7(s"))) — Qx(s,a)]

o In realistic environments with large state/action space, requires a large
table to store Q*/Qx values

o Maze: O(10"), Tetris: O(10%), Atari: 0(10'9922) pixels

o Continuous states/actions?
o May not be able to visit all (s,a)’s in limited training time
T T

I
I
I
e

)]][[

(@)
a0

(O]
0
S]
s000Es
oomem
E=)
EDEOE

€

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 4 /57

Generalizing across States

o Idea: to learn a function fp:(s,a;®) (resp. fp,) that approximates
Q*(s,a) (resp. Qx(s,a)), Vs,a
o Trained by a small number (millions) of samples
o Generalizes to unseen states/actions
o Smaller ® to store

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning

5/57

Generalizing across States

o Idea: to learn a function fp:(s,a;®) (resp. fp,) that approximates
Q*(s,a) (resp. Qx(s,a)), Vs,a
o Trained by a small number (millions) of samples
o Generalizes to unseen states/actions
o Smaller ® to store

o E.g., in Q-learning, Q* should satisfy Bellman optimality equation:

Q*(s,a) < Y P(s'|s;a)[R(s,a,s') + ymax Q" (s',a’)], Vs,a

o Algorithm (TD estimate): initialize ® arbitrarily, iterate until
converge:
@ Take action a from s using some exploration policy 7’ derived from fp-
(e.g., e-greedy)
@ Observe s’ and reward R(s,a,s’), update ® using SGD:
0« 0®—nVeC, where

2
C(®) = |R(s,a,s") +ymaxfy (s',a’;©) —fp- (s,a; O)
al

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 5/57

Works If with Careful Feature Engineering

o Tetris: [1]
o States: O(10%) configurations
o Actions: rotation and translation to
falling piece
o f(s,a;0) and C(®) modeled as an
approximated linear programming
problem

o Hand-crafted features (22 in total) L]

|
2@
80853

00Q
L0

[]

[]
[E[=
o
@]
00

[]
[l
(]
O
O
0

U

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 6 /57

Works If with Careful Feature Engineering

o Tetris: [1]
o States: O(10%) configurations
o Actions: rotation and translation to
falling piece
o f(s,a;0) and C(®) modeled as an
approximated linear programming
problem

o Hand-crafted features (22 in total)

o Why not use a deep neural network to
represent Qg?
o One model for different tasks
o Automatically learned features

(][]]
88000

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 6 /57

00Q
L0
[]
]
[&

Deep RL

o Value-based: use DNNs to represent value/Q-function

o Eg., DQN

o 7*(s) « argmax, Q*(s,a) only feasible if actions are discrete
o Policy-based: use DNNs to represent policy ©

o E.g., DDPG, Action-Critic, A3C, TRPO, PPO

s ML

Kohl and Stone, 2004 Ng et al, 2004 Tedrake et al, 2005 Kober and Peters, 2009

.'J Em

Silver et al, 2014 (DPG) [
Lillicrap et al, 2015 (DDPG) Schulman et al, Levine*, Finn*, et Silver*, Huang*, et

2016 (TRPO + GAE) al, 2016 al, 2016
(GPS) (AlphaGo)

o

Mnih et al 2013 (DQN)
Mnih et al, 2015 (A3C)

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning

7/57

Outline

(@ Value-based Deep RL
o Deep O-Network
o Improvements

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 8/57

DNNs for QO*

o Use a DNN fp-(s,a;®) to represent Q*(s,a)

s —>

a —»

> QO(s, a)

Shan-Hung Wu (CS, NTHU)

s — ¥

> Q(s, &)
> Q(s, a®)

> Q(s, a®)

Deep Reinforcement Learning

Machine Learning

9/57

DNNs for QO*
o Use a DNN fp-(s,a;®) to represent Q*(s,a)

> Q(s, &)
s —
f P> Qsa s—» [>0 a?)
a —»
> O(s, 3(3))

o Algorithm (TD): initialize ® arbitrarily, iterate until converge:

@ Take action a from s using some exploration policy 7" derived from fp-

(e.g., e-greedy)
@ Observe s’ and reward R(s,a,s’), update ® using SGD:

® <+ 0 —nVeC, where

2
C(®) = |R(s,a,s") +ymaxfp- (s',a’;©) —fp- (s,a; O)
al

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning

9/57

DNNs for QO*
o Use a DNN fp-(s,a;®) to represent Q*(s,a)

> Q(s, &)
s —
f P> Qsa s—» [>0 a?)
a —»
> O(s, 3(3))

o Algorithm (TD): initialize ® arbitrarily, iterate until converge:
@ Take action a from s using some exploration policy 7" derived from fp-
(e.g., e-greedy)
@ Observe s’ and reward R(s,a,s’), update ® using SGD:

® <+ 0 —nVeC, where

2
C(®) = |R(s,a,s") +ymaxfp- (s',a’;©) —fp- (s,a; O)
al

o However, diverges due to

o Samples are correlated (violates i.i.d. assumption of training examples)
o Non-stationary target (fo-(s’,a’) changes as © is updated for current a)

