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(Tabular) RL
Q-learning:
Q∗(s,a)← Q∗(s,a)+η [(R(s,a,s′)+ γ maxa′ Q∗(s′,a′))−Q∗(s,a)]
SARSA:
Qπ(s,a)← Qπ(s,a)+η [(R(s,a,s′)+ γQπ(s′,π(s′)))−Qπ(s,a)]

In realistic environments with large state/action space, requires a large
table to store Q∗/Qπ values

Maze: O(101), Tetris: O(1060), Atari: O(1016922) pixels
Continuous states/actions?

May not be able to visit all (s,a)’s in limited training time
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Generalizing across States
Idea: to learn a function fQ∗(s,a;Θ) (resp. fQπ

) that approximates
Q∗(s,a) (resp. Qπ(s,a)), ∀s,a

Trained by a small number (millions) of samples
Generalizes to unseen states/actions
Smaller Θ to store

E.g., in Q-learning, Q∗ should satisfy Bellman optimality equation:

Q∗(s,a)←∑
s′

P(s′|s;a)[R(s,a,s′)+ γ max
a′

Q∗(s′,a′)],∀s,a

Algorithm (TD estimate): initialize Θ arbitrarily, iterate until
converge:

1 Take action a from s using some exploration policy π ′ derived from fQ∗
(e.g., ε-greedy)

2 Observe s′ and reward R(s,a,s′), update Θ using SGD:

Θ←Θ−η∇ΘC, where

C(Θ) =

[
R(s,a,s′)+ γ max

a′
fQ∗(s′,a′;Θ)− fQ∗(s,a;Θ)

]2
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Works If with Careful Feature Engineering

Tetris: [1]
States: O(1060) configurations
Actions: rotation and translation to
falling piece

f (s,a;Θ) and C(Θ) modeled as an
approximated linear programming
problem
Hand-crafted features (22 in total)

Why not use a deep neural network to
represent QΘ?

One model for different tasks
Automatically learned features
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Deep RL
Value-based: use DNNs to represent value/Q-function

E.g., DQN
π∗(s)← argmaxa Q∗(s,a) only feasible if actions are discrete

Policy-based: use DNNs to represent policy π

E.g., DDPG, Action-Critic, A3C, TRPO, PPO
Model-based: deep RL when MDP/env. model is known

E.g., AlphaGo
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DNNs for Q∗

Use a DNN fQ∗(s,a;Θ) to represent Q∗(s,a)

Algorithm (TD): initialize Θ arbitrarily, iterate until converge:
1 Take action a from s using some exploration policy π ′ derived from fQ∗

(e.g., ε-greedy)
2 Observe s′ and reward R(s,a,s′), update Θ using SGD:

Θ←Θ−η∇ΘC, where

C(Θ) =

[
R(s,a,s′)+ γ max

a′
fQ∗(s′,a′;Θ)− fQ∗(s,a;Θ)

]2

However, diverges due to
Samples are correlated (violates i.i.d. assumption of training examples)
Non-stationary target (fQ∗(s′,a′) changes as Θ is updated for current a)
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Deep Q-Network (DQN)

Naive TD algorithm diverges due to:
Samples are correlated
Non-stationary target

Stabilization techniques proposed by (Nature) DQN [5]:
Experience replay
Delayed target network
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Experience Replay

Use a replay memory D to store recently seen transitions (s,a,r,s′)’s
Sample a mini-batch from D and update Θ

Algorithm (TD): initialize Θ arbitrarily, iterate until converge:
1 Take action a from s using π ′ derived from fQ∗ (e.g., ε-greedy)
2 Observe s′ and reward R, add (s,a,R,s′) to D
3 Sample a mini-batch of (s(i),a(i),R(i),s(i+1))’s from D, do:

Θ←Θ−η∇ΘC, where

C(Θ) = ∑
i

[
R(i)+ γ max

a′
fQ∗(s(i+1),a′;Θ)− fQ∗(s(i),a(i);Θ)

