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@ Introduction
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(Tabular) RL
o Q-learning:
Q*(s,a) + Q*(s.a) + N [(R(s,a,s") + ymaxy Q*(s',a’)) — 0" (s,a)]
o SARSA:
Oz (s.a) < Qu(s,a) + N [(R(s,a,s") + yQx(s", n(s"))) — Ox(s,a)]
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(Tabular) RL

o Q-learning:
Q*(s,a) < Q*(s,a) + N [(R(s,a,s") + ymax, Q*(s',a’)) — O*(s,a)]

o SARSA:
Qx(s,a) < QOx(s,a) + 1 [(R(s,a,s') +YQx(s', 7(s"))) — Qx(s,a)]

o In realistic environments with large state/action space, requires a large
table to store Q*/Qx values

o Maze: O(10"), Tetris: O(10%), Atari: 0(10'9922) pixels

o Continuous states/actions?
o May not be able to visit all (s,a)’s in limited training time
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Generalizing across States

o Idea: to learn a function fp:(s,a;®) (resp. fp,) that approximates
Q*(s,a) (resp. Qx(s,a)), Vs,a
o Trained by a small number (millions) of samples
o Generalizes to unseen states/actions
o Smaller ® to store
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Generalizing across States

o Idea: to learn a function fp:(s,a;®) (resp. fp,) that approximates
Q*(s,a) (resp. Qx(s,a)), Vs,a
o Trained by a small number (millions) of samples
o Generalizes to unseen states/actions
o Smaller ® to store

o E.g., in Q-learning, Q* should satisfy Bellman optimality equation:

Q*(s,a) < Y P(s'|s;a)[R(s,a,s') + ymax Q" (s',a’)], Vs,a

o Algorithm (TD estimate): initialize ® arbitrarily, iterate until
converge:
@ Take action a from s using some exploration policy 7’ derived from fp-
(e.g., e-greedy)
@ Observe s’ and reward R(s,a,s’), update ® using SGD:
0« 0®—nVeC, where

2
C(®) = |R(s,a,s") +ymaxfy (s',a’;©) —fp- (s,a; O)
al
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Works If with Careful Feature Engineering

o Tetris: [1]
o States: O(10%) configurations
o Actions: rotation and translation to
falling piece
o f(s,a;0) and C(®) modeled as an
approximated linear programming
problem

o Hand-crafted features (22 in total) L]
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Works If with Careful Feature Engineering

o Tetris: [1]
o States: O(10%) configurations
o Actions: rotation and translation to
falling piece
o f(s,a;0) and C(®) modeled as an
approximated linear programming
problem

o Hand-crafted features (22 in total)

o Why not use a deep neural network to
represent Qg?
o One model for different tasks
o Automatically learned features
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Deep RL

o Value-based: use DNNs to represent value/Q-function

o Eg., DQN

o 7*(s) « argmax, Q*(s,a) only feasible if actions are discrete
o Policy-based: use DNNs to represent policy ©

o E.g., DDPG, Action-Critic, A3C, TRPO, PPO

s ML

Kohl and Stone, 2004 Ng et al, 2004 Tedrake et al, 2005 Kober and Peters, 2009

.'J Em

Silver et al, 2014 (DPG) [
Lillicrap et al, 2015 (DDPG) Schulman et al, Levine*, Finn*, et Silver*, Huang*, et

2016 (TRPO + GAE) al, 2016 al, 2016
(GPS) (AlphaGo)

o

Mnih et al 2013 (DQN)
Mnih et al, 2015 (A3C)
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Outline

(@ Value-based Deep RL
o Deep O-Network
o Improvements
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DNNs for QO*

o Use a DNN fp-(s,a;®) to represent Q*(s,a)

s —>

a —»

> QO(s, a)
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DNNs for QO*
o Use a DNN fp-(s,a;®) to represent Q*(s,a)

> Q(s, &)
s —
f P> Qsa s—» [ >0 a?)
a —»
> O(s, 3(3))

o Algorithm (TD): initialize ® arbitrarily, iterate until converge:

@ Take action a from s using some exploration policy 7" derived from fp-

(e.g., e-greedy)
@ Observe s’ and reward R(s,a,s’), update ® using SGD:

® <+ 0 —nVeC, where

2
C(®) = |R(s,a,s") +ymaxfp- (s',a’;©) —fp- (s,a; O)
al
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DNNs for QO*
o Use a DNN fp-(s,a;®) to represent Q*(s,a)

> Q(s, &)
s —
f P> Qsa s—» [ >0 a?)
a —»
> O(s, 3(3))

o Algorithm (TD): initialize ® arbitrarily, iterate until converge:
@ Take action a from s using some exploration policy 7" derived from fp-
(e.g., e-greedy)
@ Observe s’ and reward R(s,a,s’), update ® using SGD:

® <+ 0 —nVeC, where

2
C(®) = |R(s,a,s") +ymaxfp- (s',a’;©) —fp- (s,a; O)
al

o However, diverges due to

o Samples are correlated (violates i.i.d. assumption of training examples)
o Non-stationary target (fo-(s’,a’) changes as © is updated for current a)
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Outline

(@ Value-based Deep RL
o Deep O-Network
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Deep Q-Network (DQN)

o Naive TD algorithm diverges due to:

o Samples are correlated
o Non-stationary target
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Deep Q-Network (DQN)

o Naive TD algorithm diverges due to:

o Samples are correlated
o Non-stationary target

o Stabilization techniques proposed by (Nature) DQN [5]:

o Experience replay
o Delayed target network
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Experience Replay

o Use a replay memory D to store recently seen transitions (s,a,r,s’)'s
o Sample a mini-batch from D and update ©
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Experience Replay

o Use a replay memory D to store recently seen transitions (s,a,r,s’)'s
o Sample a mini-batch from D and update ©

o Algorithm (TD): initialize ® arbitrarily, iterate until converge:

@ Take action a from s using 7’ derived from fy+ (e.g., e-greedy)
@ Observe s’ and reward R, add (s a.Rys')toD
@ Sample a mini-batch of (s\),a ),R(i) (+1D)'s from D, do:

0+ ®—nVeC, where
) 2
(@) =Y |RY +ymaxfo (s"*V.a;0) ~for (s, a"); 0)

i
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Delayed Target Network

o To avoid chasing a moving target, set the target value at network
output parametrized by old ®~
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Delayed Target Network

o To avoid chasing a moving target, set the target value at network
output parametrized by old ©~

o Algorithm (TD): initialize ® arbitrarily and ® = @, iterate until
converge:

@ Take action a from s using 7’ derived from fp+ (e.g., €-greedy)
@ Observe s’ and reward R, add (s,a,R,s’) to D
@ Sample a mini-batch of (s),a), R st+1D)'s from D, do:

® <+ 0 —nVeC, where

2
co) =Y R +YH}I§1XfQ* (sD.a";07) — o sV, ©)

i

@ Update ®~ < O every K iterations
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Other Tricks

o Optimization techniques matter in deep RL

o Optimization error may lead to wrong traditions (trajectory)
o And bad final policy
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Other Tricks

o Optimization techniques matter in deep RL

o Optimization error may lead to wrong traditions (trajectory)
o And bad final policy

o Reward clipping for better conditioned gradients

o Can't differentiate between small and large rewards
o Better use batch normalization

o Use RMSProp instead of vanilla SGD for adaptive learning rate
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DQN on Atari

Pong Enduro Beamrider

o 49 Atari 2600 games

o States: raw pixels

o Actions: 18 joystick/button positions
Q

Rewards: changes in score
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Network Architecture

End-to-end from raw pixels to Q*(s,a)

CNN + fully connected layers

Input: state s a stack of raw pixels from last 4 frames
Output: 18 Q*(s,a)’s (one for each action)

© © o0 o

32 4x4 filcers Fully-connected linear
output layer

256 hidden units
16 8x8 filters

4x84x84

o G

-

Stack of 4 previous ) Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units

of rectified linear units of rectified linear units
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Network Architecture

End-to-end from raw pixels to Q*(s,a)

