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The Big Data Era

Today, more and more of our activities are recorded by ubiquitous
computing devices

Networked computers make it easy to centralize these records and
curate them into a big dataset
Large-scale machine learning techniques solve problems by
leveraging the posteriori knowledge learned from the big data
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Characteristics of Big Data
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Challenges of Large-Scale ML

Variety and veracity
Feature engineering gets even
harder

Multi-task/transfer learning
Volume

Large D: curse of
dimensionality
Large N: training efficiency

Velocity
Online learning
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Advantages of Deep Learning

Neural Networks (NNs) that go deep

Automatic feature engineering
A kind of representation learning

Exponential gain of expressiveness
Counters the curse of dimensionality

Memory and GPU friendliness
SGD
GPU-based parallelism

Supporting online & transfer learning
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Is Deep Learning a Panacea?

I have big data, so I have to use deep learning

Wrong! No free launch theorem: there is no single ML algorithm that
outperforms others in every domain
Deep learning is more useful when the function f to learn is complex
(nonlinear to the input dimension) and has composited patterns

E.g., image recognition, natural language processing

For simple (linear) f , there are specialized large-scale ML techniques
(e.g., LIBLINEAR [7]) that are much more efficient
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Representation Learning

Gray boxes are learned automatically

Deep learning maps the most
abstract (deepest) features to the
output

Usually, a simple linear function
suffices

In deep learning,
features/presentations are distributed
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Distributed Representations of Data

In deep learning, we assume that x’s
were generated by compositions of
factors, potentially at multiple levels
in a hierarchy

E.g., layer 3: face = 0.3 [corner] +
0.7 [circle] + 0 [curve]

[.] a predefined non-linear function
Weights (arrows) learned from
training examples

Given x, factors at the same level
output a layer of features of x

Layer 2: 1, 2, 0.5 for [corner],
[circle], and [curve] respectively

To be fed into the factors in the next
(deeper) level

Face = 0.3 * 1 + 0.7 * 2
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Curse of Dimensionality

Most classic nonlinear ML models find θ by assuming function
smoothness:

if x∼ x(i) ∈ X, then f (x;w)∼ f (x(i);w)

E.g., the non-parametric methods predict the label ŷ of x by simply
interpolating the labels of examples x(i)’s close to x:

ŷ = ∑
i

αiy(i)k(x(i),x)+b, where k(x(i),x) = exp(−γ‖x(i)−x‖2)

Suppose f is smooth within a bin, we need exponentially more
examples to get a good interpolation as D increases
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Exponential Gains from Depth I

Functions representable with a deep
rectifier NN require an exponential
number of hidden units in a shallow
NN [13]

In deep learning, a deep factor is
defined by “reusing” the shallow ones

Face = 0.3 [corner] + 0.7 [circle]
With a shallow structure, a deep factor
needs to be replaced by exponentially
many factors

Face = 0.3 [0.5 [vertical] + 0.5
[horizontal] ] + 0.7 [ ... ]
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Exponential Gains from Depth II

Another example: an NN with absolute value rectification units

Each hidden unit specifies where to fold the input space in order to
create mirror responses (on both sides of the absolute value)
A single fold in a deep layer creates an exponentially large number of
piecewise linear regions in input space

No need to see examples in each linear regions in input space

This exponential gain counters the exponential challenges posed by
the curse of dimensionality
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Stochastic Gradient Descent
Gradient Descent (GD)

w(0)← a randon vector;
Repeat until convergence {

w(t+1)← w(t)−η∇wCN(w(t);X);
}

Needs to scan the entire dataset to descent (many I/Os)

(Mini-Batched) Stochastic Gradient Descent (SGD)

w(0)← a randon vector;
Repeat until convergence {
Randomly partition the training set X into minibatches {X(j)}j;
w(t+1)← w(t)−η∇wC(w(t);X(j));

}

No I/O if the next mini-batch can be prefetched
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GD vs. SGD

Is SGD really a better algorithm?
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Yes, If You Have Big Data

Performance is limited by training time
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Asymptotic Analysis [4]

GD SGD
Time per iteration N 1
#Iterations to opt. error ρ log 1

ρ

1
ρ

Time to opt. error ρ N log 1
ρ

1
ρ

Time to excess error ε
1

ε1/α
log 1

ε
, where α ∈ [1

2 ,1]
1
ε
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Parallelizing SGD

Data Parallelism Model Parallelism

Every core/GPU trains the full
model given partitioned data.