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 9/57

Outline

(@ Value-based Deep RL
o Deep O-Network

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 10 /57

Deep Q-Network (DQN)

o Naive TD algorithm diverges due to:

o Samples are correlated
o Non-stationary target

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 11 /57

Deep Q-Network (DQN)

o Naive TD algorithm diverges due to:

o Samples are correlated
o Non-stationary target

o Stabilization techniques proposed by (Nature) DQN [5]:

o Experience replay
o Delayed target network

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 11 /57

Experience Replay

o Use a replay memory D to store recently seen transitions (s,a,r,s’)'s
o Sample a mini-batch from D and update ©

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 12 /57

Experience Replay

o Use a replay memory D to store recently seen transitions (s,a,r,s’)'s
o Sample a mini-batch from D and update ©

o Algorithm (TD): initialize ® arbitrarily, iterate until converge:

@ Take action a from s using 7’ derived from fy+ (e.g., e-greedy)
@ Observe s’ and reward R, add (s a.Rys')toD
@ Sample a mini-batch of (s\),a),R(i) (+1D)'s from D, do:

0+ ®—nVeC, where
) 2
(@) =Y |RY +ymaxfo (s"*V.a;0) ~for (s, a"); 0)

i

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 12 /57

Delayed Target Network

o To avoid chasing a moving target, set the target value at network
output parametrized by old ®~

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 13 /57

Delayed Target Network

o To avoid chasing a moving target, set the target value at network
output parametrized by old ©~

o Algorithm (TD): initialize ® arbitrarily and ® = @, iterate until
converge:

@ Take action a from s using 7’ derived from fp+ (e.g., €-greedy)
@ Observe s’ and reward R, add (s,a,R,s’) to D
@ Sample a mini-batch of (s),a), R st+1D)'s from D, do:

® <+ 0 —nVeC, where

2
co) =Y R +YH}I§1XfQ* (sD.a";07) — o sV, ©)

i

@ Update ®~ < O every K iterations

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning

13 /57

Other Tricks

o Optimization techniques matter in deep RL

o Optimization error may lead to wrong traditions (trajectory)
o And bad final policy

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 14 /57

Other Tricks

o Optimization techniques matter in deep RL

o Optimization error may lead to wrong traditions (trajectory)
o And bad final policy

o Reward clipping for better conditioned gradients

o Can't differentiate between small and large rewards
o Better use batch normalization

o Use RMSProp instead of vanilla SGD for adaptive learning rate

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 14 /57

DQN on Atari

Pong Enduro Beamrider

o 49 Atari 2600 games

o States: raw pixels

o Actions: 18 joystick/button positions
Q

Rewards: changes in score

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 15 /57

Network Architecture

End-to-end from raw pixels to Q*(s,a)

CNN + fully connected layers

Input: state s a stack of raw pixels from last 4 frames
Output: 18 Q*(s,a)’s (one for each action)

© © o0 o

32 4x4 filcers Fully-connected linear
output layer

256 hidden units
16 8x8 filters

4x84x84

o G

-

Stack of 4 previous) Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units

of rectified linear units of rectified linear units

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning

16 /57

Network Architecture

End-to-end from raw pixels to Q*(s,a)

CNN + fully connected layers

Input: state s a stack of raw pixels from last 4 frames
Output: 18 Q*(s,a)’s (one for each action)

© © o0 o

32 4x4 filcers Fully-connected linear
output layer

256 hidden units
16 8x8 filters

4x84x84

o G

-

Stack of 4 previous) Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units

of rectified linear units of rectified linear units
o Network architecture is fixed across all games

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning

16 /57

Results

Jouses) feaul| 1seg

B

2
3I1§§§§§x
- I e il T 2

[enaj-uBwny mojeg

BAOQE 10 [3AS]-UBWINY Y

m“'|'"imi||in||imn...m...m

Shan-Hung Wu (CS, NTHU)

L

000'+ 009 00S 00y 00€ 002 00} 0
1 1

abusnsy s, BLINZBUON
of3 erenud
JeyneID
suqsold
sploseisy
Uen-o8d 'S
Buymog
3ung ajgnoq
senbeeg
anuep

ually
Jeplwy

uoxxez

pley Jeny
1sIeH yueg
spadius)
puewwo) seddoyn
AOM 40 pIEZIM
auoz aneg
Xuaisy
OYIH
18,0
AexooH 89]
umoq pue dn
Aqieq Buiysiy
oinpug
101l BWIL
KRemaaiy
Jysep n4-Buny)
wewijueint
JopIH weag
siopeAu| soedg
Buog
siuue).
puog sewer
oosebuey]
Jsuuny peoy
|nessy

Ny
awep siy] sweN
>oERY Uoweq
Jeydon
Jequuig Azesd
shuepy
uejoqoy
Jeuuny Jelg
noxeaig
Buixog

