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Recommender Systems
Goal: to find most relevant items (products) for users

Or, to find most relevant users for items

Used in many areas such as Amazon, Facebook/Instagram, Spotify,
Netflix/Youtube/TikTok, UberEats, Google Ads, etc.
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Content-based vs. Collaborative Filtering

Basic idea: to find users/items similar to engaged users/items

Content-based algorithms
Content similarity
Assume that user/item features are available

E.g., user profiles, product descriptions, etc.

Collaborative filtering (CF)
Interaction similarity
Assumes that user-item interactions are available

E.g, user1 clicks/likes/rates item100

Popular since
There’s no need to analyze users/items
Performs well empirically
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Rating Matrix

RM×N ∈ RM×N

M: number of users
N: number of items
Rm,n: interaction between user m and item n

Goal: to estimate missing values
Example recommendations: top items in Rm,: ∈ RN for user m
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Singular Value Decomposition (SVD)

Approximates R with a low-rank, dense matrix
Denote K the target rank, K�M,N

Problems:
Slow to compute
No incremental update

Newly observed interactions?
New users/items?
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Funk-SVD [5]
Model parameters: PM×K and QN×K such that

RM×N ≈ R̂M×N
= PM×K(QN×K)>, where

R̂m,n =
K

∑
k=1

Pm,kQk,n

RMSE (root mean square error) loss:

L = ∑
{m,n:Rm,n>0}

(Rm,n− R̂m,n)
2 = ∑

{m,n:Rm,n>0}
(Rm,n−

K

∑
k=1

Pm,kQk,n)
2

Regularization terms (minimizing ‖Pm,:‖2 and ‖Qn,:‖2) omitted
SGD training: for each randomly sampled batch of observed Rm,n,
update Pm,: and Qn,:

∂L
∂Pm,k

=−2(Rm,n− R̂m,n)Qk,n and ∂L
∂Qn,k

=−2(Rm,n− R̂m,n)Pm,k
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Bias-SVD

Introduces bias terms

R̂m,n =
K

∑
k=1

Pm,kQk,n +bUser
m +bItem

n +bGlobal

bUser ∈ RN compensates user bias
E.g., mean or kind

bItem ∈ RM compensates item bias
E.g., good or bad

bItem ∈ R compensates global bias
E.g., data preprocessing

Greatly improves performance empirically
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AutoRec [9]

Idea: to use an autoencoder f (· ;Θ) to reconstruct RM×N

Bottleneck layer learns underlying manifold

User-based: f takes Rm,: as input
Objective: argminΘ ∑

M
m=1 ‖Rm,:− f (Rm,:;Θ)‖2

Item-based: f takes R:,n as input
Objective: argminΘ ∑

M
m=1 ‖R:,n− f (R:,n;Θ)‖2

Learns to reconstruct data only, no representations for users/items
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Explicit vs. Implicit Feedback

So far, we use only the observed interactions (explicit feedback)
The missing values in RM×N are ignored

Problems:
Very sparse
Only enough to train a global model; not personalized ones

Can we utilize the missing values (implicit feedback) in RM×N?
Semantics behind implicit feedback:

Negative (users are not interested in the items)
Neutral (the users have not interacted with the items yet)
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Implicit Feedback & Personalization

More available data, which enable personalized models
f (· ;Θ) learns from Rm,: ∈ RN of a particular user

Let Im+ (and Im−) be the set of items that user m has interacted with
(or not)

Basically, each item x(i) (i = 1, · · · ,N) is an N-dimensional one-hot
vector

Point-wise approaches
f (x(i);Θ) = 1 if x(i) ∈ Im+; 0 otherwise

Pair-wise approaches
f (x(i);Θ)> f (x(j);Θ) for any x(i) ∈ Im+ and x(j) ∈ Im−
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Bayesian Personalized Ranking (BPR) [8]

Let >m represent the desired personalized total ranking of all items for
user m

BPR loss
L =− lnP(Θ|>m)

where
P(Θ|>m) ∝ P(>m |Θ)P(Θ)
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Pair-wise Data with Implicit Feedback

Let X= {(x(i),x(j)) : x(i) ∈ Im+,x(j) ∈ Im−} be the pair-wise dataset
with implicit feedback for user m
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Model & Objective

BPR model (pair-wise): given (x(i),x(j)) ∈ X, outputs

σ(f (x(i);Θ)− f (x(j);Θ)) ∈ R

σ(·) is the logistic function
f (· ;Θ) is an underlying point-wise model (to be discussed later)

BPR objective

argminΘ L = argminΘ− lnP(>m |Θ)− lnP(Θ)

= argminΘ−∑(x(i),x(j))∈X lnσ(f (x(i);Θ)− f (x(j);Θ))+λ‖Θ‖2

Can be solved by gradient descent
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Underlying Model f (· ;Θ)

BPR is a general framework and can work with different underlying
models
For example, let f (· ;Θ) be matrix factorization:

f (x(i)) = p>q(i)

where Θ = {p,q(i) ∈ RK}N
i=1

GD training: gradients ∂L
∂p ,

∂L
∂p(i) can be easily computed
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Neural Matrix Factorization (NeuMF) [3]
Can work with either point-wise or pair-wise loss (under BPR)
Wide-and-deep architecture

Wide network: extended matrix factorization (no summation)
Deep network: representation learning
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Long- vs. Short-term Interests

So far, we analyze user interests using long-term data RM×N

For example, the Pm,: from matrix factorization represents the
long-term interests of user m

In practice, users also have short-term interests
E.g., news/trending topics, social events, seasonal events, time-limited
sales, etc.

Interactions given by a user are not i.i.d.