]2
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Delayed Target Network

To avoid chasing a moving target, set the target value at network
output parametrized by old Θ−

Algorithm (TD): initialize Θ arbitrarily and Θ− = Θ, iterate until
converge:

1 Take action a from s using π ′ derived from fQ∗ (e.g., ε-greedy)
2 Observe s′ and reward R, add (s,a,R,s′) to D
3 Sample a mini-batch of (s(i),a(i),R(i),s(i+1))’s from D, do:

Θ←Θ−η∇ΘC, where

C(Θ) = ∑
i

[
R(i)+ γ max

a′
fQ∗(s(i+1),a′;Θ

−)− fQ∗(s(i),a(i);Θ)

]2

4 Update Θ−←Θ every K iterations
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Other Tricks

Optimization techniques matter in deep RL
Optimization error may lead to wrong traditions (trajectory)
And bad final policy

Reward clipping for better conditioned gradients
Can’t differentiate between small and large rewards
Better use batch normalization

Use RMSProp instead of vanilla SGD for adaptive learning rate
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DQN on Atari

49 Atari 2600 games
States: raw pixels
Actions: 18 joystick/button positions
Rewards: changes in score

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 15 / 57



Network Architecture

End-to-end from raw pixels to Q∗(s,a)
CNN + fully connected layers
Input: state s a stack of raw pixels from last 4 frames
Output: 18 Q∗(s,a)’s (one for each action)

Network architecture is fixed across all games
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Results
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Effect of Stability Techniques

Delayed target network is less useful for large networks
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Predicted Q∗ Values for Pong
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Improvements since DQN

Stabilization:
Double DQN [9]
Prioritized replay [7]

Modeling additional prior:
Duelling network [10]

Exploration:
NoisyNet [2]

Large-scale implementation

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 21 / 57



Double DQN I
DQN update rule: Θ←Θ−η∇ΘC, where

C(Θ) = ∑
i

[
R(i)+ γmax

a′
fQ∗(s(i+1),a′;Θ

−)− fQ∗(s(i),a(i);Θ)

]2

There is an upward bias in maxa′ fQ∗(s(i+1),a′;Θ−)

fQ∗(s(i+1),a′;Θ−) with high positive error is preferred

At each step, the positive error is added to fQ∗(s(i),a(i);Θ)
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Double DQN II
Double DQN (DDQN) [9]:

C(Θ) = ∑
i

[
R(i)+ γfQ∗(s(i+1),argmax

a′
fQ∗(s(i+1),a′;Θ);Θ

−)− fQ∗(s(i),a(i);Θ)

]2

Uses Θ to select the best action
Uses Θ− to evaluate the best action

Random (unbiased) error added to fQ∗(s(i),a(i);Θ) at each step
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Prioritized Replay [7]
Not all (s,a,R,s′)’s from D are equally helpful to training fQ∗
Sample (s,a,R,s)’s with probability proportional to “surprise” in terms
of Bellman equation:

|R+ γ max
a′

fQ∗(s′,a′;Θ
−)− fQ∗(s,a;Θ)|

Rank-based alternative: D a priority queue
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Dueling Network [10]
Q∗(s,a) = V∗(s)+A∗(s,a)

A∗(s,a) the advantage function of a

Idea: to model this prior and learn fQ∗(s,a) = fV∗(s)+ fA∗(s,a)
Not well-defined: fQ∗(s,a) = (fV∗(s)+ c)+(fA∗(s,a)− c) for any c

Dueling DQN: fQ∗(s,a) = fV∗(s)+(fA∗(s,a)−maxa′ fA∗(s,a′))
The best action a∗ has zero advantage and fQ∗(s,a∗) = fV∗(s)

Stabilized version: fQ∗(s,a) = fV∗(s)+(fA∗(s,a)− 1
|A| ∑a′ fA∗(s,a′))

fV∗ and fA∗ are off-target (by a constant) but fA∗ changes more slowly
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Improvement over Prioritized DDQN
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See, Attend, and Drive