Every core/GPU train a
partitioned model given full

data.

The effectiveness depends on applications and available hardware
E.g., CPU/GPU speed, communication latency, bandwidth, etc.
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Online Learning

So far, we assume that the training data X comes at once
What if data come sequentially?

Online learning: to update model when new data arrive
This a already supported by SGD
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Muti-Task and Transfer Learning

Multi-task learning: to
learning a single model for
multiple tasks

Via shared layers

Transfer learning: to reuse the
knowledge learned from one task
to help another

Via pretrained layers (whose
weights may be further
updated when a smaller
learning rate)

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 25 / 67



Muti-Task and Transfer Learning

Multi-task learning: to
learning a single model for
multiple tasks

Via shared layers
Transfer learning: to reuse the
knowledge learned from one task
to help another

Via pretrained layers (whose
weights may be further
updated when a smaller
learning rate)

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 25 / 67



Muti-Task and Transfer Learning

Multi-task learning: to
learning a single model for
multiple tasks

Via shared layers
Transfer learning: to reuse the
knowledge learned from one task
to help another

Via pretrained layers (whose
weights may be further
updated when a smaller
learning rate)

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 25 / 67



Outline

1 When ML Meets Big Data

2 Advantages of Deep Learning
Representation Learning
Exponential Gain of Expressiveness
Memory and GPU Friendliness
Online & Transfer Learning

3 Learning Theory Revisited
Generalizability and Over-Parametrization
Wide-and-Deep NN is a Gaussian Process before Training*
Gradient Descent is an Affine Transformation*
Wide-and-Deep NN is a Gaussian Process after Training*

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 26 / 67



Learning Theory

How to learn a function fN from N examples X that is close to the
true function f ∗?

Empirical risk: CN [fN ] = 1
N ∑

N
i=1 loss(fN(x(i)),y(i))

Expected risk: C[fN ] =
∫

loss(f (x),y)dP(x,y)
Let f ∗ = argminf C[f ] be the true function (our goal)
Since we are seeking a function in a model (hypothesis space) F, this
is what can have at best: f ∗F = argminf∈F C[f ]

But we only minimizes errors on limited examples in our objective, so
we only have fN = argminf∈F CN [f ]

The excess error E = C[fN ]−C[f ∗]:

E = C[f ∗F ]−C[f ∗]︸ ︷︷ ︸
Eapp

+C[fN ]−C[f ∗F ]︸ ︷︷ ︸
Eest
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Since we are seeking a function in a model (hypothesis space) F, this
is what can have at best: f ∗F = argminf∈F C[f ]

But we only minimizes errors on limited examples in our objective, so
we only have fN = argminf∈F CN [f ]

The excess error E = C[fN ]−C[f ∗]:

E = C[f ∗F ]−C[f ∗]︸ ︷︷ ︸
Eapp

+C[fN ]−C[f ∗F ]︸ ︷︷ ︸
Eest
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Excess Error

Wait, we may not have enough training time, so we stop iterations
early and have f̃N , where CN [f̃N ]≤ CN [fN ]+ρ

The excess error becomes E = C[f̃N ]−C[f ∗]:

E = C[f ∗F ]−C[f ∗]︸ ︷︷ ︸
Eapp

+C[fN ]−C[f ∗F ]︸ ︷︷ ︸
Eest

+C[f̃N ]−C[fN ]︸ ︷︷ ︸
Eopt

Approximation error Eapp: reduced by choosing a larger model
Estimation error Eest: reduced by

1 Increasing N, or
2 Choosing smaller model [5, 12, 15]

Optimization error Eopt: reduced by
1 Running optimization alg. longer (with smaller ρ)
2 Choosing more efficient optimization alg.
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Minimizing Excess Error