CNN + fully connected layers

Input: state s a stack of raw pixels from last 4 frames
Output: 18 Q*(s,a)’s (one for each action)

© © o0 o

32 4x4 filcers Fully-connected linear
output layer

256 hidden units
16 8x8 filters

4x84x84

o G

-

Stack of 4 previous ) Fully-connected layer
frames Convolutional layer Convolutional layer of rectified linear units

of rectified linear units of rectified linear units
o Network architecture is fixed across all games

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning

16 /57



Results
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Effect of Stability Techniques

DQN
Q-learning Q-learning | Q-learning Q-learning
+ Replay + Replay
+ Target Q + Target Q
Breakout 3 10 241 317
Enduro 29 142 831 1006
River Raid 1453 2868 4103 7447
Seaquest 276 1003 823 2894
Space Invaders 302 373 826 1089

o Delayed target network is less useful for large networks
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Predicted Q* Values for Pong
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Outline

(@ Value-based Deep RL

o Improvements
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Improvements since DQN

Stabilization:

o Double DQN [9]
o Prioritized replay [7]

©

©

Modeling additional prior:
o Duelling network [10]

©

Exploration:
o NoisyNet [2]

Large-scale implementation

©
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Double DQN 1
o DQN update rule: ® «+ ® —nVgC, where

2

(@) =Y |RV +ymaxfo (s'*1.a:07) ~fo- (s . 0)

1

o There is an upward bias in max, fp-(s/*!,a’;07)
o for (s a’;07) with high positive error is preferred
o At each step, the positive error is added to fp- (s®),a); ®)

Value estimates

Shan-Hung Wu (CS, NTHU)
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Double DQN 11
o Double DQN (DDQN) [9]:

C(©) =Y |RY +yp (s, argmaxfo. (s"*1).a;0):07) ~ fo: (s a1 0)

i

o Uses O to select the best action
o Uses ®~ to evaluate the best action

o Random (unbiased) error added to fy:(s(),a();®) at each step
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Prioritized Replay [7]
o Not all (s,a,R,s")'s from D are equally helpful to training fo-
o Sample (s,a,R,s)'s with probability proportional to “surprise” in terms
of Bellman equation:

[R+ymaxfo:(s',a';07) —fo:(s,a;0)|

o Rank-based alternative: D a priority queue

2000
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Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 24 /57



Dueling Network [10]
o Q*(s,a) =V*(s)+A*(s,a)

o A*(s,a) the advantage function of a
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Dueling Network [10]
o Q*(s,a) =V*(s)+A*(s,a)
o A*(s,a) the advantage function of a
o Idea: to model this prior and learn fp.(s,a) = fy=(s) +fa-(s,a)

Q(s,a)

DQN

Dueling
DQN
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Dueling Network [10]
o Q(s,a)=V*(s)+A*(s,a)
o A*(s,a) the advantage function of a
o Idea: to model this prior and learn fp.(s,a) = fy=(s) +fa-(s,a)
o Not well-defined: fp.(s,a) = (fy+(s) +¢) + (fa= (s,a) — ) for any ¢
o Dueling DQN: fou (5,a) = fy-(5) + (fx- (5,a) — maxg fi- (5,4")
o The best action a* has zero advantage and fp.(s,a*) = fy=(s)

Q(s,a)
DQN
V(s)
Dueling Q(s,a)
DQN
~ A(s,a)
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Dueling Network [10]
o Q(s,a)=V*(s)+A*(s,a)
o A*(s,a) the advantage function of a
o Idea: to model this prior and learn fp.(s,a) = fy=(s) +fa-(s,a)
o Not well-defined: fp.(s,a) = (fy+(s) +¢) + (fa= (s,a) — ) for any ¢
o Dueling DQN: fou (5,a) = fy-(5) + (fx- (5,a) — maxg fi- (5,4")
o The best action a* has zero advantage and fp.(s,a*) = fy=(s)
o Stabilized version: fo.(s,a) = fy+(s) + (fa«(s,a) — ﬁ Yo fas(s,a’))
o fy« and fy» are off-target (by a constant) but f4+ changes more slowly

