
Deep Reinforcement Learning

Shan-Hung Wu
shwu@cs.nthu.edu.tw

Department of Computer Science,
National Tsing Hua University, Taiwan

Machine Learning

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 1 / 57



Outline

1 Introduction

2 Value-based Deep RL
Deep Q-Network
Improvements

3 Policy-based Deep RL
Pathwise Derivative Methods
Policy Gradient/Optimization Methods
Variance Reduction and Actor-Critic

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 2 / 57



Outline

1 Introduction

2 Value-based Deep RL
Deep Q-Network
Improvements

3 Policy-based Deep RL
Pathwise Derivative Methods
Policy Gradient/Optimization Methods
Variance Reduction and Actor-Critic

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 3 / 57



(Tabular) RL
Q-learning:
Q∗(s,a)← Q∗(s,a)+η [(R(s,a,s′)+ γ maxa′ Q∗(s′,a′))−Q∗(s,a)]
SARSA:
Qπ(s,a)← Qπ(s,a)+η [(R(s,a,s′)+ γQπ(s′,π(s′)))−Qπ(s,a)]

In realistic environments with large state/action space, requires a large
table to store Q∗/Qπ values

Maze: O(101), Tetris: O(1060), Atari: O(1016922) pixels
Continuous states/actions?

May not be able to visit all (s,a)’s in limited training time

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 4 / 57



(Tabular) RL
Q-learning:
Q∗(s,a)← Q∗(s,a)+η [(R(s,a,s′)+ γ maxa′ Q∗(s′,a′))−Q∗(s,a)]
SARSA:
Qπ(s,a)← Qπ(s,a)+η [(R(s,a,s′)+ γQπ(s′,π(s′)))−Qπ(s,a)]
In realistic environments with large state/action space, requires a large
table to store Q∗/Qπ values

Maze: O(101), Tetris: O(1060), Atari: O(1016922) pixels
Continuous states/actions?

May not be able to visit all (s,a)’s in limited training time

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 4 / 57



Generalizing across States
Idea: to learn a function fQ∗(s,a;Θ) (resp. fQπ

) that approximates
Q∗(s,a) (resp. Qπ(s,a)), ∀s,a

Trained by a small number (millions) of samples
Generalizes to unseen states/actions
Smaller Θ to store

E.g., in Q-learning, Q∗ should satisfy Bellman optimality equation:

Q∗(s,a)←∑
s′

P(s′|s;a)[R(s,a,s′)+ γ max
a′

Q∗(s′,a′)],∀s,a

Algorithm (TD estimate): initialize Θ arbitrarily, iterate until
converge:

1 Take action a from s using some exploration policy π ′ derived from fQ∗
(e.g., ε-greedy)

2 Observe s′ and reward R(s,a,s′), update Θ using SGD:

Θ←Θ−η∇ΘC, where

C(Θ) =

[
R(s,a,s′)+ γ max

a′
fQ∗(s′,a′;Θ)− fQ∗(s,a;Θ)

]2

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 5 / 57



Generalizing across States
Idea: to learn a function fQ∗(s,a;Θ) (resp. fQπ

) that approximates
Q∗(s,a) (resp. Qπ(s,a)), ∀s,a

Trained by a small number (millions) of samples
Generalizes to unseen states/actions
Smaller Θ to store

E.g., in Q-learning, Q∗ should satisfy Bellman optimality equation:

Q∗(s,a)←∑
s′

P(s′|s;a)[R(s,a,s′)+ γ max
a′

Q∗(s′,a′)],∀s,a

Algorithm (TD estimate): initialize Θ arbitrarily, iterate until
converge:

1 Take action a from s using some exploration policy π ′ derived from fQ∗
(e.g., ε-greedy)

2 Observe s′ and reward R(s,a,s′), update Θ using SGD:

Θ←Θ−η∇ΘC, where

C(Θ) =

[
R(s,a,s′)+ γ max

a′
fQ∗(s′,a′;Θ)− fQ∗(s,a;Θ)

]2

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 5 / 57



Works If with Careful Feature Engineering

Tetris: [1]
States: O(1060) configurations
Actions: rotation and translation to
falling piece

f (s,a;Θ) and C(Θ) modeled as an
approximated linear programming
problem
Hand-crafted features (22 in total)

Why not use a deep neural network to
represent QΘ?

One model for different tasks
Automatically learned features

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 6 / 57



Works If with Careful Feature Engineering

Tetris: [1]
States: O(1060) configurations
Actions: rotation and translation to
falling piece

f (s,a;Θ) and C(Θ) modeled as an
approximated linear programming
problem
Hand-crafted features (22 in total)
Why not use a deep neural network to
represent QΘ?

One model for different tasks
Automatically learned features

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 6 / 57



Deep RL
Value-based: use DNNs to represent value/Q-function

E.g., DQN
π∗(s)← argmaxa Q∗(s,a) only feasible if actions are discrete

Policy-based: use DNNs to represent policy π

E.g., DDPG, Action-Critic, A3C, TRPO, PPO
Model-based: deep RL when MDP/env. model is known

E.g., AlphaGo

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 7 / 57



Outline

1 Introduction

2 Value-based Deep RL
Deep Q-Network
Improvements

3 Policy-based Deep RL
Pathwise Derivative Methods
Policy Gradient/Optimization Methods
Variance Reduction and Actor-Critic

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 8 / 57



DNNs for Q∗

Use a DNN fQ∗(s,a;Θ) to represent Q∗(s,a)

Algorithm (TD): initialize Θ arbitrarily, iterate until converge:
1 Take action a from s using some exploration policy π ′ derived from fQ∗

(e.g., ε-greedy)
2 Observe s′ and reward R(s,a,s′), update Θ using SGD:

Θ←Θ−η∇ΘC, where

C(Θ) =

[
R(s,a,s′)+ γ max

a′
fQ∗(s′,a′;Θ)− fQ∗(s,a;Θ)

]2

However, diverges due to
Samples are correlated (violates i.i.d. assumption of training examples)
Non-stationary target (fQ∗(s′,a′) changes as Θ is updated for current a)

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 9 / 57



DNNs for Q∗

Use a DNN fQ∗(s,a;Θ) to represent Q∗(s,a)

Algorithm (TD): initialize Θ arbitrarily, iterate until converge:
1 Take action a from s using some exploration policy π ′ derived from fQ∗

(e.g., ε-greedy)
2 Observe s′ and reward R(s,a,s′), update Θ using SGD:

Θ←Θ−η∇ΘC, where

C(Θ) =

[
R(s,a,s′)+ γ max

a′
fQ∗(s′,a′;Θ)− fQ∗(s,a;Θ)

]2

However, diverges due to
Samples are correlated (violates i.i.d. assumption of training examples)
Non-stationary target (fQ∗(s′,a′) changes as Θ is updated for current a)