E = C[f ∗F ]−C[f ∗]︸ ︷︷ ︸
Eapp

+C[fN ]−C[f ∗F ]︸ ︷︷ ︸
Eest

+C[f̃N ]−C[fN ]︸ ︷︷ ︸
Eopt

Small-scale ML tasks:

Mainly constrained by N
Computing time is not an issue, so Eopt can be insignificant by
choosing small ρ

Size of hypothesis is important to balance the trade-off between Eapp
and Eest

Large-scale ML tasks:
Mainly constrained by time (significant Eopt), so SGD is preferred
N is large, so Eest can be reduced
Large model is preferred to reduce Eapp
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Big Data + Big Models

9. COTS HPC unsupervised convolutional network [6]
10. GoogleLeNet [14]

With domain-specific architecture such as convolutional NNs
(CNNs) and recurrent NNs (RNNs)
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Outline

1 When ML Meets Big Data

2 Advantages of Deep Learning
Representation Learning
Exponential Gain of Expressiveness
Memory and GPU Friendliness
Online & Transfer Learning

3 Learning Theory Revisited
Generalizability and Over-Parametrization
Wide-and-Deep NN is a Gaussian Process before Training*
Gradient Descent is an Affine Transformation*
Wide-and-Deep NN is a Gaussian Process after Training*

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 31 / 67



Over-Parametrized NNs
Let D(l) be the output dimension (“width”) of a layer f (l)(· ; θ

(l)) of an
NN

Input/output dimension: (x,y) ∈ RD(0) ×RD(L)

D = min(D(0), · · · ,D(L)) the network width
From the statistical learning theory point of view, the larger the D, the
worse the generalizability

However, as D grows, the generalizability actually increases [20]; i.e.,
over-parametrization leads to better performance
Why such a paradox?
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Wide-and-Deep NNs as Gaussian Processes
Recent studies [10, 9, 11] show that a wide NN of any depth can
be approximated by a Gaussian process (GP)

Either before, during, or after training

Recall that a GP is a non-parametric model whose complexity depends
only on the size of training set |X| and the hyperparameters of kernel
function k(·, ·):[

yN
yM

]
∼N (

[
mN

mM

]
,

[
KN,N KN,M

KM,N KM,M

]
with Bayesian inference for test points X′:

P(yM |X′,X) = N (KM,NK−1
N,NyN , KM,M−KM,NK−1

N,NKN,M)

Therefore, wide-and-deep NNs do not overfit as one may expect
The D, once becoming large, does not reflect true model complexity
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Example: NN for Regression

For simplicity, we consider an L-layer NN f (· ; θ) for the regression
problem:

f (x ; θ) = a(l) = φ
(l)(W(l)>a(l−1)+b(l)), for l = 1, . . . ,L,

where
the activation functions φ (1)(·) = · · ·= φ (L−1)(·)≡ φ(·) and φ (L−1)(·) is
an identify function
a(0) = x and ŷ = a(L) = z(L) ∈ R the mean of a Gaussian
θ
(l) = vec(W(l),b(l)) and θ = vec(θ (1), · · · ,θ (L))

Let ŷN = [f (x(1);θ), · · · , f (x(N);θ)]> ∈ RN be the predictions for the
points in training set X= {(x(i),y(i))}N

i=1 = {XN ∈ RN×D(0)
,yN ∈ RN}

Maximum-likelihood estimation:

argmax
θ

P(X |θ) = argmin
θ

C(ŷN ,yN) = argmin
θ

1
2
‖ŷN− yN‖2
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Weight Initialization and Normalization

a(l) = φ
(l)(W(l)>a(l−1)+b(l))

Common initialization: W(l)
i,j ∼N (0,σ2

w) and b(l)i ∼N (0,σ2
b )

To normalize the forward and backward gradient signals w.r.t. layer
width D(l), we can define an equivalent NN:

a(l) = φ
(l)(W(l)>a(l−1)+b(l)),

where W(l)
i,j = σw√

D(l−1)
ω

(l)
i,j , b(l)i = σbβ

(l)
i , and ω

(l)
i,j ,β

(l)
i ∼N (0,1)
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Distribution of ŷ
Given an x, what is the distribution of its prediction ŷ?