Q(s,a)
DQN
V(s)
Dueling Q(s,a)
DQN
~ A(s,a)
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See, Attend, and Drive

o Atari game: Enduro
o Attention mask: afv*( ) and ag—f;"(s)
© foi(s,a) =fy+(s) +fa=(s,a)

o fy+ pays attention to the road
o fa+ pays attention only when there's obstacles in front

VALUE ADVANTAGE

]
VG TN
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NoisyNet [2]

-greedy for exploration, add noise to ®

ing using €

o Instead of us

o The level of noise is learned by SGD along with ®

o Improvement over Dueling DQN:
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Scaling Up DQN on Single Machine

o Exploits multi-threading of modern CPUs/GPUs
o Run/train multiple agents in parallel (one per thread/GPU)
o O shared between threads in main memory

o Data-parallelism

-
Parameter Server W = W= ﬂAW

0000000

]

Model
Replicas

/o
OO
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00
00

A\
0

00

Data
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Scaling Up DQN on Single Machine

o Exploits multi-threading of modern CPUs/GPUs
o Run/train multiple agents in parallel (one per thread/GPU)

o O shared between threads in main memory
o Data-parallelism

o Parallelism decorrelates samples
o Alternative to experience replay

Shan-Hung Wu (CS, NTHU)
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Scaling Out DQN with Gorila [6]

o Distributed system architecture for large-scale RL
o 10x faster than Nature DQN

o Applied to recommender systems in Google

Distributed Memory

SAMPLE
EXPERIENCES EXPERIENCE

PARAMETERS

PARAMETERS
GRADIENTS

Learners
Actors & Environments

Distributed Q-Networks
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Outline

(3 Policy-based Deep RL
o Pathwise Derivative Methods
o Policy Gradient/Optimization Methods
o Variance Reduction and Actor-Critic
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Why Policy Network?

o Policy-based deep RL: use a DNN g (s;®) to approximate 7(s)
o Why?
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Why Policy Network?

o Policy-based deep RL: use a DNN g (s;®) to approximate 7(s)
o Why?
o In DQN (or any method based on value/policy iteration), one needs to

solve
m* =argmax Q’(s,a’) or & =argmax Q" (s,a’)
a a

o Not applicable to continuous action space A common in, e.g., robotics

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 32/57



Why Policy Network?

o Policy-based deep RL: use a DNN g (s;®) to approximate 7(s)
o Why?
o In DQN (or any method based on value/policy iteration), one needs to
solve
Tt = argrrzelle*(s,a’) or i = argrr:la,le”(s,a')
o Not applicable to continuous action space A common in, e.g., robotics

o 7 may be easier to learn than Q or V
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Modeling ©
o 7 can be either
o deterministic: gz(s;®P) =a, or
o stochastic: gr(s;P) =P(a|s)
o Pathwise derivative methods
o For deterministic = and continuous A

o Policy gradient/optimization methods
o For stochastic @
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Modeling ©

o T can be either
o deterministic: gr(s;®) =a, or
o stochastic: gr(s;P) =P(a|s)
o Pathwise derivative methods
o For deterministic & and continuous A
o To find ® such that gz (s;P) gives action a maximizing Q*(s,a)
o Changes the trajectory of an episode in the graph of accumulative
rewards
o Policy gradient/optimization methods
o For stochastic @
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Modeling ©

o 7 can be either
o deterministic: gr(s;®) =a, or
o stochastic: gr(s;P) =P(a|s)
o Pathwise derivative methods
o For deterministic & and continuous A
o To find ® such that gz (s;P) gives action a maximizing Q*(s,a)
o Changes the trajectory of an episode in the graph of accumulative
rewards
o Policy gradient/optimization methods
o For stochastic @
o To find @ such that gives trajectory of high accumulative rewards
o Do not change the trajectory (but its probability) of an episode
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Outline

(3 Policy-based Deep RL
o Pathwise Derivative Methods
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Deep Deterministic Policy Gradient (DDPG) [4]

s

A 4

L a f —> Q(S, a)

oQ
A 4

o Based on DQN
o Q-learning is off-policy and works with changing exploration strategies
o Deterministic policy: gz (s;®) =a € R
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Deep Deterministic Policy Gradient (DDPG) [4]

s

L a f —> Q(S, a)