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 9 / 57



DNNs for Q∗

Use a DNN fQ∗(s,a;Θ) to represent Q∗(s,a)

Algorithm (TD): initialize Θ arbitrarily, iterate until converge:
1 Take action a from s using some exploration policy π ′ derived from fQ∗

(e.g., ε-greedy)
2 Observe s′ and reward R(s,a,s′), update Θ using SGD:

Θ←Θ−η∇ΘC, where

C(Θ) =

[
R(s,a,s′)+ γ max

a′
fQ∗(s′,a′;Θ)− fQ∗(s,a;Θ)

]2

However, diverges due to
Samples are correlated (violates i.i.d. assumption of training examples)
Non-stationary target (fQ∗(s′,a′) changes as Θ is updated for current a)

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 9 / 57



Outline

1 Introduction

2 Value-based Deep RL
Deep Q-Network
Improvements

3 Policy-based Deep RL
Pathwise Derivative Methods
Policy Gradient/Optimization Methods
Variance Reduction and Actor-Critic

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 10 / 57



Deep Q-Network (DQN)

Naive TD algorithm diverges due to:
Samples are correlated
Non-stationary target

Stabilization techniques proposed by (Nature) DQN [5]:
Experience replay
Delayed target network

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 11 / 57



Deep Q-Network (DQN)

Naive TD algorithm diverges due to:
Samples are correlated
Non-stationary target

Stabilization techniques proposed by (Nature) DQN [5]:
Experience replay
Delayed target network

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 11 / 57



Experience Replay

Use a replay memory D to store recently seen transitions (s,a,r,s′)’s
Sample a mini-batch from D and update Θ

Algorithm (TD): initialize Θ arbitrarily, iterate until converge:
1 Take action a from s using π ′ derived from fQ∗ (e.g., ε-greedy)
2 Observe s′ and reward R, add (s,a,R,s′) to D
3 Sample a mini-batch of (s(i),a(i),R(i),s(i+1))’s from D, do:

Θ←Θ−η∇ΘC, where

C(Θ) = ∑
i

[
R(i)+ γ max

a′
fQ∗(s(i+1),a′;Θ)− fQ∗(s(i),a(i);Θ)

]2

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 12 / 57



Experience Replay

Use a replay memory D to store recently seen transitions (s,a,r,s′)’s
Sample a mini-batch from D and update Θ

Algorithm (TD): initialize Θ arbitrarily, iterate until converge:
1 Take action a from s using π ′ derived from fQ∗ (e.g., ε-greedy)
2 Observe s′ and reward R, add (s,a,R,s′) to D
3 Sample a mini-batch of (s(i),a(i),R(i),s(i+1))’s from D, do:

Θ←Θ−η∇ΘC, where

C(Θ) = ∑
i

[
R(i)+ γ max

a′
fQ∗(s(i+1),a′;Θ)− fQ∗(s(i),a(i);Θ)

]2

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 12 / 57



Delayed Target Network

To avoid chasing a moving target, set the target value at network
output parametrized by old Θ−

Algorithm (TD): initialize Θ arbitrarily and Θ− = Θ, iterate until
converge:

1 Take action a from s using π ′ derived from fQ∗ (e.g., ε-greedy)
2 Observe s′ and reward R, add (s,a,R,s′) to D
3 Sample a mini-batch of (s(i),a(i),R(i),s(i+1))’s from D, do:

Θ←Θ−η∇ΘC, where

C(Θ) = ∑
i

[
R(i)+ γ max

a′
fQ∗(s(i+1),a′;Θ

−)− fQ∗(s(i),a(i);Θ)

]2

4 Update Θ−←Θ every K iterations

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 13 / 57



Delayed Target Network

To avoid chasing a moving target, set the target value at network
output parametrized by old Θ−

Algorithm (TD): initialize Θ arbitrarily and Θ− = Θ, iterate until
converge:

1 Take action a from s using π ′ derived from fQ∗ (e.g., ε-greedy)
2 Observe s′ and reward R, add (s,a,R,s′) to D
3 Sample a mini-batch of (s(i),a(i),R(i),s(i+1))’s from D, do:

Θ←Θ−η∇ΘC, where

C(Θ) = ∑
i

[
R(i)+ γ max

a′
fQ∗(s(i+1),a′;Θ

−)− fQ∗(s(i),a(i);Θ)

]2

4 Update Θ−←Θ every K iterations

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 13 / 57



Other Tricks

Optimization techniques matter in deep RL
Optimization error may lead to wrong traditions (trajectory)
And bad final policy

Reward clipping for better conditioned gradients
Can’t differentiate between small and large rewards
Better use batch normalization

Use RMSProp instead of vanilla SGD for adaptive learning rate

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 14 / 57



Other Tricks

Optimization techniques matter in deep RL
Optimization error may lead to wrong traditions (trajectory)
And bad final policy

Reward clipping for better conditioned gradients
Can’t differentiate between small and large rewards
Better use batch normalization

Use RMSProp instead of vanilla SGD for adaptive learning rate

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 14 / 57



DQN on Atari

49 Atari 2600 games
States: raw pixels
Actions: 18 joystick/button positions
Rewards: changes in score

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 15 / 57



Network Architecture

End-to-end from raw pixels to Q∗(s,a)
CNN + fully connected layers
Input: state s a stack of raw pixels from last 4 frames
Output: 18 Q∗(s,a)’s (one for each action)

Network architecture is fixed across all games

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 16 / 57



Network Architecture

End-to-end from raw pixels to Q∗(s,a)
CNN + fully connected layers
Input: state s a stack of raw pixels from last 4 frames
Output: 18 Q∗(s,a)’s (one for each action)

Network architecture is fixed across all games

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 16 / 57



Results

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 17 / 57



Effect of Stability Techniques

Delayed target network is less useful for large networks

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 18 / 57



Predicted Q∗ Values for Pong

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 19 / 57



Outline

1 Introduction

2 Value-based Deep RL
Deep Q-Network
Improvements

3 Policy-based Deep RL
Pathwise Derivative Methods
Policy Gradient/Optimization Methods
Variance Reduction and Actor-Critic

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 20 / 57



Improvements since DQN

Stabilization:
Double DQN [9]
Prioritized replay [7]

Modeling additional prior:
Duelling network [10]

Exploration:
NoisyNet [2]

Large-scale implementation

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 21 / 57



Double DQN I
DQN update rule: Θ←Θ−η∇ΘC, where

C(Θ) = ∑
i

[
R(i)+ γmax

a′
fQ∗(s(i+1),a′;Θ

−)− fQ∗(s(i),a(i);Θ)