Recall that

ŷ = z(L) = w(L)>a(L−1)+b(L) =
σw√

D(l−1)
Σjω

(L)
j φ(z(L−1)

j )+σbβ
(L)

Since ω
(l)
j ’s and β (l) are Gaussian random variables with zero means,

their sum ŷ is also a zero-mean Gaussian
Now consider the predictions ŷN = [ŷ(x(1)), · · · , ŷ(x(N))]> ∈ RN for N
points, we have ŷ(x(1))

...
ŷ(x(N))

=
σw√

D(l−1)
Σjω

(l)
j,i


φ(z(l−1)

j (x(1)))
...

φ(z(l−1)
j (x(N)))

+σbβ
(l)
i 1N

As D(L−1)→ ∞, by multidimensional Central Limit Theorem, ŷ is a
multivariate Gaussian with mean 0N and covariance Σ
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Wide-and-Deep NN as a Gaussian Process
The covariance Σ completely describes the behavior of our NN
ŷ(·) = f (·) over N points
Furthermore, we will show that Σ can be describe by a deterministic
kernel function k(L)(· , ·) independent of a particular initialization such
that

Σ =

 k(L)(x(1),x(1)) · · · k(L)(x(1),x(N))
...

. . .
...

k(L)(x(N),x(1)) · · · k(L)(x(N),x(N))

≡ K(L)
N,N

This implies that the NN is in correspondent with a GP called NN-GP:[
ŷN
ŷM

]
∼N (

[
0N

0M

]
,

[
K(L)

N,N K(L)
N,M

K(L)
M,N K(L)

M,M

]
)

What’s the k(L)(· , ·)?
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Deriving k(1)(· , ·)
We use induction to show that z(1)i (·), z(2)i (·), · · · , z(L)(·) = ŷ(·) are
GPs, which are govern by kernels k(1)(·, ·), · · · ,k(L)(·, ·) independent
with i, respectively

Consider z(1)i (x) = σw√
D(0)

Σjω
(l)
j,i xj +σbβ

(l)
i a zero-mean Gaussian

As D(0)→ ∞, we have [z(1)i (x(1)), · · · ,z(1)i (x(N))]> ∼ N(0N ,K
(1)
N,N) by

multidimensional Central Limit Theorem, where

k(1)(x,x′) = Cov[z(1)i (x),z(1)i (x′)] = E
ω

(l)
:,i ,β

(l)
i
[z(1)i (x)z(1)i (x′)]

=
σ 2

w
D(0) E

[
Σj,kω

(l)
j,i ω

(l)
k,i xjx′k

]
+ σwσb√

D(0)
E
[
β
(l)
i Σjω

(l)
j,i xj

]
+ σwσb√

D(0)
E
[
β
(l)
i Σjω

(l)
j,i x′j

]
+σ2

b E
[
β
(l)
i β

(l)
i

]
=

σ 2
w

D(0) ΣjE
[
ω
(l)
j,i ω

(l)
j,i

]
xjx′j +σ2

b E
[
β
(l)
i β

(l)
i

]
=

σ 2
w

D(0) x>x′+σ2
b ,

is independent with i

Note that z(1)i (·) and z(1)j (·) are independent with each other, ∀i 6= j
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Deriving k(l)(· , ·)
Given that D(0)→ ∞, · · · ,D(l−2)→ ∞ and

[z(l−1)
i (x(1)), · · · ,z(l−1)

i (x(N))]> ∼ N(0N ,K
(l−1)
N,N )

z(l−1)
i (·) and z(l−1)

j (·) are independent with each other, ∀i 6= j

Consider z(l)i (x) = σw√
D(l−1)