[equid 03PIA

17 /57

Machine Learning

Deep Reinforcement Learning

Effect of Stability Techniques

DQN
Q-learning Q-learning | Q-learning Q-learning
+ Replay + Replay
+ Target Q + Target Q
Breakout 3 10 241 317
Enduro 29 142 831 1006
River Raid 1453 2868 4103 7447
Seaquest 276 1003 823 2894
Space Invaders 302 373 826 1089

o Delayed target network is less useful for large networks

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 18 /57

Predicted Q* Values for Pong

% S - S - S -

DEEE
i

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 19 /57

1
0.5
0

-0.5

Action-Values (Q)

A

Outline

(@ Value-based Deep RL

o Improvements

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 20 /57

Improvements since DQN

Stabilization:

o Double DQN [9]
o Prioritized replay [7]

©

©

Modeling additional prior:
o Duelling network [10]

©

Exploration:
o NoisyNet [2]

Large-scale implementation

©

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning

Machine Learning

21/57

Double DQN 1
o DQN update rule: ® «+ ® —nVgC, where

2

(@) =Y |RV +ymaxfo (s'*1.a:07) ~fo- (s . 0)

1

o There is an upward bias in max, fp-(s/*!,a’;07)
o for (s a’;07) with high positive error is preferred
o At each step, the positive error is added to fp- (s®),a); ®)

Value estimates

Shan-Hung Wu (CS, NTHU)

Wizard of Wor

100 e BB B

2 N

g

g 1

B0 DQN

S 1

S

= Double DQN

0 50 100 150 200
Wizard of Wor

4000 | | Double DQN
3000 I

5

S 2000

%]

DQN

0 50 100 150 200
Training steps (in millions)

Deep Reinforcement Learning

Double DQN
0 50 100 150 200

000 WA Double DQN
4000 -

2000

0 50 100 150 200
Training steps (in millions)

Machine Learning

22/57

Double DQN 11
o Double DQN (DDQN) [9]:

C(©) =Y |RY +yp (s, argmaxfo. (s"*1).a;0):07) ~ fo: (s a1 0)

i

o Uses O to select the best action
o Uses ®~ to evaluate the best action

o Random (unbiased) error added to fy:(s(),a();®) at each step

‘Wizard of Wor

=
S
3

B B
§

M |
111
(IR

-
5

DON

Value estimates
(log scale)

Double DQN

0 50 100 150 200
‘Wizard of Wor

Double DQN 6000 -

4000 -

2000
DQN

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning

0 50 100 150 200 0 50

150 200
Training steps (in millions) Training steps (in millions)

Machine Learning

2

23/57

Prioritized Replay [7]
o Not all (s,a,R,s")'s from D are equally helpful to training fo-
o Sample (s,a,R,s)'s with probability proportional to “surprise” in terms
of Bellman equation:

[R+ymaxfo:(s',a';07) —fo:(s,a;0)|

o Rank-based alternative: D a priority queue

2000

o0
00
200
o0 oo
i
25000 200
3 0 3 2000
s s
o 1 H
A
1500 o0 pi
100 w0
T W % W b e e e R T T T T TS
g sep 126 traringstep 061
[o — o — antonna_— roprionl]

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 24 /57

Dueling Network [10]
o Q*(s,a) =V*(s)+A*(s,a)

o A*(s,a) the advantage function of a

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 25 /57

Dueling Network [10]
o Q*(s,a) =V*(s)+A*(s,a)
o A*(s,a) the advantage function of a
o Idea: to model this prior and learn fp.(s,a) = fy=(s) +fa-(s,a)

Q(s,a)

DQN

Dueling
DQN

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 25 /57

Dueling Network [10]
o Q(s,a)=V*(s)+A*(s,a)
o A*(s,a) the advantage function of a
o Idea: to model this prior and learn fp.(s,a) = fy=(s) +fa-(s,a)
o Not well-defined: fp.(s,a) = (fy+(s) +¢) + (fa= (s,a) —) for any ¢
o Dueling DQN: fou (5,a) = fy-(5) + (fx- (5,a) — maxg fi- (5,4")
o The best action a* has zero advantage and fp.(s,a*) = fy=(s)

Q(s,a)
DQN
V(s)
Dueling Q(s,a)
DQN
~ A(s,a)

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 25 /57

Dueling Network [10]
o Q(s,a)=V*(s)+A*(s,a)
o A*(s,a) the advantage function of a
o Idea: to model this prior and learn fp.(s,a) = fy=(s) +fa-(s,a)
o Not well-defined: fp.(s,a) = (fy+(s) +¢) + (fa= (s,a) —) for any ¢
o Dueling DQN: fou (5,a) = fy-(5) + (fx- (5,a) — maxg fi- (5,4")
o The best action a* has zero advantage and fp.(s,a*) = fy=(s)
o Stabilized version: fo.(s,a) = fy+(s) + (fa«(s,a) — ﬁ Yo fas(s,a’))
o fy« and fy» are off-target (by a constant) but f4+ changes more slowly

Q(s,a)
DQN
V(s)
Dueling Q(s,a)
DQN
~ A(s,a)