]2

There is an upward bias in maxa′ fQ∗(s(i+1),a′;Θ−)

fQ∗(s(i+1),a′;Θ−) with high positive error is preferred

At each step, the positive error is added to fQ∗(s(i),a(i);Θ)

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 22 / 57



Double DQN II
Double DQN (DDQN) [9]:

C(Θ) = ∑
i

[
R(i)+ γfQ∗(s(i+1),argmax

a′
fQ∗(s(i+1),a′;Θ);Θ

−)− fQ∗(s(i),a(i);Θ)

]2

Uses Θ to select the best action
Uses Θ− to evaluate the best action

Random (unbiased) error added to fQ∗(s(i),a(i);Θ) at each step

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 23 / 57



Prioritized Replay [7]
Not all (s,a,R,s′)’s from D are equally helpful to training fQ∗
Sample (s,a,R,s)’s with probability proportional to “surprise” in terms
of Bellman equation:

|R+ γ max
a′

fQ∗(s′,a′;Θ
−)− fQ∗(s,a;Θ)|

Rank-based alternative: D a priority queue

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 24 / 57



Dueling Network [10]
Q∗(s,a) = V∗(s)+A∗(s,a)

A∗(s,a) the advantage function of a

Idea: to model this prior and learn fQ∗(s,a) = fV∗(s)+ fA∗(s,a)
Not well-defined: fQ∗(s,a) = (fV∗(s)+ c)+(fA∗(s,a)− c) for any c

Dueling DQN: fQ∗(s,a) = fV∗(s)+(fA∗(s,a)−maxa′ fA∗(s,a′))
The best action a∗ has zero advantage and fQ∗(s,a∗) = fV∗(s)

Stabilized version: fQ∗(s,a) = fV∗(s)+(fA∗(s,a)− 1
|A| ∑a′ fA∗(s,a′))

fV∗ and fA∗ are off-target (by a constant) but fA∗ changes more slowly

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 25 / 57



Dueling Network [10]
Q∗(s,a) = V∗(s)+A∗(s,a)

A∗(s,a) the advantage function of a
Idea: to model this prior and learn fQ∗(s,a) = fV∗(s)+ fA∗(s,a)

Not well-defined: fQ∗(s,a) = (fV∗(s)+ c)+(fA∗(s,a)− c) for any c
Dueling DQN: fQ∗(s,a) = fV∗(s)+(fA∗(s,a)−maxa′ fA∗(s,a′))

The best action a∗ has zero advantage and fQ∗(s,a∗) = fV∗(s)
Stabilized version: fQ∗(s,a) = fV∗(s)+(fA∗(s,a)− 1

|A| ∑a′ fA∗(s,a′))
fV∗ and fA∗ are off-target (by a constant) but fA∗ changes more slowly

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 25 / 57



Dueling Network [10]
Q∗(s,a) = V∗(s)+A∗(s,a)

A∗(s,a) the advantage function of a
Idea: to model this prior and learn fQ∗(s,a) = fV∗(s)+ fA∗(s,a)

Not well-defined: fQ∗(s,a) = (fV∗(s)+ c)+(fA∗(s,a)− c) for any c
Dueling DQN: fQ∗(s,a) = fV∗(s)+(fA∗(s,a)−maxa′ fA∗(s,a′))

The best action a∗ has zero advantage and fQ∗(s,a∗) = fV∗(s)

Stabilized version: fQ∗(s,a) = fV∗(s)+(fA∗(s,a)− 1
|A| ∑a′ fA∗(s,a′))

fV∗ and fA∗ are off-target (by a constant) but fA∗ changes more slowly

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 25 / 57



Dueling Network [10]
Q∗(s,a) = V∗(s)+A∗(s,a)

A∗(s,a) the advantage function of a
Idea: to model this prior and learn fQ∗(s,a) = fV∗(s)+ fA∗(s,a)

Not well-defined: fQ∗(s,a) = (fV∗(s)+ c)+(fA∗(s,a)− c) for any c
Dueling DQN: fQ∗(s,a) = fV∗(s)+(fA∗(s,a)−maxa′ fA∗(s,a′))

The best action a∗ has zero advantage and fQ∗(s,a∗) = fV∗(s)
Stabilized version: fQ∗(s,a) = fV∗(s)+(fA∗(s,a)− 1

|A| ∑a′ fA∗(s,a′))
fV∗ and fA∗ are off-target (by a constant) but fA∗ changes more slowly

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 25 / 57



Improvement over Prioritized DDQN

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 26 / 57



See, Attend, and Drive

Atari game: Enduro
Attention mask: ∂ fV∗

∂ s (s) and ∂ fA∗
∂ s (s)

fQ∗(s,a) = fV∗(s)+ fA∗(s,a)
fV∗ pays attention to the road
fA∗ pays attention only when there’s obstacles in front

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 27 / 57



NoisyNet [2]

Instead of using using ε-greedy for exploration, add noise to Θ

The level of noise is learned by SGD along with Θ

Improvement over Dueling DQN:

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 28 / 57



Scaling Up DQN on Single Machine
Exploits multi-threading of modern CPUs/GPUs
Run/train multiple agents in parallel (one per thread/GPU)

Θ shared between threads in main memory
Data-parallelism

Parallelism decorrelates samples
Alternative to experience replay

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 29 / 57



Scaling Up DQN on Single Machine
Exploits multi-threading of modern CPUs/GPUs
Run/train multiple agents in parallel (one per thread/GPU)

Θ shared between threads in main memory
Data-parallelism

Parallelism decorrelates samples
Alternative to experience replay

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 29 / 57



Scaling Out DQN with Gorila [6]
Distributed system architecture for large-scale RL
10x faster than Nature DQN
Applied to recommender systems in Google

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 30 / 57



Outline

1 Introduction

2 Value-based Deep RL
Deep Q-Network
Improvements

3 Policy-based Deep RL
Pathwise Derivative Methods
Policy Gradient/Optimization Methods
Variance Reduction and Actor-Critic

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 31 / 57



Why Policy Network?
Policy-based deep RL: use a DNN gπ(s;Φ) to approximate π(s)
Why?