Atari game: Enduro
Attention mask: ∂ fV∗

∂ s (s) and ∂ fA∗
∂ s (s)

fQ∗(s,a) = fV∗(s)+ fA∗(s,a)
fV∗ pays attention to the road
fA∗ pays attention only when there’s obstacles in front
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NoisyNet [2]

Instead of using using ε-greedy for exploration, add noise to Θ

The level of noise is learned by SGD along with Θ

Improvement over Dueling DQN:

Shan-Hung Wu (CS, NTHU) Deep Reinforcement Learning Machine Learning 28 / 57



Scaling Up DQN on Single Machine
Exploits multi-threading of modern CPUs/GPUs
Run/train multiple agents in parallel (one per thread/GPU)

Θ shared between threads in main memory
Data-parallelism

Parallelism decorrelates samples
Alternative to experience replay
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Scaling Out DQN with Gorila [6]
Distributed system architecture for large-scale RL
10x faster than Nature DQN
Applied to recommender systems in Google
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Why Policy Network?
Policy-based deep RL: use a DNN gπ(s;Φ) to approximate π(s)
Why?

In DQN (or any method based on value/policy iteration), one needs to
solve

π
∗ = argmax

a′
Q∗(s,a′) or π̂ = argmax

a′
Qπ(s,a′)

Not applicable to continuous action space A common in, e.g., robotics

π may be easier to learn than Q or V
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Modeling π

π can be either
deterministic: gπ(s;Φ) = a, or
stochastic: gπ(s;Φ) = P(a|s)

Pathwise derivative methods
For deterministic π and continuous A

To find Φ such that gπ(s;Φ) gives action a maximizing Q∗(s,a)
Changes the trajectory of an episode in the graph of accumulative
rewards

Policy gradient/optimization methods
For stochastic π

To find Φ such that gives trajectory of high accumulative rewards
Do not change the trajectory (but its probability) of an episode
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Deep Deterministic Policy Gradient (DDPG) [4]

Based on DQN
Q-learning is off-policy and works with changing exploration strategies

Deterministic policy: gπ∗(s;Φ) = a ∈ R

Goal: to find Φ maximizing Es [fQ∗(s,a;Θ)], where a = gπ∗(s;Φ)

SGD update rule:

Φ ←Φ+η
∂Es[fQ∗ (s,a;Θ)]

∂Φ

= Φ+ηEs

[
∂ fQ∗
∂a (s,a;Θ) · ∂gπ∗

∂Φ
(s;Φ)

]
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DDPG Algorithm (TD)

Initialize Θ and Φ arbitrarily, set Θ− = Θ and Φ− = Φ, iterate until
converge:

1 Take action a = gπ∗(s;Φ)+z from s, where z is a random noise for
exploration

2 Observe s′ and reward R, add (s,a,R,s′) to D
3 Sample a mini-batch of (s(i),a(i),R(i),s(i+1))’s from D
4 Update Θ:

Θ←Θ−η∇ΘC, where

C(Θ) = ∑
i

[
R(i)+ γfQ∗(s(i+1),gπ∗(s;Φ

−);Θ
−)− fQ∗(s(i),a(i);Θ)

]2

5 Update Φ:

Φ←Φ+λ ∑
i

∂ fQ∗
∂a

(s(i),gπ∗(s(i);Φ);Θ) · ∂gπ∗

∂Φ
(s(i);Φ)

6 Update Θ−← τΘ+(1− τ)Θ− and Φ−← τΦ+(1− τ)Φ−
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Limitations

Only applicable to continuous action space A

Cannot backprop through samples when calculating
∂Es[fQ∗ (s,gπ∗ (s;Φ);Θ)]

∂Φ

For discrete A, it’s more natural to use a DNN to model a stochastic
policy: gπ(s) = P(a|s),∀a
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Episodic Policy Gradient
Policy gradient/optimization methods