A 4

(]

Based on DQN
o Q-learning is off-policy and works with changing exploration strategies

(]

Deterministic policy: gz+(s;®) =a € R

(]

Goal: to find @ maximizing Es [fp- (s,a;0)], where a = gz« (s; P)
SGD update rule:

(]

o inlizieo]

= ®+nE, [%* (s,a;0)- ag”* 2 (s; CID)]
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DDPG Algorithm (TD)

o Initialize ® and ® arbitrarily, set @ = ® and &~ = P, iterate until
converge:
@ Take action @ = gz+(s;P)+z from s, where z is a random noise for
exploration
@ Observe s’ and reward R, add (s,a,R,s’) to D
@ Sample a mini-batch of (s),a? R® s+D)'s from D
@ Update O:
® <+ 0 —nVeC, where

Z [ JFWCQ* H—l)vg:r* (s§®7);®7) —for (S(i),a(i);(*))}z

i

® Update &:

an* 98

P

<I><—<I>+lZ (s, gz (s); @);©) - (s": @)
® Update @ <~ 10+ (1—-7)®" and &~ < 1@+ (1 —7)P~
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Limitations

§ —»

L a f —> Q(S, a)
g >

o Only applicable to continuous action space A

JE; [fQ* (,87* (s;dD);@)]
0P

o For discrete A, it's more natural to use a DNN to model a stochastic

policy: gz(s) = P(als),Va

o Cannot backprop through samples when calculating

—> P(a")
s—» g »P@?)

— P(a®)
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Outline

(3 Policy-based Deep RL

o Policy Gradient/Optimization Methods
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Episodic Policy Gradient

o Policy gradient/optimization methods

o For stochastic policy: gz(s) = P(a|s;®),Va (discrete or continuous)
o Do not change the trajectory (but its probability) of an episode
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o Given an episode, let 7= {(s®),a®, R s(+1)}, be the sequence of
state-action transitions
o Action a¥) sampled from g (s()
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Episodic Policy Gradient

o Policy gradient/optimization methods
o For stochastic policy: gz(s) = P(a|s;®),Va (discrete or continuous)
o Do not change the trajectory (but its probability) of an episode
o Given an episode, let 7= {(s®),a®, R s(+1)}, be the sequence of
state-action transitions
o Action a¥) sampled from g (s()

o Let R(t) =Y, ¥R, our goal:

argm(ngf [R(T); ] = argmgxélP(r;@)R(r)

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 39 /57



Policy Gradient

o Let J(®) =Y P(1;P)R(7), we have:

VoJ(®) =VoY . P(1;®)R(7) =Y, VoP(1;P)R(7)
= Y. P(r; @) eI R()
=Y P(1;®@)ValogP(7;®)R(1)
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Policy Gradient

o Let J(®) =Y P(1;P)R(7), we have:

V®J((D) :V‘PZT ( T, )R(T) :ZTVCDP(T;(D)R(T)

= L.P(%; )V“’(” SER(7)

=Y .P(7;®)ValogP(7;P)R(T)

=Y P(7: @) Volog[T,P(s"*V[s",a)P(al?|s"); ®)R(7)

= Y. P(1:®)Vo L, [logP< (1) |s al >+logP<a<'>|s<f>;<1>> R(1)
— ¥ P(5;®) X, Vo logP(a)|s; ®)R(7)

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 40 /57



Policy Gradient

o Let J(®) =Y P(1;P)R(7), we have:

Vo (@) = VoY P(T;P)R(1) = L. VoP(T;®)R(7)

=Y. P(%; )‘“"”’ R(7)

=Y.P (T,<I>)V<plogP(T D)R(7)

=Y P(1:®)Volog [, P(s" Vs, a)P(a|s);D)R(7)

— ¥, P(1;®)Va Y, [logP( (1) 5(0), <f>)+1ogP(a<'>|s<f);c1>) R(7)
=Y. P(1;®) Y, Vo logP(a|s); ®)R(1)