In DQN (or any method based on value/policy iteration), one needs to
solve

π
∗ = argmax

a′
Q∗(s,a′) or π̂ = argmax

a′
Qπ(s,a′)

Not applicable to continuous action space A common in, e.g., robotics

π may be easier to learn than Q or V

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 32 / 57



Why Policy Network?
Policy-based deep RL: use a DNN gπ(s;Φ) to approximate π(s)
Why?
In DQN (or any method based on value/policy iteration), one needs to
solve

π
∗ = argmax

a′
Q∗(s,a′) or π̂ = argmax

a′
Qπ(s,a′)

Not applicable to continuous action space A common in, e.g., robotics

π may be easier to learn than Q or V

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 32 / 57



Why Policy Network?
Policy-based deep RL: use a DNN gπ(s;Φ) to approximate π(s)
Why?
In DQN (or any method based on value/policy iteration), one needs to
solve

π
∗ = argmax

a′
Q∗(s,a′) or π̂ = argmax

a′
Qπ(s,a′)

Not applicable to continuous action space A common in, e.g., robotics

π may be easier to learn than Q or V

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 32 / 57



Modeling π

π can be either
deterministic: gπ(s;Φ) = a, or
stochastic: gπ(s;Φ) = P(a|s)

Pathwise derivative methods
For deterministic π and continuous A

To find Φ such that gπ(s;Φ) gives action a maximizing Q∗(s,a)
Changes the trajectory of an episode in the graph of accumulative
rewards

Policy gradient/optimization methods
For stochastic π

To find Φ such that gives trajectory of high accumulative rewards
Do not change the trajectory (but its probability) of an episode

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 33 / 57



Modeling π

π can be either
deterministic: gπ(s;Φ) = a, or
stochastic: gπ(s;Φ) = P(a|s)

Pathwise derivative methods
For deterministic π and continuous A
To find Φ such that gπ(s;Φ) gives action a maximizing Q∗(s,a)
Changes the trajectory of an episode in the graph of accumulative
rewards

Policy gradient/optimization methods
For stochastic π

To find Φ such that gives trajectory of high accumulative rewards
Do not change the trajectory (but its probability) of an episode

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 33 / 57



Modeling π

π can be either
deterministic: gπ(s;Φ) = a, or
stochastic: gπ(s;Φ) = P(a|s)

Pathwise derivative methods
For deterministic π and continuous A
To find Φ such that gπ(s;Φ) gives action a maximizing Q∗(s,a)
Changes the trajectory of an episode in the graph of accumulative
rewards

Policy gradient/optimization methods
For stochastic π

To find Φ such that gives trajectory of high accumulative rewards
Do not change the trajectory (but its probability) of an episode

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 33 / 57



Outline

1 Introduction

2 Value-based Deep RL
Deep Q-Network
Improvements

3 Policy-based Deep RL
Pathwise Derivative Methods
Policy Gradient/Optimization Methods
Variance Reduction and Actor-Critic

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 34 / 57



Deep Deterministic Policy Gradient (DDPG) [4]

Based on DQN
Q-learning is off-policy and works with changing exploration strategies

Deterministic policy: gπ∗(s;Φ) = a ∈ R

Goal: to find Φ maximizing Es [fQ∗(s,a;Θ)], where a = gπ∗(s;Φ)

SGD update rule:

Φ ←Φ+η
∂Es[fQ∗ (s,a;Θ)]

∂Φ

= Φ+ηEs

[
∂ fQ∗
∂a (s,a;Θ) · ∂gπ∗

∂Φ
(s;Φ)

]

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 35 / 57



Deep Deterministic Policy Gradient (DDPG) [4]

Based on DQN
Q-learning is off-policy and works with changing exploration strategies

Deterministic policy: gπ∗(s;Φ) = a ∈ R
Goal: to find Φ maximizing Es [fQ∗(s,a;Θ)], where a = gπ∗(s;Φ)

SGD update rule:

Φ ←Φ+η
∂Es[fQ∗ (s,a;Θ)]

∂Φ

= Φ+ηEs

[
∂ fQ∗
∂a (s,a;Θ) · ∂gπ∗

∂Φ
(s;Φ)

]
Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 35 / 57



DDPG Algorithm (TD)

Initialize Θ and Φ arbitrarily, set Θ− = Θ and Φ− = Φ, iterate until
converge:

1 Take action a = gπ∗(s;Φ)+z from s, where z is a random noise for
exploration

2 Observe s′ and reward R, add (s,a,R,s′) to D
3 Sample a mini-batch of (s(i),a(i),R(i),s(i+1))’s from D
4 Update Θ:

Θ←Θ−η∇ΘC, where

C(Θ) = ∑
i

[
R(i)+ γfQ∗(s(i+1),gπ∗(s;Φ

−);Θ
−)− fQ∗(s(i),a(i);Θ)

]2

5 Update Φ:

Φ←Φ+λ ∑
i

∂ fQ∗
∂a

(s(i),gπ∗(s(i);Φ);Θ) · ∂gπ∗

∂Φ
(s(i);Φ)

6 Update Θ−← τΘ+(1− τ)Θ− and Φ−← τΦ+(1− τ)Φ−

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 36 / 57



Limitations

Only applicable to continuous action space A

Cannot backprop through samples when calculating
∂Es[fQ∗ (s,gπ∗ (s;Φ);Θ)]

∂Φ

For discrete A, it’s more natural to use a DNN to model a stochastic
policy: gπ(s) = P(a|s),∀a

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 37 / 57



Outline

1 Introduction

2 Value-based Deep RL
Deep Q-Network
Improvements

3 Policy-based Deep RL
Pathwise Derivative Methods
Policy Gradient/Optimization Methods
Variance Reduction and Actor-Critic

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 38 / 57



Episodic Policy Gradient
Policy gradient/optimization methods

For stochastic policy: gπ(s) = P(a|s;Φ),∀a (discrete or continuous)
Do not change the trajectory (but its probability) of an episode

Given an episode, let τ = {(s(t),a(t),R(t),s(t+1))}t be the sequence of
state-action transitions

Action a(t) sampled from gπ(s(t))

Let R(τ) = ∑t γ tR(t), our goal:

argmax
Φ

Eτ [R(τ);Φ] = argmax
Φ

∑
τ

P(τ;Φ)R(τ)

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 39 / 57



Episodic Policy Gradient
Policy gradient/optimization methods

For stochastic policy: gπ(s) = P(a|s;Φ),∀a (discrete or continuous)
Do not change the trajectory (but its probability) of an episode

Given an episode, let τ = {(s(t),a(t),R(t),s(t+1))}t be the sequence of
state-action transitions

Action a(t) sampled from gπ(s(t))

Let R(τ) = ∑t γ tR(t), our goal:

argmax
Φ

Eτ [R(τ);Φ] = argmax
Φ

∑
τ

P(τ;Φ)R(τ)

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 39 / 57



Episodic Policy Gradient
Policy gradient/optimization methods

For stochastic policy: gπ(s) = P(a|s;Φ),∀a (discrete or continuous)
Do not change the trajectory (but its probability) of an episode

Given an episode, let τ = {(s(t),a(t),R(t),s(t+1))}t be the sequence of
state-action transitions

Action a(t) sampled from gπ(s(t))

Let R(τ) = ∑t γ tR(t), our goal:

argmax
Φ

Eτ [R(τ);Φ] = argmax
Φ

∑
τ

P(τ;Φ)R(τ)

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 39 / 57



Policy Gradient

Let J(Φ) = ∑τ P(τ;Φ)R(τ), we have:

∇ΦJ(Φ) = ∇Φ ∑τ P(τ;Φ)R(τ) = ∑τ ∇ΦP(τ;Φ)R(τ)
= ∑τ P(τ;Φ)∇ΦP(τ;Φ)

P(τ;Φ) R(τ)
= ∑τ P(τ;Φ)∇ΦlogP(τ;Φ)R(τ)

= ∑τ P(τ;Φ)∇Φlog∏t P(s(t+1)|s(t),a(t))P(a(t)|s(t);Φ)R(τ)

= ∑τ P(τ;Φ)∇Φ ∑t

[
logP(s(t+1)|s(t),a(t))+ logP(a(t)|s(t);Φ)

]
R(τ)

= ∑τ P(τ;Φ)∑t ∇Φ logP(a(t)|s(t);Φ)R(τ)
= ∑τ P(τ;Φ)∑t ∇Φ logP(a(t)|s(t);Φ)∑t′ γ

t′R(t′)(s(t),a(t),s(t+1))

= ∑τ P(τ;Φ)∑t ∇Φ logP(a(t)|s(t);Φ)∑H
t′=t γ t′R(t′)

Assumes that the environment is MDP-alike
But no need for the exact model

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 40 / 57



Policy Gradient

Let J(Φ) = ∑τ P(τ;Φ)R(τ), we have:

∇ΦJ(Φ) = ∇Φ ∑τ P(τ;Φ)R(τ) = ∑τ ∇ΦP(τ;Φ)R(τ)
= ∑τ P(τ;Φ)∇ΦP(τ;Φ)

P(τ;Φ) R(τ)
= ∑τ P(τ;Φ)∇ΦlogP(τ;Φ)R(τ)
= ∑τ P(τ;Φ)∇Φlog∏t P(s(t+1)|s(t),a(t))P(a(t)|s(t);Φ)R(τ)

= ∑τ P(τ;Φ)∇Φ ∑t

[
logP(s(t+1)|s(t),a(t))+ logP(a(t)|s(t);Φ)

]
R(τ)

= ∑τ P(τ;Φ)∑t ∇Φ logP(a(t)|s(t);Φ)R(τ)

= ∑τ P(τ;Φ)∑t ∇Φ logP(a(t)|s(t);Φ)∑t′ γ
t′R(t′)(s(t),a(t),s(t+1))

= ∑τ P(τ;Φ)∑t ∇Φ logP(a(t)|s(t);Φ)∑H
t′=t γ t′R(t′)

Assumes that the environment is MDP-alike
But no need for the exact model

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 40 / 57



Policy Gradient

Let J(Φ) = ∑τ P(τ;Φ)R(τ), we have:

∇ΦJ(Φ) = ∇Φ ∑τ P(τ;Φ)R(τ) = ∑τ ∇ΦP(τ;Φ)R(τ)
= ∑τ P(τ;Φ)∇ΦP(τ;Φ)

P(τ;Φ) R(τ)
= ∑τ P(τ;Φ)∇ΦlogP(τ;Φ)R(τ)
= ∑τ P(τ;Φ)∇Φlog∏t P(s(t+1)|s(t),a(t))P(a(t)|s(t);Φ)R(τ)

= ∑τ P(τ;Φ)∇Φ ∑t

[
logP(s(t+1)|s(t),a(t))+ logP(a(t)|s(t);Φ)

]
R(τ)

= ∑τ P(τ;Φ)∑t ∇Φ logP(a(t)|s(t);Φ)R(τ)
= ∑τ P(τ;Φ)∑t ∇Φ logP(a(t)|s(t);Φ)∑t′ γ

t′R(t′)(s(t),a(t),s(t+1))

= ∑τ P(τ;Φ)∑t ∇Φ logP(a(t)|s(t);Φ)∑H
t′=t γ t′R(t′)

Assumes that the environment is MDP-alike
But no need for the exact model

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 40 / 57



REINFORCE Algorithm

∇ΦJ(Φ) = ∑
τ

P(τ;Φ)∑
t

∇Φ logP(a(t)|s(t);Φ)
H

∑
t′=t

γ
t′R(t′)

REINFORCE (MC estimate): initialize Φ arbitrarily, iterate until
converge:

1 Run episodes {τ(i)}i by sampling actions from g(· ;Φ)

2 For each time step t in an episode, compute R(i,t) = ∑
H(i)

t′=t γ t′R(i,t′)

3 Update Φ using SGD:

Φ←Φ+η∇ΦĴ, where

∇ΦĴ(Φ) = ∑
i,t

∇Φ logP(a(i,t)|s(i,t);Φ)R(i,t).

REINFORCE-style policy gradient: ∇ log prob. of actions × episodic
rewards

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 41 / 57



REINFORCE Algorithm

∇ΦJ(Φ) = ∑
τ

P(τ;Φ)∑
t

∇Φ logP(a(t)|s(t);Φ)
H

∑
t′=t

γ
t′R(t′)

REINFORCE (MC estimate): initialize Φ arbitrarily, iterate until
converge:

1 Run episodes {τ(i)}i by sampling actions from g(· ;Φ)

2 For each time step t in an episode, compute R(i,t) = ∑
H(i)

t′=t γ t′R(i,t′)

3 Update Φ using SGD:

Φ←Φ+η∇ΦĴ, where

∇ΦĴ(Φ) = ∑
i,t

∇Φ logP(a(i,t)|s(i,t);Φ)R(i,t).

REINFORCE-style policy gradient: ∇ log prob. of actions × episodic
rewards

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 41 / 57



Outline

1 Introduction

2 Value-based Deep RL
Deep Q-Network
Improvements

3 Policy-based Deep RL
Pathwise Derivative Methods
Policy Gradient/Optimization Methods
Variance Reduction and Actor-Critic

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 42 / 57



Variance

∇ΦJ(Φ) ∝ ∑
i,t

∇Φ logP(a(i,t)|s(i,t);Φ)
H(i)

∑
t′=t

γ
t′R(i,t′)

∑
H(i)

t′=t γ t′R(i,t′) is an MC estimate of

Qπ(s(i,t),a(i,t)) = E{s(t′),a(t′)}t′

[
∑t′ γ

t′R(t′)|s(0) = s(i,t),a(0) = a(i,t)
]

using samples rolled out from single episode

TD vs. MC estimate:
TD: biased, but low variance
MC: unbiased, but high variance

How to lower the variance of vanilla policy gradient algorithm?
To reduce the magnitude of ∑

H(i)

t′=t γ t′R(i,t′)

Eg., use a smaller γ or subtract a baseline from ∑
H(i)

t′=t γ t′R(i,t′)

To approximate ∑
H(i)

t′=t γ t′R(i,t′) by a DNN and take advantage of its
generalizability
To collect more samples

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 43 / 57



Variance

∇ΦJ(Φ) ∝ ∑
i,t

∇Φ logP(a(i,t)|s(i,t);Φ)
H(i)

∑
t′=t

γ
t′R(i,t′)

∑
H(i)

t′=t γ t′R(i,t′) is an MC estimate of

Qπ(s(i,t),a(i,t)) = E{s(t′),a(t′)}t′

[
∑t′ γ

t′R(t′)|s(0) = s(i,t),a(0) = a(i,t)
]

using samples rolled out from single episode
TD vs. MC estimate:

TD: biased, but low variance
MC: unbiased, but high variance

How to lower the variance of vanilla policy gradient algorithm?