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 25 /57

ized DDQN

1ori

Improvement over Pr

%Z0°L60T

%zz 69 I 00.Jebue)|
%0, vg- I puog Sawe(
X ung a|gnog
uIS
1s3nbeag
>ue30qoy

: mn,Emﬁ(
noxealg

Aemaalq

buimog

DINJUBA

suua |

abuaAay s,ewnzajuoly
943 21eAld

buod

>€mn_ Buiysiy

Seny uowsg

siuey

suoz sjneg
H3g:0
Jaqui) Azei)

awe9 siy] swen
Japudyag

pIey Joly

ISI9H >ueg

- Jnessy

_u.._mEEou Jaddoyd

© X1u90yd
siapeAau| adeds
X1I91SY

26 /57

Deep Reinforcement Learning Machine Learning

Shan-Hung Wu (CS, NTHU)

See, Attend, and Drive

o Atari game: Enduro
o Attention mask: afv*() and ag—f;"(s)
© foi(s,a) =fy+(s) +fa=(s,a)

o fy+ pays attention to the road
o fa+ pays attention only when there's obstacles in front

VALUE ADVANTAGE

]
VG TN

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning

27 /57

NoisyNet [2]

-greedy for exploration, add noise to ®

ing using €

o Instead of us

o The level of noise is learned by SGD along with ®

o Improvement over Dueling DQN:

250
200
150
100

50

50
-100

Joeye UuoWwSp
siapenul adeds
1S9y jueq
Jiaziaq
Jnesse
X119)5@
1OM™J0" piezim
Japusjep
Jeplwe
umop~u_dn
Ja3sew” ny buny
Jauuni peol
uewded sw
auoz sneq
Jauunb Jeis
punouns
awebh s|yy aweu
Aqiap~Buiysiy
2113504
1aydoh

Jo)1d awn
abuanal siek
apadiyuad
plelianl
ooJlebuey
Hagh.
Japl-weaq
aInuan
sploalse
puewwod saddoyd
siuepe
sLiejos

Buixoq

aha =3ennd
buod
ewinzajuow
llejud
weyjueny
Aemaayy

1INy
Inoxealq
Jeynelb
xjusoyd
Jaquip~Azen
jsanbeas
juejoqol
A0y 201
oinpus
unp~a|gnop
olay

uale

uoxxez

llequid-oapin
puogsawel

28 /57

Deep Reinforcement Learning Machine Learning

Shan-Hung Wu (CS, NTHU)

Scaling Up DQN on Single Machine

o Exploits multi-threading of modern CPUs/GPUs
o Run/train multiple agents in parallel (one per thread/GPU)
o O shared between threads in main memory

o Data-parallelism

-
Parameter Server W = W= ﬂAW

0000000

]

Model
Replicas

/o
OO
OO

00
00

A\
0

00

Data
Shards

Shan-Hung Wu (CS, NTHU)

=

=

Deep Reinforcement Learning

=

Machine Learning

29/57

Scaling Up DQN on Single Machine

o Exploits multi-threading of modern CPUs/GPUs
o Run/train multiple agents in parallel (one per thread/GPU)

o O shared between threads in main memory
o Data-parallelism

o Parallelism decorrelates samples
o Alternative to experience replay

Shan-Hung Wu (CS, NTHU)

Model
Replicas

Data

L
Parameter Server W = W= ﬂAW

0000000

]

/o
OO
OO

00
00

\\
0

00

Shards @

Deep Reinforcement Learning

-

=

Machine Learning

29/57

Scaling Out DQN with Gorila [6]

o Distributed system architecture for large-scale RL
o 10x faster than Nature DQN

o Applied to recommender systems in Google

Distributed Memory

SAMPLE
EXPERIENCES EXPERIENCE

PARAMETERS

PARAMETERS
GRADIENTS

Learners
Actors & Environments

Distributed Q-Networks

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 30/57

Outline

(3 Policy-based Deep RL
o Pathwise Derivative Methods
o Policy Gradient/Optimization Methods
o Variance Reduction and Actor-Critic

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 31/57

Why Policy Network?

o Policy-based deep RL: use a DNN g (s;®) to approximate 7(s)
o Why?

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 32/57

Why Policy Network?

o Policy-based deep RL: use a DNN g (s;®) to approximate 7(s)
o Why?
o In DQN (or any method based on value/policy iteration), one needs to

solve
m* =argmax Q’(s,a’) or & =argmax Q" (s,a’)
a a

o Not applicable to continuous action space A common in, e.g., robotics

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 32/57

Why Policy Network?

o Policy-based deep RL: use a DNN g (s;®) to approximate 7(s)
o Why?
o In DQN (or any method based on value/policy iteration), one needs to
solve
Tt = argrrzelle*(s,a’) or i = argrr:la,le”(s,a')
o Not applicable to continuous action space A common in, e.g., robotics

o 7 may be easier to learn than Q or V

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 32/57

Modeling ©
o 7 can be either
o deterministic: gz(s;®P) =a, or
o stochastic: gr(s;P) =P(a|s)
o Pathwise derivative methods
o For deterministic = and continuous A

o Policy gradient/optimization methods
o For stochastic @

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 33 /57

Modeling ©

o T can be either
o deterministic: gr(s;®) =a, or
o stochastic: gr(s;P) =P(a|s)
o Pathwise derivative methods
o For deterministic & and continuous A
o To find ® such that gz (s;P) gives action a maximizing Q*(s,a)
o Changes the trajectory of an episode in the graph of accumulative
rewards
o Policy gradient/optimization methods
o For stochastic @