=Y. P(1;®) Y, VologP(a|s); )Zm”R ( ,a®) s(+h)
=Y. P(1;®) Y, VologP(a|sW; @) H_ /' RC

o Assumes that the environment is MDP-alike
o But no need for the exact model
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REINFORCE Algorithm

Vol (®) =) P(1:®) qu,logp Z)/R

o REINFORCE (MC estimate): initialize @ arbitrarily, iterate until
converge:

@ Run episodes {t()}; by sampling actions from g( CID)

@ For each time step # in an episode, compute R H() y‘R ir)
@ Update @ using SGD:

D« CI>+an>.7, where

Vol (®) =Y VologP(a)| s )R,

it
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REINFORCE Algorithm

Vol (®) =) P(1:®) qu,logp Z)/R

o REINFORCE (MC estimate): initialize @ arbitrarily, iterate until
converge:

@ Run episodes {t()}; by sampling actions from g( ;D)

@ For each time step # in an episode, compute RO = H() y‘R ir)
@ Update @ using SGD:

D« CI>+an>.7, where

Vol (@) = ZV¢logP(a<i”>|s(i*’);CI>)R(i’t).
i
o REINFORCE-style policy gradient: V log prob. of actions x episodic
rewards
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Outline

(3 Policy-based Deep RL

o Variance Reduction and Actor-Critic
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Variance

H
Vq;] KZV(})IOgP ”’S” Z’}’IR”
it t'=t

o YA t}/’R i) is an MC estimate of
0x(s"),a™)) = By oy, [ZM R®)|s0) = 5@ (0) :am)}

o using samples rolled out from single episode
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Variance

H
Vq;] KZV(})IOgP ”’S” Z’}’IR”

it 1=t

o YA t}/’R i) is an MC estimate of
Qﬂ( Ll 7 lJ)) = {S(I,) a(,/)}/ |:Zt/ 'yt R t/> | S(O) = S(ivt)’a(o) = a(ivt)i|
o using samples rolled out from single episode

o TD vs. MC estimate:

o TD: biased, but low variance
o MC: unbiased, but high variance

o How to lower the variance of vanilla policy gradient algorithm?
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Variance

H
Vq;] “ZVCDIOgP( ”’S” Z’)/R”

it 1=t

° Zt,,t}/’R i) is an MC estimate of
Qr(s),al) = Eqg ay, {Zﬂ ¥'RO|s© =50 a(0) Za(i”)}
o using samples rolled out from single episode

o TD vs. MC estimate:

o TD: biased, but low variance
o MC: unbiased, but high variance

o How to lower the variance of vanilla policy gradient algorithm?
o To reduce the magnitude of ZH(’) th if')

(i)
o Eg., use a smaller y or subtract a baseline from ZH y‘R (i)

o To approximate ,,:,}/‘R i) by a DNN and take advantage of its
generalizability
o To collect more samples
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Baseline |

Vol (P) =< ZVq)logP( (@) 5(01) ;@) () ¥ ROV _p)
t/

ll

o b reduces variance without adding bias as long as it’s independent
with actions:

@)Y, VologP(a®|s");®)b
TP( ; @)V logP(T;P)b
P(7; @) Yerte b

oL P(T;@)b = Vob =0
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Baseline |

Vol (P) =< ZVq)logP( (@) 5(01) ;@) () ¥ ROV _p)
t/

ll

o b reduces variance without adding bias as long as it’s independent
with actions:

@)Y, VologP(a®|s");®)b
TP( ; @)V logP(T;P)b
P(7; @) Yerte b

oL P(T;@)b = Vob =0

o Of what value?
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Baseline Il

H
Vo (@) < Y Vo logP(a(”’)|s<”’);CI>)(Z ¥ RO —p)
t'=t

it

o The larger the b better, but Zf,li), ¥’ REY) — b still needs to guide gz to
output good T

° Zf,li)t ¥'RU7) an estimate of O (s alit)
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Baseline Il