For stochastic policy: gπ(s) = P(a|s;Φ),∀a (discrete or continuous)
Do not change the trajectory (but its probability) of an episode

Given an episode, let τ = {(s(t),a(t),R(t),s(t+1))}t be the sequence of
state-action transitions

Action a(t) sampled from gπ(s(t))

Let R(τ) = ∑t γ tR(t), our goal:

argmax
Φ

Eτ [R(τ);Φ] = argmax
Φ

∑
τ

P(τ;Φ)R(τ)
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Policy Gradient

Let J(Φ) = ∑τ P(τ;Φ)R(τ), we have:

∇ΦJ(Φ) = ∇Φ ∑τ P(τ;Φ)R(τ) = ∑τ ∇ΦP(τ;Φ)R(τ)
= ∑τ P(τ;Φ)∇ΦP(τ;Φ)

P(τ;Φ) R(τ)
= ∑τ P(τ;Φ)∇ΦlogP(τ;Φ)R(τ)

= ∑τ P(τ;Φ)∇Φlog∏t P(s(t+1)|s(t),a(t))P(a(t)|s(t);Φ)R(τ)

= ∑τ P(τ;Φ)∇Φ ∑t

[
logP(s(t+1)|s(t),a(t))+ logP(a(t)|s(t);Φ)

]
R(τ)

= ∑τ P(τ;Φ)∑t ∇Φ logP(a(t)|s(t);Φ)R(τ)
= ∑τ P(τ;Φ)∑t ∇Φ logP(a(t)|s(t);Φ)∑t′ γ

t′R(t′)(s(t),a(t),s(t+1))

= ∑τ P(τ;Φ)∑t ∇Φ logP(a(t)|s(t);Φ)∑H
t′=t γ t′R(t′)

Assumes that the environment is MDP-alike
But no need for the exact model
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REINFORCE Algorithm

∇ΦJ(Φ) = ∑
τ

P(τ;Φ)∑
t

∇Φ logP(a(t)|s(t);Φ)
H

∑
t′=t

γ
t′R(t′)

REINFORCE (MC estimate): initialize Φ arbitrarily, iterate until
converge:

1 Run episodes {τ(i)}i by sampling actions from g(· ;Φ)

2 For each time step t in an episode, compute R(i,t) = ∑
H(i)

t′=t γ t′R(i,t′)

3 Update Φ using SGD:

Φ←Φ+η∇ΦĴ, where

∇ΦĴ(Φ) = ∑
i,t

∇Φ logP(a(i,t)|s(i,t);Φ)R(i,t).

REINFORCE-style policy gradient: ∇ log prob. of actions × episodic
rewards
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Variance

∇ΦJ(Φ) ∝ ∑
i,t

∇Φ logP(a(i,t)|s(i,t);Φ)
H(i)

∑
t′=t

γ
t′R(i,t′)

∑
H(i)

t′=t γ t′R(i,t′) is an MC estimate of

Qπ(s(i,t),a(i,t)) = E{s(t′),a(t′)}t′

[
∑t′ γ

t′R(t′)|s(0) = s(i,t),a(0) = a(i,t)
]

using samples rolled out from single episode

TD vs. MC estimate:
TD: biased, but low variance
MC: unbiased, but high variance

How to lower the variance of vanilla policy gradient algorithm?
To reduce the magnitude of ∑

H(i)

t′=t γ t′R(i,t′)

Eg., use a smaller γ or subtract a baseline from ∑
H(i)

t′=t γ t′R(i,t′)

To approximate ∑
H(i)

t′=t γ t′R(i,t′) by a DNN and take advantage of its
generalizability
To collect more samples
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Baseline I

∇ΦJ(Φ) ∝ ∑
i,t

∇Φ logP(a(i,t)|s(i,t);Φ)(
H(i)

∑
t′=t

γ
t′R(i,t′)−b)

b reduces variance without adding bias as long as it’s independent
with actions:

∑τ P(τ;Φ)∑t ∇Φ logP(a(t)|s(t);Φ)b
= ∑τ P(τ;Φ)∇Φ logP(τ;Φ)b
= ∑τ P(τ;Φ)∇ΦP(τ;Φ)

P(τ;Φ) b
= ∇Φ ∑τ P(τ;Φ)b = ∇Φb = 0

Of what value?
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Baseline II

∇ΦJ(Φ) ∝ ∑
i,t

∇Φ logP(a(i,t)|s(i,t);Φ)(
H(i)

∑
t′=t

γ
t′R(i,t′)−b)

The larger the b better, but ∑
H(i)

t′=t γ t′R(i,t′)−b still needs to guide gπ to
output good τ

∑
H(i)

t′=t γ t′R(i,t′) an estimate of Qπ(s(i,t),a(i,t))

b an estimate of Vπ(s(i,t)) = E{s(t′),a(t′)}t′

[
∑t′ γ

t′R(t′)|s(0) = s(i,t)
]
[3]

∑
H(i)

t′=t γ t′R(i,t′)−b estimates Qπ(s(i,t),a(i,t))−Vπ(s(i,t)), the advantage of
π at state s(i,t)

In REINFORCE: b = 1
|{j,t′′:s(j,t′′)=s(i,t)}| ∑j,t′′:s(j,t′′)=s(i,t) ∑

H(j)

t′=t′′ γ
t′R(j,t′)
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Function Approximations

∇ΦJ(Φ) ∝ ∑
i,t

∇Φ logP(a(i,t)|s(i,t);Φ)(
H(i)

∑
t′=t

γ
t′R(i,t′)−b)

∑
H(i)

t′=t γ t′R(i,t′) estimates Qπ(s(i,t),a(i,t)) using rolled-out from single
episode
Actor-critic: why not use a DNN fQπ

(s,a;Θ) to approximate
Qπ(s,a),∀s,a?

Baseline b = ∑j:s(j,t)=s(i,t) ∑
H(j)

t′=t γ t′R(j,t′) estimates Vπ(s(i,t))
Advantage actor-critic: approximates Vπ(s) with fVπ

(s;Θ)
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Advantage Actor-Critic (b = fVπ
(s;Θ))

∇ΦJ(Φ) ∝ ∑
i,t

∇Φ logP(a(i,t)|s(i,t);Φ)(
H(i)

∑
t′=t

γ
t′R(i,t′)−b)

∑
H(i)

t′=t γ t′R(i,t′) ≈ Qπ(s(i,t),a(i,t)) can be approximated by
R(i,t)+ γfVπ

(s(i,t+1);Θ)
No need for fQπ

Bellman expectation equation for stochastic π:

Vπ(s) = ∑
a

π(a|s)∑
s′

P(s′|s;a)[R(s,a,s′)+ γVπ(s′)],∀s

Algorithm (TD): initialize Θ and Φ arbitrarily, iterate until converge:
1 Take an action a from s using g(s ;Φ)
2 Observe s′ and reward R, compute Q̂π ← R+ γfVπ

(s′;Θ)
3 Update fVπ

:
Θ←Θ−η∇Θ

[
Q̂π − fVπ

(s;Θ)
]2

4 Update gπ :

Φ←Φ+λ∇Φ logP(a|s;Φ)(Q̂π − fVπ
(s;Θ))
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Pitfall: Exploration

To learn fVπ
based on value iteration,the agent has to explore enough

But gπ is optimized for exploitation only:

Φ←Φ+λ∇Φ logP(a|s;Φ)(Q̂π − fVπ
(s;Θ))

Solution?