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning

33/57

Modeling ©

o 7 can be either
o deterministic: gr(s;®) =a, or
o stochastic: gr(s;P) =P(a|s)
o Pathwise derivative methods
o For deterministic & and continuous A
o To find ® such that gz (s;P) gives action a maximizing Q*(s,a)
o Changes the trajectory of an episode in the graph of accumulative
rewards
o Policy gradient/optimization methods
o For stochastic @
o To find @ such that gives trajectory of high accumulative rewards
o Do not change the trajectory (but its probability) of an episode

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 33 /57

Outline

(3 Policy-based Deep RL
o Pathwise Derivative Methods

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 34 /57

Deep Deterministic Policy Gradient (DDPG) [4]

s

A 4

L a f —> Q(S, a)

oQ
A 4

o Based on DQN
o Q-learning is off-policy and works with changing exploration strategies
o Deterministic policy: gz (s;®) =a € R

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 35 /57

Deep Deterministic Policy Gradient (DDPG) [4]

s

L a f —> Q(S, a)

A 4

(]

Based on DQN
o Q-learning is off-policy and works with changing exploration strategies

(]

Deterministic policy: gz+(s;®) =a € R

(]

Goal: to find @ maximizing Es [fp- (s,a;0)], where a = gz« (s; P)
SGD update rule:

(]

o inlizieo]

= ®+nE, [%* (s,a;0)- ag”* 2 (s; CID)]

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 35 /57

DDPG Algorithm (TD)

o Initialize ® and ® arbitrarily, set @ = ® and &~ = P, iterate until
converge:
@ Take action @ = gz+(s;P)+z from s, where z is a random noise for
exploration
@ Observe s’ and reward R, add (s,a,R,s’) to D
@ Sample a mini-batch of (s),a? R® s+D)'s from D
@ Update O:
® <+ 0 —nVeC, where

Z [JFWCQ* H—l)vg:r* (s§®7);®7) —for (S(i),a(i);(*))}z

i

® Update &:

an* 98

P

<I><—<I>+lZ (s, gz (s); @);©) - (s": @)
® Update @ <~ 10+ (1—-7)®" and &~ < 1@+ (1 —7)P~

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 36 /57

Limitations

§ —»

L a f —> Q(S, a)
g >

o Only applicable to continuous action space A

JE; [fQ* (,87* (s;dD);@)]
0P

o For discrete A, it's more natural to use a DNN to model a stochastic

policy: gz(s) = P(als),Va

o Cannot backprop through samples when calculating

—> P(a")
s—» g »P@?)

— P(a®)

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 37/57

Outline

(3 Policy-based Deep RL

o Policy Gradient/Optimization Methods

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 38 /57

Episodic Policy Gradient

o Policy gradient/optimization methods

o For stochastic policy: gz(s) = P(a|s;®),Va (discrete or continuous)
o Do not change the trajectory (but its probability) of an episode

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 39 /57

Episodic Policy Gradient

o Policy gradient/optimization methods
o For stochastic policy: gz(s) = P(a|s;®),Va (discrete or continuous)
o Do not change the trajectory (but its probability) of an episode
o Given an episode, let 7= {(s®),a®, R s(+1)}, be the sequence of
state-action transitions
o Action a¥) sampled from g (s()

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 39 /57

Episodic Policy Gradient

o Policy gradient/optimization methods
o For stochastic policy: gz(s) = P(a|s;®),Va (discrete or continuous)
o Do not change the trajectory (but its probability) of an episode
o Given an episode, let 7= {(s®),a®, R s(+1)}, be the sequence of
state-action transitions
o Action a¥) sampled from g (s()

o Let R(t) =Y, ¥R, our goal:

argm(ngf [R(T);] = argmgxélP(r;@)R(r)

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 39 /57

Policy Gradient

o Let J(®) =Y P(1;P)R(7), we have:

VoJ(®) =VoY . P(1;®)R(7) =Y, VoP(1;P)R(7)
= Y. P(r; @) eI R()
=Y P(1;®@)ValogP(7;®)R(1)

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 40 /57

Policy Gradient

o Let J(®) =Y P(1;P)R(7), we have:

V®J((D) :V‘PZT (T,)R(T) :ZTVCDP(T;(D)R(T)

= L.P(%;)V“’(” SER(7)

=Y .P(7;®)ValogP(7;P)R(T)

=Y P(7: @) Volog[T,P(s"*V[s",a)P(al?|s"); ®)R(7)

= Y. P(1:®)Vo L, [logP< (1) |s al >+logP<a<'>|s<f>;<1>> R(1)
— ¥ P(5;®) X, Vo logP(a)|s; ®)R(7)

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 40 /57

Policy Gradient

o Let J(®) =Y P(1;P)R(7), we have:

Vo (@) = VoY P(T;P)R(1) = L. VoP(T;®)R(7)

=Y. P(%;)‘“"”’ R(7)

=Y.P (T,<I>)V<plogP(T D)R(7)