Why not use sequential learning models?
CNNs, RNNs, or transformers?
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Self-Attentive Sequential Recommendation
(SASRec) [4]

Sequential, collaborative rating tensor RM×N×T

Rm,n,t the interaction between user m and item n at time t
SASRec model (based on the masked self attention):

Input: ST×N whose rows are one-hot vectors
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Model Architecture & Loss

Architecture similar to the decoder of “Attention is all you need” paper
Residual connects, layer normalization, dropout, etc.

Point-wise loss:
∑
m,t
‖Rm,:,t−A(L)

t,: Q>)‖2

Q ∈ RN×K is embeddings of all items
A(L) ∈ RT×K is output of the last (L-th) attention block

As compared with MF (where Rm,: ≈ Pm,:Q>), A(L)
t,: is similar to “user

embedding”
Based on sequence behavior only; not tied to a specific user
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Content-based vs. Collaborative Filtering

Content-based algorithms
Assume that user/item features are available

E.g., user profiles, product descriptions, etc.

Today, with DL models like BERT [1] or CLIP [6], embedding
users/items becomes easy

Collaborative filtering (CF)
Assumes that user-item interactions are available

E.g, user1 clicks/likes/rates item100
Popular since

There’s no need to analyze users/items
Performs well empirically

Can we consider content features in CF?
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Factorization Machines (FM) [7]
Feature-rich dataset: X= {(x(i) ∈ RD,y(i))}i∈Interactions

x(i) contains one-hot encodings features for users and items

Model:

ŷ(x;b,w,W) = b+
D

∑
s=1

w>s xs +
D

∑
s=1

D

∑
t=s+1

Ws,txsxt

Linear regressor with cross-feature weights
Shan-Hung Wu (CS, NTHU) Recommender Systems Machine Learning 31 / 43



Connection with Matrix Factorization

Model:

ŷ(x;b,w,W) = b+
D

∑
s=1

w>s xs +
D

∑
s=1

D

∑
t=s+1

Ws,txsxt

The weights corresponding to the one-hot encoding dimensions
of user and item perform matrix factorization
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Reducing Cross-Feature Costs
W ∈ RD×D may be too large to learn!

Simplification:

WD×D = VD×K(VD×K)>, where K� D

The cross-feature term becomes
D

∑
s=1

D

∑
t=s+1

Ws,txsxt =
D

∑
s=1

D

∑
t=s+1

K

∑
k=1

Vs,kVt,kxsxt

Evaluation complexity O(D2K)

Further reduction

∑
D
s=1 ∑

D
t=s+1 ∑

K
k=1 Vs,kVt,kxsxt

= 1
2

(
∑

D
s=1 ∑

D
t=1 ∑

K
k=1 Vs,kVt,kxsxt−∑

D
s=1 ∑

K
k=1 Vs,kVs,kxsxs

)
= 1

2 ∑
K
k=1

[(
∑

D
s=1 Vs,kxs

)(
∑

D
t=1 Vt,kxt

)
−∑

D
s=1 V2

s,kx2
s

]
= 1

2 ∑
K
k=1

[(
∑

D
s=1 Vs,kxs

)2−∑
D
s=1 V2

s,kx2
s

]
Evaluation complexity O(DK)
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Deep Factorization Machines [2]
Still “wide-and deep,” but consider side user/item features
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Explicit User Features in SASRec [4]
Let P ∈ RM×K be the user embedding matrix

Obtained via side user features

Point-wise loss: ∑m,t ‖Rm,:,t− (Pm,: +A(L)
t,: )Q>)‖2
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AutoRec

2 Implicit Feedback & Personalization
Bayesian Personalized Ranking (BPR)
Neural Matrix Factorization (NeuMF)

3 Sequence Awareness
Self-Attentive Sequential Recommendation (SASRec)

4 Using Side Features
Factorization Machines (FM)
Deep Models

5 Performance Evaluation & System Design
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Performance Evaluation Metrics (1/2)
Common metrics: average precision@k, recall@k, or NDCG@k
across users

For each user m, let
y = A be next interacted item in the ground truth
Ŷ= {B,A,C,F, · · ·} be top items predicted by Model 1
Ỹ= {G,H,A,B, · · ·} be top items predicted by Model 2

Precision@k:
TP@k

TP@k+FP@k

Model 1: precision@1 = 0/1, precision@2 = 1/2, precision@3 = 1/3
Model 2: precision@1 = 0/1, precision@2 = 0/2, precision@3 = 1/3

Recall@k (or hit@k):
TP@k

TP@k+FN@k

Model 1: hit@1 = 0/1, hit@2 = 1/1, hit@3 = 1/1
Model 2: hit@1 = 0/1, hit@2 = 0/1, hit@3 = 1/1
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Performance Evaluation Metrics (2/2)

NDCG@k (Normalized Discounted Cumulative Gain):{
1

log2(iA+1) , if A ∈ Y
0, otherwise.

where iA is the index of A in Y
Model 1: NDCG@1 = 0, NDCG@2 = 0.63, NDCG@3 = 0.63
Model 2: NDCG@1 = 0, NDCG@2 = 0, NDCG@3 = 0.5

At same k = 3, Model 1 still outperforms Model 2 in terms of NDCG
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Remarks on Recommender Systems in Industry

Two steps to cope with very large M,N and multiple objectives:
1 Candidate retrieval (from millions to hundreds)

Approximate KNN search of relevant items from simple (MF) model
Popular or trending items (to avoid the cold-start problem)
Diffused items along social graph
Diverse items (in geographies, topics, etc.)
User features (for personalization)

2 Scoring & re-ranking (from hundreds to tens)
More expensive (deep) models are used to
Consolidate results to max click rate, watch time, session time, etc.
Personalize UI list by

Removing dislikes
Increasing freshness, diversity, fairness, etc.

Step 2 can run at client side
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