To maximize the entropy of gπ(s;Φ) as well

Φ ←Φ+λ∇Φ

[
logP(a|s;Φ)(Q̂π − fVπ

(s;Θ))
+µH(a∼ gπ(s;Φ))]

The larger µ, the more exploration
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Asynchronous Advantage Actor-Critic (A3C)
TD estimate reduces variance at the cost of bias/divergence

A3C: use asynchronous workers to stabilizes fVπ
training

An alternative to experience reply
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A3C on Labyrinth
Task: to collect apples (+1 reward) and escape (+10 reward)
End-to-end learning from pixels to policy
State s(t) modeled as a recurrent neural network (LSTM)

To have long-term memory
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Variance Reduction by Having More Samples

Update rule for gπ in A3C:

Φ←Φ+λ∇Φ logP(a(t)|s(t);Φ)Â(t)
π

where Â(t)
π = Q̂(t)

π − fVπ
(s(t);Θ) = (R(t)+ γfVπ

(s(t);Θ))− fVπ
(s(t);Θ)

Bellman expectation equation holds for multiple time differences:

Qπ(s(t),a(t)) = E[R(t)+ γVπ(s(t+1))|s(t) = s(t),a(t) = a(t)]
= E[R(t)+ γR(t+1)+ γ2Vπ(s(t+2))]

= E[R(t)+ γR(t+1)+ γ2R(t+2)+ γ3Vπ(s(t+3))]
· · ·
= E[R(t)+ γR(t+1)+ γ2R(t+2)+ γ3R(t+3)+ · · · ]

A3C replaces Â(t)
π with a K-step lookahead:

Â(t)
K ←R(t)+ γR(t+1)+ · · ·+ γ

K−1R(t+K−1)+ γ
K fVπ

(s(t+K);Θ)−fVπ
(s(t);Θ)

Update of Φ lags K time steps behind the current action
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Generalized Advantage Estimation (GAE)

Â(t)
K = R(t)+ γR(t+1)+ · · ·+ γ

K−1R(t+K−1)+ γ
K fVπ

(s(t+K);Θ)− fVπ
(s(t);Θ)

Define TD error at time t: δ (t) = R(t)+ γfVπ
(s(t+1);Θ)− fVπ

(s(t);Θ)

We have Â(t)
K = δ (t)+ γδ (t+1)+ · · ·+ γK−1δ (t+K−1)

GAE [8]: let Â(t)
π be the exponential moving average of Â(t)

1 , Â(t)
2 , · · · :

Â(t)
π ← Â(t)

1 +λ Â(t)
2 +λ 2Â(t)

3 + · · ·
= δ (t)+λ (δ (t)+ γδ (t+1))+λ 2(δ (t)+ γδ (t+1)+ γ2δ (t+2))+ · · ·
= 1

1−λ
δ (t)+ λγ

1−λ
δ (t+1)+ λ 2γ2

1−λ
δ (t+2)+ · · ·

∝ δ (t)+λγδ (t+1)+(λγ)2δ (t+2)+ · · ·

Biased, but with much lower variance
δ (t)’s can have lower magnitudes when fVπ

is good enough

In TD: Â(t)
π ← δ (t)+λγδ (t+1)+ · · ·+(λγ)Kδ (t+K)
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3 + · · ·
= δ (t)+λ (δ (t)+ γδ (t+1))+λ 2(δ (t)+ γδ (t+1)+ γ2δ (t+2))+ · · ·
= 1

1−λ
δ (t)+ λγ

1−λ
δ (t+1)+ λ 2γ2

1−λ
δ (t+2)+ · · ·

∝ δ (t)+λγδ (t+1)+(λγ)2δ (t+2)+ · · ·

Biased, but with much lower variance
δ (t)’s can have lower magnitudes when fVπ

is good enough

In TD: Â(t)
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Policy Optimization vs. Policy/Value Iteration

Policy optimization:

Optimize policy “directly”
More compatible with auxiliary objectives & rich NN architectures
(e.g., RNN)
More likely to work with different tasks/settings

Policy/value-iteration-based methods (e.g., DQN, DDPG):

Optimize policy “indirectly” (via Q/V exploiting Bellman equations)
More compatible with different exploration strategies
Sensitive to task/settings; but more sample-efficient when working
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