Σjω
(l)
j,i φ(z(l−1)

j (x))+σbβ
(l)
i a zero-mean

Gaussian
As D(l−1)→ ∞, we have [z(l)i (x(1)), · · · ,z(l)i (x(N))]> ∼ N(0N ,K

(l)
N,N) by

multidimensional Central Limit Theorem, where

k(l)(x,x′) = Cov[z(l)i (x),z(l)i (x′)] = E
ω

(l)
:,i ,β

(l)
i ,z(l−1)(x)[z

(l)
i (x)z(l)i (x′)]

=
σ 2

w
D(l−1) E

[
Σj,kω

(l)
j,i ω

(l)
k,i φ(z(l−1)

j (x))φ(z(l−1)
k (x′))

]
+σ2

b E
[
β
(l)
i β

(l)
i

]
+ σwσb√

D(l−1)

(
E
[
β
(l)
i Σjω

(l)
j,i φ(z(l−1)

j (x))
]
+E

[
β
(l)
i Σjω

(l)
j,i φ(z(l−1)

j (x′))
])

=
σ 2

w
D(l−1) ΣjE

[
ω
(l)
j,i ω

(l)
j,i

]
E
[
φ(z(l−1)

j (x))φ(z(l−1)
j (x′))

]
+σ2

b E
[
β
(l)
i β

(l)
i

]
= σ2

wE
(z(l−1)

i (x),z(l−1)
i (x′))∼N (02,K

(l−1)
2,2 )

[
φ(z(l−1)

i (x))φ(z(l−1)
i (x′))

]
+σ2

b ,

where
K(l−1)

2,2 =

[
k(l−1)(x,x) k(l−1)(x,x′)
k(l−1)(x,x′) k(l−1)(x′,x′)

]
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Evaluating K(l)

For certain activation functions φ(·), such as tanh and ReLU,
k(l)(x,x′) has a closed form [10]
For other φ(·)’s, Markov Chain Monte Carlo (MCMC) sampling is
required to devaluate k(l)(x,x′)
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Outline

1 When ML Meets Big Data

2 Advantages of Deep Learning
Representation Learning
Exponential Gain of Expressiveness
Memory and GPU Friendliness
Online & Transfer Learning

3 Learning Theory Revisited
Generalizability and Over-Parametrization
Wide-and-Deep NN is a Gaussian Process before Training*
Gradient Descent is an Affine Transformation*
Wide-and-Deep NN is a Gaussian Process after Training*
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Weight Dynamics

Observation: the weights of a wide NN do not change much during
gradient descent

Why?

A small change in a large number of neurons is enough to
significantly change the output
This allows us to approximate an NN f (· ; θ) w.r.t. weights using the
first-order Taylor expansion
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Linearization of f (· ; θ)

Let θ
(t) be the parameters of the NN at the t-th step of gradient

descent
ŷ(t)N = [f (x(1);θ

(t)), · · · , f (x(N);θ
(t))]> be the predictions over training

points

Since θ
(t) is close to θ

(0) at any time t, we can approximate f (· ;θ
(t))

using the first-order Taylor expansion w.r.t. θ
(t) around θ

(0):

f (x,θ (t))≈ f̄ (x,θ (t)) = f (x,θ (0))+∇θ f (x,θ (0))>(θ (t)−θ
(0))

f̄ is still non-linear in terms of x
Let ȳ(t)N = [f̄ (x(1);θ

(t)), · · · , f̄ (x(N);θ
(t))]> be the predictions of f̄ at time

t
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Weight and Prediction Dynamics

f (x,θ (t))≈ f̄ (x,θ (t)) = f (x,θ (0))+∇θ f (x,θ (0))>(θ (t)−θ
(0))

Gradient descent with learning rate η makes the following changes:

θ
(t+1)−θ

(t) ≈−η∇θ C(ȳ(t)N ,yN)

=−η∇θ ȳ(t)N ∇ȳ(t)N
C(ȳ(t)N ,yN)

=−η∇θ ŷ(0)N ∇ȳ(t)N
C(ȳ(t)N ,yN)

and
ȳ(t+1)

N − ȳ(t)N = ∇θ ŷ(0)>N (θ (t+1)−θ
(t))