=Y P(1:®)Volog [, P(s" Vs, a)P(a|s);D)R(7)

— ¥, P(1;®)Va Y, [logP((1) 5(0), <f>)+1ogP(a<'>|s<f);c1>) R(7)
=Y. P(1;®) Y, Vo logP(a|s); ®)R(1)

=Y. P(1;®) Y, VologP(a|s);)Zm”R (,a®) s(+h)
=Y. P(1;®) Y, VologP(a|sW; @) H_ /' RC

o Assumes that the environment is MDP-alike
o But no need for the exact model

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 40 /57

REINFORCE Algorithm

Vol (®) =) P(1:®) qu,logp Z)/R

o REINFORCE (MC estimate): initialize @ arbitrarily, iterate until
converge:

@ Run episodes {t()}; by sampling actions from g(CID)

@ For each time step # in an episode, compute R H() y‘R ir)
@ Update @ using SGD:

D« CI>+an>.7, where

Vol (®) =Y VologP(a)| s)R,

it

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning

41/57

REINFORCE Algorithm

Vol (®) =) P(1:®) qu,logp Z)/R

o REINFORCE (MC estimate): initialize @ arbitrarily, iterate until
converge:

@ Run episodes {t()}; by sampling actions from g(;D)

@ For each time step # in an episode, compute RO = H() y‘R ir)
@ Update @ using SGD:

D« CI>+an>.7, where

Vol (@) = ZV¢logP(a<i”>|s(i*’);CI>)R(i’t).
i
o REINFORCE-style policy gradient: V log prob. of actions x episodic
rewards

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 41 /57

Outline

(3 Policy-based Deep RL

o Variance Reduction and Actor-Critic

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 42 /57

Variance

H
Vq;] KZV(})IOgP ”’S” Z’}’IR”
it t'=t

o YA t}/’R i) is an MC estimate of
0x(s"),a™)) = By oy, [ZM R®)|s0) = 5@ (0) :am)}

o using samples rolled out from single episode

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning

43 /57

Variance

H
Vq;] KZV(})IOgP ”’S” Z’}’IR”

it 1=t

o YA t}/’R i) is an MC estimate of
Qﬂ(Ll 7 lJ)) = {S(I,) a(,/)}/ |:Zt/ 'yt R t/> | S(O) = S(ivt)’a(o) = a(ivt)i|
o using samples rolled out from single episode

o TD vs. MC estimate:

o TD: biased, but low variance
o MC: unbiased, but high variance

o How to lower the variance of vanilla policy gradient algorithm?

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning

43 /57

Variance

H
Vq;] “ZVCDIOgP(”’S” Z’)/R”

it 1=t

° Zt,,t}/’R i) is an MC estimate of
Qr(s),al) = Eqg ay, {Zﬂ ¥'RO|s© =50 a(0) Za(i”)}
o using samples rolled out from single episode

o TD vs. MC estimate:

o TD: biased, but low variance
o MC: unbiased, but high variance

o How to lower the variance of vanilla policy gradient algorithm?
o To reduce the magnitude of ZH(’) th if')

(i)
o Eg., use a smaller y or subtract a baseline from ZH y‘R (i)

o To approximate ,,:,}/‘R i) by a DNN and take advantage of its
generalizability
o To collect more samples

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 43 /57

Baseline |

Vol (P) =< ZVq)logP((@) 5(01) ;@) () ¥ ROV _p)
t/

ll

o b reduces variance without adding bias as long as it’s independent
with actions:

@)Y, VologP(a®|s");®)b
TP(; @)V logP(T;P)b
P(7; @) Yerte b

oL P(T;@)b = Vob =0

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 44 /57

Baseline |

Vol (P) =< ZVq)logP((@) 5(01) ;@) () ¥ ROV _p)
t/

ll

o b reduces variance without adding bias as long as it’s independent
with actions:

@)Y, VologP(a®|s");®)b
TP(; @)V logP(T;P)b
P(7; @) Yerte b

oL P(T;@)b = Vob =0

o Of what value?

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 44 /57

Baseline Il

H
Vo (@) < Y Vo logP(a(”’)|s<”’);CI>)(Z ¥ RO —p)
t'=t

it

o The larger the b better, but Zf,li), ¥’ REY) — b still needs to guide gz to
output good T

° Zf,li)t ¥'RU7) an estimate of O (s alit)

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 45 /57

Baseline Il

H)
Vo (@) = ¥ Vo logP(a™ s @) (Y ¥ ROD —p)
=t

it

The larger the b better, but Zﬁi), ¥’ REY) — b still needs to guide gz to
output good T

f,li)t ¥ RU) an estimate of Qy (s, alt))

b an estimate of V(s(")) = E () aty, | Lo ¥ R[5 =50 | [3]

©

©

©

° ﬁlg ¥ RU1) — b estimates Qr (s, at0)) — v (si1)), the advantage of
7 at state ()

D (it
In REINFORCE: b = 7w X) —gti) e ¥ RU-")

(]

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 45 /57

Function Approximations

HO

V(I)J(CI)) o< ZV(I) log P(a(ivt) ’S(l’t),q))(z ,}/,R(lﬂl,) o b)

it =t

1;12 ¥ RUY) estimates QO (s("),al"")) using rolled-out from single
episode

o Actor-critic: why not use a DNN fp_ (s,a;®) to approximate
Or(s,a),Vs,a?