H)
Vo (@) = ¥ Vo logP(a™ s @) (Y ¥ ROD —p)
=t

it

The larger the b better, but Zﬁi), ¥’ REY) — b still needs to guide gz to
output good T

f,li)t ¥ RU) an estimate of Qy (s, alt))

b an estimate of V(s(")) = E () aty, | Lo ¥ R[5 =50 | [3]

©

©

©

° ﬁlg ¥ RU1) — b estimates Qr (s, at0)) — v (si1)), the advantage of
7 at state ()

D (it
In REINFORCE: b = 7w X ) —gti) e ¥ RU-")

(]
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Function Approximations

HO

V(I)J(CI)) o< ZV(I) log P(a(ivt) ’S(l’t),q))(z ,}/,R(lﬂl,) o b)

it =t

1;12 ¥ RUY) estimates QO (s("),al"")) using rolled-out from single
episode

o Actor-critic: why not use a DNN fp_ (s,a;®) to approximate
Or(s,a),Vs,a?
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Function Approximations

HO
Vo (@) < Y Vo logP(a[s);®)() 'R —b)
it =t
ﬁ[i)t 7' R() estimates Q (s, a(®)) using rolled-out from single
episode
o Actor-critic: why not use a DNN fp_ (s,a;®) to approximate
Or(s,a),Vs,a?
o Baseline b =Y 41 273 7' RU) estimates Vy(s()
o Advantage actor-critic: approximates Vz(s) with fy_(s; )

L p(aV | s)

K —> P(a? | s)
S —»| Shared —> .

)‘| f > V()
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Advantage Actor-Critic (b =fy_(s;0))

Vol (@) = Y Ve logP(al™|s); @ Z}/’R”
it
(i)t}/’/R (") ~ 0 (s @) can be approximated by

11+W ( (i,1+1) @)
o No need for fo,

o Bellman expectation equation for stochastic 7:
s) = Zn’(a\s)ZP(s'|s;a)[R(s,a,s’) +YVar(s")], Vs
a s/

o Algorithm (TD): initialize ® and & arbitrarily, iterate until converge:

@ Take an action a from s using g(s;P)

@ Observe s’ and reward R, compute Qr < R+ ¥fy,(s';©)

@ Update fy,:

- 2
© 0 -1V [0r —fv,(5:0)]
@ Update gg:
® < P+ AVglogP(als;P)(Or —fr,(s;0))
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Pitfall: Exploration

o To learn fy, based on value iteration,the agent has to explore enough

o But g, is optimized for exploitation only:
® @+ AVglogP(a|s;®)(Or —fv,(5:0))

o Solution?
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Pitfall: Exploration

o To learn fy, based on value iteration,the agent has to explore enough

o But g, is optimized for exploitation only:
® @+ AVglogP(a|s;®)(Or —fv,(5:0))
o Solution? To maximize the entropy of gz (s;®) as well

P < @+ AV [logP(a|s; @) (Qx —fr,(s:©))
+uH(a ~ gz (s;P))]

o The larger u, the more exploration
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Asynchronous Advantage Actor-Critic (A3C)

o TD estimate reduces variance at the cost of bias/divergence
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Asynchronous Advantage Actor-Critic (A3C)

o TD estimate reduces variance at the cost of bias/divergence
o A3C: use asynchronous workers to stabilizes fy, training

o An alternative to experience reply

Global Network
Policy ri(s) V(s)

LS 7 4

Input (s)

N

—
i @ @ —
& y
y y y
Worker 1 Worker 2 Worker 3 Worker n
! ¢ $ ¢
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A3C on Labyrinth
o Task: to collect apples (+1 reward) and escape (410 reward)

o End-to-end learning from pixels to policy

o State s() modeled as a recurrent neural network (LSTM)
o To have long-term memory

m@ls.q) Visy.q)  m@ls) Vi) - m@lsyy) Vis,,)
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Variance Reduction by Having More Samples
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Variance Reduction by Having More Samples
o Update rule for g, in A3C:

® « &+ AVqplogP(a®|s?;p)AY

where A5 = 05— fv,(5:0) = (R + 1 (57:0)) ~ i (s): )

o Bellman expectation equation holds for multiple time differences:

0x(s".a") =E[RY +yV,(st+D)|sl) =50 al) = ()
— E[R(t) + }/R(’H) + YZV;,;(S(HZ))]
— E[R(t) + },R(t—l—l) + YZR(Z+2) + 73V7r (s(t+3))]
= E[R(t) + YRUAD) 4 2R(42) 4 ABR(H3) 4 . ]

o A3C replaces AS? with a K-step lookahead:

A%)FR(I)+YR(I+1)+."+YK71R(I+K71)+y!<fv”(s(1+1<);®) *fv,z(s(
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Variance Reduction by Having More Samples
o Update rule for g, in A3C:

® « &+ AVqplogP(a®|s?;p)AY

where Ay = OF —fy, (s1):0) = (R + i (s: ) ~fv, (s'):0)
o Bellman expectation equation holds for multiple time differences:

0x(s".a") =E[RY +yV,(st+D)|sl) =50 al) = ()
= E[R® + YR 4 12V, (s0+2)]
— E[R(’) + yR(l+1) + yzR(’+2) + V3Vn(s(’+3))]

= E[R(t) + YRUAD) 4 2R(42) 4 ABR(H3) 4 . ]
o A3C replaces AS? with a K-step lookahead:

Afré) RO pyRUFD o KIRUHK=1) | oK p (5(14K). @) *fv,[(s(’);®)

o Update of ® lags K time steps behind the current action
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Generalized Advantage Estimation (GAE)

A%):R(t)_H/R(f“)+..-+yK71R(’+K71)+YKfV,[ (1K) @) — fy, (s

o Define TD error at time #: 8 = —HOCVn( (1), 0) fV,,(
o We haveAg() =680 4 yst+D +---+}’K I§(rHk=1)

o GAE [8]: let AS,’) be the exponential moving average ofﬁgt),ﬁg),m:
AV AV 4240 42280 4
=80 A8 4980 H) £ A2(81) 480+ 4 250+2)) 4
— 80 4 ALl 4 %5(%2) e
oc §W 4+ Ay8HD 1 (Ay)280+2) 4
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Generalized Advantage Estimation (GAE)

A%):R(t)_H/R(f“)+..-+yK71R(’+K71)+YKfV,[ (1K) @) — fy, (s

o Define TD error at time #: 8 = —HOCVn( (1), 0) fV,,(

o We haveA?zS’ + 8D +---+yK 1§(+K=1)
A0 30

o GAE [8]: let AS,’) be the exponential moving average of A}’ ,A;",---:

14

— 1 50 + AY §G+1) 4 /12725 (1+2) 4
) (AY)ZS(HZ)
o Biased, but with much lower variance
o 80)'s can have lower magnitudes when fy_ is good enough

o In TD: AY « 60 4 Ay50+) 4. 4 (Ay)K§U+E)
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Policy Optimization vs. Policy/Value Iteration

o Policy optimization:

o Policy/value-iteration-based methods (e.g., DQN, DDPG):
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Policy Optimization vs. Policy/Value Iteration

o Policy optimization:
o Optimize policy “directly”

o Policy/value-iteration-based methods (e.g., DQN, DDPG):
o Optimize policy “indirectly” (via Q/V exploiting Bellman equations)
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Policy Optimization vs. Policy/Value Iteration

o Policy optimization:
o Optimize policy “directly”
o More compatible with auxiliary objectives & rich NN architectures
(e.g., RNN)

o Policy/value-iteration-based methods (e.g., DQN, DDPG):

o Optimize policy “indirectly” (via Q/V exploiting Bellman equations)
o More compatible with different exploration strategies
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Policy Optimization vs. Policy/Value Iteration

o Policy optimization:
o Optimize policy “directly”
o More compatible with auxiliary objectives & rich NN architectures
(e.g., RNN)
o More likely to work with different tasks/settings
o Policy/value-iteration-based methods (e.g., DQN, DDPG):
o Optimize policy “indirectly” (via Q/V exploiting Bellman equations)
o More compatible with different exploration strategies
o Sensitive to task/settings; but more sample-efficient when working
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