To reduce the magnitude of ∑
H(i)

t′=t γ t′R(i,t′)

Eg., use a smaller γ or subtract a baseline from ∑
H(i)

t′=t γ t′R(i,t′)

To approximate ∑
H(i)

t′=t γ t′R(i,t′) by a DNN and take advantage of its
generalizability
To collect more samples

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 43 / 57



Variance

∇ΦJ(Φ) ∝ ∑
i,t

∇Φ logP(a(i,t)|s(i,t);Φ)
H(i)

∑
t′=t

γ
t′R(i,t′)

∑
H(i)

t′=t γ t′R(i,t′) is an MC estimate of

Qπ(s(i,t),a(i,t)) = E{s(t′),a(t′)}t′

[
∑t′ γ

t′R(t′)|s(0) = s(i,t),a(0) = a(i,t)
]

using samples rolled out from single episode
TD vs. MC estimate:

TD: biased, but low variance
MC: unbiased, but high variance

How to lower the variance of vanilla policy gradient algorithm?
To reduce the magnitude of ∑

H(i)

t′=t γ t′R(i,t′)

Eg., use a smaller γ or subtract a baseline from ∑
H(i)

t′=t γ t′R(i,t′)

To approximate ∑
H(i)

t′=t γ t′R(i,t′) by a DNN and take advantage of its
generalizability
To collect more samples

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 43 / 57



Baseline I

∇ΦJ(Φ) ∝ ∑
i,t

∇Φ logP(a(i,t)|s(i,t);Φ)(
H(i)

∑
t′=t

γ
t′R(i,t′)−b)

b reduces variance without adding bias as long as it’s independent
with actions:

∑τ P(τ;Φ)∑t ∇Φ logP(a(t)|s(t);Φ)b
= ∑τ P(τ;Φ)∇Φ logP(τ;Φ)b
= ∑τ P(τ;Φ)∇ΦP(τ;Φ)

P(τ;Φ) b
= ∇Φ ∑τ P(τ;Φ)b = ∇Φb = 0

Of what value?

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 44 / 57



Baseline I

∇ΦJ(Φ) ∝ ∑
i,t

∇Φ logP(a(i,t)|s(i,t);Φ)(
H(i)

∑
t′=t

γ
t′R(i,t′)−b)

b reduces variance without adding bias as long as it’s independent
with actions:

∑τ P(τ;Φ)∑t ∇Φ logP(a(t)|s(t);Φ)b
= ∑τ P(τ;Φ)∇Φ logP(τ;Φ)b
= ∑τ P(τ;Φ)∇ΦP(τ;Φ)

P(τ;Φ) b
= ∇Φ ∑τ P(τ;Φ)b = ∇Φb = 0

Of what value?

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 44 / 57



Baseline II

∇ΦJ(Φ) ∝ ∑
i,t

∇Φ logP(a(i,t)|s(i,t);Φ)(
H(i)

∑
t′=t

γ
t′R(i,t′)−b)

The larger the b better, but ∑
H(i)

t′=t γ t′R(i,t′)−b still needs to guide gπ to
output good τ

∑
H(i)

t′=t γ t′R(i,t′) an estimate of Qπ(s(i,t),a(i,t))

b an estimate of Vπ(s(i,t)) = E{s(t′),a(t′)}t′

[
∑t′ γ

t′R(t′)|s(0) = s(i,t)
]
[3]

∑
H(i)

t′=t γ t′R(i,t′)−b estimates Qπ(s(i,t),a(i,t))−Vπ(s(i,t)), the advantage of
π at state s(i,t)

In REINFORCE: b = 1
|{j,t′′:s(j,t′′)=s(i,t)}| ∑j,t′′:s(j,t′′)=s(i,t) ∑

H(j)

t′=t′′ γ
t′R(j,t′)

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 45 / 57



Baseline II

∇ΦJ(Φ) ∝ ∑
i,t

∇Φ logP(a(i,t)|s(i,t);Φ)(
H(i)

∑
t′=t

γ
t′R(i,t′)−b)

The larger the b better, but ∑
H(i)

t′=t γ t′R(i,t′)−b still needs to guide gπ to
output good τ

∑
H(i)

t′=t γ t′R(i,t′) an estimate of Qπ(s(i,t),a(i,t))

b an estimate of Vπ(s(i,t)) = E{s(t′),a(t′)}t′

[
∑t′ γ

t′R(t′)|s(0) = s(i,t)
]
[3]

∑
H(i)

t′=t γ t′R(i,t′)−b estimates Qπ(s(i,t),a(i,t))−Vπ(s(i,t)), the advantage of
π at state s(i,t)

In REINFORCE: b = 1
|{j,t′′:s(j,t′′)=s(i,t)}| ∑j,t′′:s(j,t′′)=s(i,t) ∑

H(j)

t′=t′′ γ
t′R(j,t′)

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 45 / 57



Function Approximations

∇ΦJ(Φ) ∝ ∑
i,t

∇Φ logP(a(i,t)|s(i,t);Φ)(
H(i)

∑
t′=t

γ
t′R(i,t′)−b)

∑
H(i)

t′=t γ t′R(i,t′) estimates Qπ(s(i,t),a(i,t)) using rolled-out from single
episode
Actor-critic: why not use a DNN fQπ

(s,a;Θ) to approximate
Qπ(s,a),∀s,a?