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 46 /57

Function Approximations

HO
Vo (@) < Y Vo logP(a[s);®)() 'R —b)
it =t
ﬁ[i)t 7' R() estimates Q (s, a(®)) using rolled-out from single
episode
o Actor-critic: why not use a DNN fp_ (s,a;®) to approximate
Or(s,a),Vs,a?
o Baseline b =Y 41 273 7' RU) estimates Vy(s()
o Advantage actor-critic: approximates Vz(s) with fy_(s;)

L p(aV | s)

K —> P(a? | s)
S —»| Shared —> .

)‘| f > V()

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 46 /57

Advantage Actor-Critic (b =fy_(s;0))

Vol (@) = Y Ve logP(al™|s); @ Z}/’R”
it
(i)t}/’/R (") ~ 0 (s @) can be approximated by

11+W ((i,1+1) @)
o No need for fo,

o Bellman expectation equation for stochastic 7:
s) = Zn’(a\s)ZP(s'|s;a)[R(s,a,s’) +YVar(s")], Vs
a s/

o Algorithm (TD): initialize ® and & arbitrarily, iterate until converge:

@ Take an action a from s using g(s;P)

@ Observe s’ and reward R, compute Qr < R+ ¥fy,(s';©)

@ Update fy,:

- 2
© 0 -1V [0r —fv,(5:0)]
@ Update gg:
® < P+ AVglogP(als;P)(Or —fr,(s;0))

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 47 /57

Pitfall: Exploration

o To learn fy, based on value iteration,the agent has to explore enough

o But g, is optimized for exploitation only:
® @+ AVglogP(a|s;®)(Or —fv,(5:0))

o Solution?

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 48 / 57

Pitfall: Exploration

o To learn fy, based on value iteration,the agent has to explore enough

o But g, is optimized for exploitation only:
® @+ AVglogP(a|s;®)(Or —fv,(5:0))
o Solution? To maximize the entropy of gz (s;®) as well

P < @+ AV [logP(a|s; @) (Qx —fr,(s:©))
+uH(a ~ gz (s;P))]

o The larger u, the more exploration

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning

48 /57

Asynchronous Advantage Actor-Critic (A3C)

o TD estimate reduces variance at the cost of bias/divergence

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 49 /57

Asynchronous Advantage Actor-Critic (A3C)

o TD estimate reduces variance at the cost of bias/divergence
o A3C: use asynchronous workers to stabilizes fy, training

o An alternative to experience reply

Global Network
Policy ri(s) V(s)

LS 7 4

Input (s)

N

—
i @ @ —
& y
y y y
Worker 1 Worker 2 Worker 3 Worker n
! ¢ $ ¢

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning

Machine Learning

49 /57

A3C on Labyrinth
o Task: to collect apples (+1 reward) and escape (410 reward)

o End-to-end learning from pixels to policy

o State s() modeled as a recurrent neural network (LSTM)
o To have long-term memory

m@ls.q) Visy.q) m@ls) Vi) - m@lsyy) Vis,,)

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 50 /57

Variance Reduction by Having More Samples

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 51 /57

Variance Reduction by Having More Samples
o Update rule for g, in A3C:

® « &+ AVqplogP(a®|s?;p)AY

where A5 = 05— fv,(5:0) = (R + 1 (57:0)) ~ i (s):)

o Bellman expectation equation holds for multiple time differences:

0x(s".a") =E[RY +yV,(st+D)|sl) =50 al) = ()
— E[R(t) + }/R(’H) + YZV;,;(S(HZ))]
— E[R(t) + },R(t—l—l) + YZR(Z+2) + 73V7r (s(t+3))]
= E[R(t) + YRUAD) 4 2R(42) 4 ABR(H3) 4 .]

o A3C replaces AS? with a K-step lookahead:

A%)FR(I)+YR(I+1)+."+YK71R(I+K71)+y!<fv”(s(1+1<);®) *fv,z(s(

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning

51/57

Variance Reduction by Having More Samples
o Update rule for g, in A3C:

® « &+ AVqplogP(a®|s?;p)AY

where Ay = OF —fy, (s1):0) = (R + i (s:) ~fv, (s'):0)
o Bellman expectation equation holds for multiple time differences:

0x(s".a") =E[RY +yV,(st+D)|sl) =50 al) = ()
= E[R® + YR 4 12V, (s0+2)]
— E[R(’) + yR(l+1) + yzR(’+2) + V3Vn(s(’+3))]

= E[R(t) + YRUAD) 4 2R(42) 4 ABR(H3) 4 .]
o A3C replaces AS? with a K-step lookahead:

Afré) RO pyRUFD o KIRUHK=1) | oK p (5(14K). @) *fv,[(s(’);®)

o Update of ® lags K time steps behind the current action

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 51 /57

Generalized Advantage Estimation (GAE)

A%):R(t)_H/R(f“)+..-+yK71R(’+K71)+YKfV,[(1K) @) — fy, (s

o Define TD error at time #: 8 = —HOCVn((1), 0) fV,,(
o We haveAg() =680 4 yst+D +---+}’K I§(rHk=1)

o GAE [8]: let AS,’) be the exponential moving average ofﬁgt),ﬁg),m:
AV AV 4240 42280 4
=80 A8 4980 H) £ A2(81) 480+ 4 250+2)) 4
— 80 4 ALl 4 %5(%2) e
oc §W 4+ Ay8HD 1 (Ay)280+2) 4

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning

52/57

Generalized Advantage Estimation (GAE)

A%):R(t)_H/R(f“)+..-+yK71R(’+K71)+YKfV,[(1K) @) — fy, (s

o Define TD error at time #: 8 = —HOCVn((1), 0) fV,,(

o We haveA?zS’ + 8D +---+yK 1§(+K=1)
A0 30

o GAE [8]: let AS,’) be the exponential moving average of A}’ ,A;",---:

14

— 1 50 + AY §G+1) 4 /12725 (1+2) 4
) (AY)ZS(HZ)
o Biased, but with much lower variance
o 80)'s can have lower magnitudes when fy_ is good enough

o In TD: AY « 60 4 Ay50+) 4. 4 (Ay)K§U+E)

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning

5(t3+1)—1—12(5(')+}’5('+1)+725(I+2))+

52 /57

Policy Optimization vs. Policy/Value Iteration

o Policy optimization:

o Policy/value-iteration-based methods (e.g., DQN, DDPG):

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 53 /57

Policy Optimization vs. Policy/Value Iteration

o Policy optimization:
o Optimize policy “directly”

o Policy/value-iteration-based methods (e.g., DQN, DDPG):
o Optimize policy “indirectly” (via Q/V exploiting Bellman equations)

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 53 /57

Policy Optimization vs. Policy/Value Iteration

o Policy optimization:
o Optimize policy “directly”
o More compatible with auxiliary objectives & rich NN architectures
(e.g., RNN)

o Policy/value-iteration-based methods (e.g., DQN, DDPG):

o Optimize policy “indirectly” (via Q/V exploiting Bellman equations)
o More compatible with different exploration strategies

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 53 /57

Policy Optimization vs. Policy/Value Iteration

o Policy optimization:
o Optimize policy “directly”
o More compatible with auxiliary objectives & rich NN architectures
(e.g., RNN)
o More likely to work with different tasks/settings
o Policy/value-iteration-based methods (e.g., DQN, DDPG):
o Optimize policy “indirectly” (via Q/V exploiting Bellman equations)
o More compatible with different exploration strategies
o Sensitive to task/settings; but more sample-efficient when working

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 53 /57

Reference |

[1]

]

3]

Vivek F Farias and Benjamin Van Roy.

Tetris: A study of randomized constraint sampling.

In Probabilistic and Randomized Methods for Design Under
Uncertainty, pages 189-201. Springer, 2006.

Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob
Menick, lan Osband, Alex Graves, Vlad Mnih, Remi Munos, Demis
Hassabis, Olivier Pietquin, et al.

Noisy networks for exploration.

arXiv preprint arXiv:1706.10295, 2017.

Evan Greensmith, Peter L Bartlett, and Jonathan Baxter.

Variance reduction techniques for gradient estimates in reinforcement
learning.

Journal of Machine Learning Research, 5(Nov):1471-1530, 2004.

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 54 /57

Reference |l

[4]

[5]

[6]

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra.
Continuous control with deep reinforcement learning.

arXiv preprint arXiv:1509.02971, 2015.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller,
Andreas K Fidjeland, Georg Ostrovski, et al.

Human-level control through deep reinforcement learning.

Nature, 518(7540):529-533, 2015.

Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory
Fearon, Alessandro De Maria, Vedavyas Panneershelvam, Mustafa
Suleyman, Charles Beattie, Stig Petersen, et al.

Massively parallel methods for deep reinforcement learning.

arXiv preprint arXiv:1507.04296, 2015.

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 55 /57

Reference Il

[7] Tom Schaul, John Quan, loannis Antonoglou, and David Silver.
Prioritized experience replay.
arXiv preprint arXiv:1511.05952, 2015.

[8] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and
Pieter Abbeel.
High-dimensional continuous control using generalized advantage
estimation.
arXiv preprint arXiv:1506.02438, 2015.

[9] Hado Van Hasselt, Arthur Guez, and David Silver.
Deep reinforcement learning with double g-learning.
In AAAI, pages 2094-2100, 2016.

[10] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc
Lanctot, and Nando De Freitas.

Dueling network architectures for deep reinforcement learning.
arXiv preprint arXiv:1511.06581, 2015.

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 56 /57

Reference IV

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 57 /57

	Introduction
	Value-based Deep RL
	Deep Q-Network
	Improvements

	Policy-based Deep RL
	Pathwise Derivative Methods
	Policy Gradient/Optimization Methods
	Variance Reduction and Actor-Critic