Baseline b = ∑j:s(j,t)=s(i,t) ∑
H(j)

t′=t γ t′R(j,t′) estimates Vπ(s(i,t))
Advantage actor-critic: approximates Vπ(s) with fVπ

(s;Θ)

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 46 / 57



Function Approximations

∇ΦJ(Φ) ∝ ∑
i,t

∇Φ logP(a(i,t)|s(i,t);Φ)(
H(i)

∑
t′=t

γ
t′R(i,t′)−b)

∑
H(i)

t′=t γ t′R(i,t′) estimates Qπ(s(i,t),a(i,t)) using rolled-out from single
episode
Actor-critic: why not use a DNN fQπ

(s,a;Θ) to approximate
Qπ(s,a),∀s,a?
Baseline b = ∑j:s(j,t)=s(i,t) ∑

H(j)

t′=t γ t′R(j,t′) estimates Vπ(s(i,t))
Advantage actor-critic: approximates Vπ(s) with fVπ

(s;Θ)

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 46 / 57



Advantage Actor-Critic (b = fVπ
(s;Θ))

∇ΦJ(Φ) ∝ ∑
i,t

∇Φ logP(a(i,t)|s(i,t);Φ)(
H(i)

∑
t′=t

γ
t′R(i,t′)−b)

∑
H(i)

t′=t γ t′R(i,t′) ≈ Qπ(s(i,t),a(i,t)) can be approximated by
R(i,t)+ γfVπ

(s(i,t+1);Θ)
No need for fQπ

Bellman expectation equation for stochastic π:

Vπ(s) = ∑
a

π(a|s)∑
s′

P(s′|s;a)[R(s,a,s′)+ γVπ(s′)],∀s

Algorithm (TD): initialize Θ and Φ arbitrarily, iterate until converge:
1 Take an action a from s using g(s ;Φ)
2 Observe s′ and reward R, compute Q̂π ← R+ γfVπ

(s′;Θ)
3 Update fVπ

:
Θ←Θ−η∇Θ

[
Q̂π − fVπ

(s;Θ)
]2

4 Update gπ :

Φ←Φ+λ∇Φ logP(a|s;Φ)(Q̂π − fVπ
(s;Θ))

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 47 / 57



Pitfall: Exploration

To learn fVπ
based on value iteration,the agent has to explore enough

But gπ is optimized for exploitation only:

Φ←Φ+λ∇Φ logP(a|s;Φ)(Q̂π − fVπ
(s;Θ))

Solution?

To maximize the entropy of gπ(s;Φ) as well

Φ ←Φ+λ∇Φ

[
logP(a|s;Φ)(Q̂π − fVπ

(s;Θ))
+µH(a∼ gπ(s;Φ))]

The larger µ, the more exploration

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 48 / 57



Pitfall: Exploration

To learn fVπ
based on value iteration,the agent has to explore enough

But gπ is optimized for exploitation only:

Φ←Φ+λ∇Φ logP(a|s;Φ)(Q̂π − fVπ
(s;Θ))

Solution? To maximize the entropy of gπ(s;Φ) as well

Φ ←Φ+λ∇Φ

[
logP(a|s;Φ)(Q̂π − fVπ

(s;Θ))
+µH(a∼ gπ(s;Φ))]

The larger µ, the more exploration

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 48 / 57



Asynchronous Advantage Actor-Critic (A3C)
TD estimate reduces variance at the cost of bias/divergence

A3C: use asynchronous workers to stabilizes fVπ
training

An alternative to experience reply

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 49 / 57



Asynchronous Advantage Actor-Critic (A3C)
TD estimate reduces variance at the cost of bias/divergence
A3C: use asynchronous workers to stabilizes fVπ

training
An alternative to experience reply

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 49 / 57



A3C on Labyrinth
Task: to collect apples (+1 reward) and escape (+10 reward)
End-to-end learning from pixels to policy
State s(t) modeled as a recurrent neural network (LSTM)

To have long-term memory

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 50 / 57



Variance Reduction by Having More Samples

Update rule for gπ in A3C:

Φ←Φ+λ∇Φ logP(a(t)|s(t);Φ)Â(t)
π

where Â(t)
π = Q̂(t)

π − fVπ
(s(t);Θ) = (R(t)+ γfVπ

(s(t);Θ))− fVπ
(s(t);Θ)

Bellman expectation equation holds for multiple time differences:

Qπ(s(t),a(t)) = E[R(t)+ γVπ(s(t+1))|s(t) = s(t),a(t) = a(t)]
= E[R(t)+ γR(t+1)+ γ2Vπ(s(t+2))]

= E[R(t)+ γR(t+1)+ γ2R(t+2)+ γ3Vπ(s(t+3))]
· · ·
= E[R(t)+ γR(t+1)+ γ2R(t+2)+ γ3R(t+3)+ · · · ]

A3C replaces Â(t)
π with a K-step lookahead:

Â(t)
K ←R(t)+ γR(t+1)+ · · ·+ γ

K−1R(t+K−1)+ γ
K fVπ

(s(t+K);Θ)−fVπ
(s(t);Θ)

Update of Φ lags K time steps behind the current action

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 51 / 57



Variance Reduction by Having More Samples
Update rule for gπ in A3C:

Φ←Φ+λ∇Φ logP(a(t)|s(t);Φ)Â(t)
π

where Â(t)
π = Q̂(t)

π − fVπ
(s(t);Θ) = (R(t)+ γfVπ

(s(t);Θ))− fVπ
(s(t);Θ)

Bellman expectation equation holds for multiple time differences:

Qπ(s(t),a(t)) = E[R(t)+ γVπ(s(t+1))|s(t) = s(t),a(t) = a(t)]
= E[R(t)+ γR(t+1)+ γ2Vπ(s(t+2))]

= E[R(t)+ γR(t+1)+ γ2R(t+2)+ γ3Vπ(s(t+3))]
· · ·
= E[R(t)+ γR(t+1)+ γ2R(t+2)+ γ3R(t+3)+ · · · ]

A3C replaces Â(t)
π with a K-step lookahead:

Â(t)
K ←R(t)+ γR(t+1)+ · · ·+ γ

K−1R(t+K−1)+ γ
K fVπ

(s(t+K);Θ)−fVπ
(s(t);Θ)

Update of Φ lags K time steps behind the current action

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 51 / 57



Variance Reduction by Having More Samples
Update rule for gπ in A3C:

Φ←Φ+λ∇Φ logP(a(t)|s(t);Φ)Â(t)
π

where Â(t)
π = Q̂(t)

π − fVπ
(s(t);Θ) = (R(t)+ γfVπ

(s(t);Θ))− fVπ
(s(t);Θ)

Bellman expectation equation holds for multiple time differences:

Qπ(s(t),a(t)) = E[R(t)+ γVπ(s(t+1))|s(t) = s(t),a(t) = a(t)]
= E[R(t)+ γR(t+1)+ γ2Vπ(s(t+2))]

= E[R(t)+ γR(t+1)+ γ2R(t+2)+ γ3Vπ(s(t+3))]
· · ·
= E[R(t)+ γR(t+1)+ γ2R(t+2)+ γ3R(t+3)+ · · · ]

A3C replaces Â(t)
π with a K-step lookahead:

Â(t)
K ←R(t)+ γR(t+1)+ · · ·+ γ

K−1R(t+K−1)+ γ
K fVπ

(s(t+K);Θ)−fVπ
(s(t);Θ)

Update of Φ lags K time steps behind the current action
Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 51 / 57



Generalized Advantage Estimation (GAE)

Â(t)
K = R(t)+ γR(t+1)+ · · ·+ γ

K−1R(t+K−1)+ γ
K fVπ

(s(t+K);Θ)− fVπ
(s(t);Θ)

Define TD error at time t: δ (t) = R(t)+ γfVπ
(s(t+1);Θ)− fVπ

(s(t);Θ)

We have Â(t)
K = δ (t)+ γδ (t+1)+ · · ·+ γK−1δ (t+K−1)

GAE [8]: let Â(t)
π be the exponential moving average of Â(t)

1 , Â(t)
2 , · · · :

Â(t)
π ← Â(t)

1 +λ Â(t)
2 +λ 2Â(t)

3 + · · ·
= δ (t)+λ (δ (t)+ γδ (t+1))+λ 2(δ (t)+ γδ (t+1)+ γ2δ (t+2))+ · · ·
= 1

1−λ
δ (t)+ λγ

1−λ
δ (t+1)+ λ 2γ2

1−λ
δ (t+2)+ · · ·

∝ δ (t)+λγδ (t+1)+(λγ)2δ (t+2)+ · · ·

Biased, but with much lower variance
δ (t)’s can have lower magnitudes when fVπ

is good enough

In TD: Â(t)
π ← δ (t)+λγδ (t+1)+ · · ·+(λγ)Kδ (t+K)

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 52 / 57



Generalized Advantage Estimation (GAE)

Â(t)
K = R(t)+ γR(t+1)+ · · ·+ γ

K−1R(t+K−1)+ γ
K fVπ

(s(t+K);Θ)− fVπ
(s(t);Θ)

Define TD error at time t: δ (t) = R(t)+ γfVπ
(s(t+1);Θ)− fVπ

(s(t);Θ)

We have Â(t)
K = δ (t)+ γδ (t+1)+ · · ·+ γK−1δ (t+K−1)

GAE [8]: let Â(t)
π be the exponential moving average of Â(t)

1 , Â(t)
2 , · · · :

Â(t)
π ← Â(t)

1 +λ Â(t)
2 +λ 2Â(t)

3 + · · ·
= δ (t)+λ (δ (t)+ γδ (t+1))+λ 2(δ (t)+ γδ (t+1)+ γ2δ (t+2))+ · · ·
= 1

1−λ
δ (t)+ λγ

1−λ
δ (t+1)+ λ 2γ2

1−λ
δ (t+2)+ · · ·

∝ δ (t)+λγδ (t+1)+(λγ)2δ (t+2)+ · · ·

Biased, but with much lower variance
δ (t)’s can have lower magnitudes when fVπ

is good enough

In TD: Â(t)
π ← δ (t)+λγδ (t+1)+ · · ·+(λγ)Kδ (t+K)

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 52 / 57



Policy Optimization vs. Policy/Value Iteration

Policy optimization:

Optimize policy “directly”
More compatible with auxiliary objectives & rich NN architectures
(e.g., RNN)
More likely to work with different tasks/settings

Policy/value-iteration-based methods (e.g., DQN, DDPG):

Optimize policy “indirectly” (via Q/V exploiting Bellman equations)
More compatible with different exploration strategies
Sensitive to task/settings; but more sample-efficient when working

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 53 / 57



Policy Optimization vs. Policy/Value Iteration

Policy optimization:
Optimize policy “directly”

More compatible with auxiliary objectives & rich NN architectures
(e.g., RNN)
More likely to work with different tasks/settings

Policy/value-iteration-based methods (e.g., DQN, DDPG):
Optimize policy “indirectly” (via Q/V exploiting Bellman equations)

More compatible with different exploration strategies
Sensitive to task/settings; but more sample-efficient when working

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 53 / 57



Policy Optimization vs. Policy/Value Iteration

Policy optimization:
Optimize policy “directly”
More compatible with auxiliary objectives & rich NN architectures
(e.g., RNN)

More likely to work with different tasks/settings

Policy/value-iteration-based methods (e.g., DQN, DDPG):
Optimize policy “indirectly” (via Q/V exploiting Bellman equations)
More compatible with different exploration strategies

Sensitive to task/settings; but more sample-efficient when working

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 53 / 57



Policy Optimization vs. Policy/Value Iteration

Policy optimization:
Optimize policy “directly”
More compatible with auxiliary objectives & rich NN architectures
(e.g., RNN)
More likely to work with different tasks/settings

Policy/value-iteration-based methods (e.g., DQN, DDPG):
Optimize policy “indirectly” (via Q/V exploiting Bellman equations)
More compatible with different exploration strategies
Sensitive to task/settings; but more sample-efficient when working

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 53 / 57



Reference I

[1] Vivek F Farias and Benjamin Van Roy.
Tetris: A study of randomized constraint sampling.
In Probabilistic and Randomized Methods for Design Under
Uncertainty, pages 189–201. Springer, 2006.

[2] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob
Menick, Ian Osband, Alex Graves, Vlad Mnih, Remi Munos, Demis
Hassabis, Olivier Pietquin, et al.
Noisy networks for exploration.
arXiv preprint arXiv:1706.10295, 2017.

[3] Evan Greensmith, Peter L Bartlett, and Jonathan Baxter.
Variance reduction techniques for gradient estimates in reinforcement
learning.
Journal of Machine Learning Research, 5(Nov):1471–1530, 2004.

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 54 / 57



Reference II

[4] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra.
Continuous control with deep reinforcement learning.
arXiv preprint arXiv:1509.02971, 2015.

[5] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu,
Joel Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller,
Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

[6] Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory
Fearon, Alessandro De Maria, Vedavyas Panneershelvam, Mustafa
Suleyman, Charles Beattie, Stig Petersen, et al.
Massively parallel methods for deep reinforcement learning.
arXiv preprint arXiv:1507.04296, 2015.

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 55 / 57



Reference III

[7] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver.
Prioritized experience replay.
arXiv preprint arXiv:1511.05952, 2015.

[8] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and
Pieter Abbeel.
High-dimensional continuous control using generalized advantage
estimation.
arXiv preprint arXiv:1506.02438, 2015.

[9] Hado Van Hasselt, Arthur Guez, and David Silver.
Deep reinforcement learning with double q-learning.
In AAAI, pages 2094–2100, 2016.

[10] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc
Lanctot, and Nando De Freitas.
Dueling network architectures for deep reinforcement learning.
arXiv preprint arXiv:1511.06581, 2015.

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 56 / 57



Reference IV

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 57 / 57


	Introduction 
	Value-based Deep RL
	Deep Q-Network
	Improvements

	Policy-based Deep RL
	Pathwise Derivative Methods
	Policy Gradient/Optimization Methods
	Variance Reduction and Actor-Critic