≈−η∇θ ŷ(0)>N︸ ︷︷ ︸
N×D

∇θ ŷ(0)N︸ ︷︷ ︸
D×N

∇ȳ(t)N
C(ȳ(t)N ,yN),

where T(0)
N,N ≡ ∇θ ŷ(0)>N ∇θ ŷ(0)N ∈ RN×N is called the Neural Tangent

Kernel (NTK) matrix
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Prediction Dynamics in Regression
In regression where C(ȳ(0)N ,yN) =

1
2‖ȳ

(0)
N − yN‖2, we have

ȳ(t+1)
N − ȳ(t)N ≈−ηT(0)

N,N∇ȳ(t)N
C(ȳ(t)N ,yN) =−ηT(0)

N,N(ȳ
(t)
N − yN)

With a sufficiently small learning rate η , we can think t as continuous
time and each GD step as ∆t, where

lim∆t→0
ȳ(t+∆t)

N −ȳ(t)N
∆t =

∂ ȳ(t)N
∂ t ≈−ηT(0)

N,N(ȳ
(t)
N − yN)

Letting u(t) = ȳ(t)N − yN , we have an ordinary differential equation:

∂ ȳ(t)N
∂ t ≈−ηT(0)

N,N(ȳ
(t)
N − yN)

⇒ ∂u(t)

∂ t ≈−ηT(0)
N,Nu(t)

Therefore, u(t) = e−ηT(0)
N,N tu(0)

Recall that eAt = 1
0! I+ t

1! A+ t2
2! A2 + · · · for a symmetric A

So, ∂eAt

∂ t = 1
0! A+ t

1! A2 + · · ·= ( 1
0! I+ t

1! A+ · · ·)A = AeAt

This implies that
ȳ(t)N = e−ηT(0)

N,N tȳ(0)N +(I− e−ηT(0)
N,N t)yN = e−ηT(0)

N,N tŷ(0)N +(I− e−ηT(0)
N,N t)yN
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N,N∇ȳ(t)N
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Weight Dynamics in Regression

By definition of ȳ(t)N , we also have ȳ(t)N = ŷ(0)N +∇θ ŷ(0)>N (θ (t)−θ
(0))

Solving θ
(t) in

e−ηT(0)
N,N tŷ(0)N +(I− e−ηT(0)

N,N t)yN = ŷ(0)N +∇θ ŷ(0)>N (θ (t)−θ
(0)),

we have

θ
(t) = θ

(0)−∇θ ŷ(0)N T(0)−1
N,N (I− e−ηT(0)

N,N t)(ŷ(0)N − yN)
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Predictions of Trained NN

Substituting θ
(t) in ȳ(t)N = ŷ(0)N +∇θ ŷ(0)>N (θ (t)−θ

(0)), we have that:
For an arbitrary (training or test) point x′, the prediction of trained
NN is

f (x′,θ (t))≈ f̄ (x′;θ
(t)) = p>

[
ŷ(0)N
ŷ′(0)

]
+q,

where
p = [−T(0)

1′,NT(0)−1
N,N (I− e−ηT(0)

N,N t),1]> ∈ RN+1,

q = T(0)
1′,NT(0)−1

N,N (I− e−ηT(0)
N,N t)yN

T(0)
N,N = ∇θ ŷ(0)>N ∇θ ŷ(0)N ∈ RN×N is the NTK matrix for XN

T(0)
1′,N = ∇θ ŷ′(0)>∇θ ŷ(0)N ∈ R1×N is the NTK matrix between x′ and XN

No actual training needed!
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ŷ′(0)

]
+q,

where
p = [−T(0)

1′,NT(0)−1
N,N (I− e−ηT(0)

N,N t),1]> ∈ RN+1,

q = T(0)
1′,NT(0)−1

N,N (I− e−ηT(0)
N,N t)yN

T(0)
N,N = ∇θ ŷ(0)>N ∇θ ŷ(0)N ∈ RN×N is the NTK matrix for XN

T(0)
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Gradient Descent as an Affine Transformation

Theorem (NTK in infinite width)

As the NN’s width goes to infinity, T(0)
N,N and T(0)

1′,N converges to TN,N and
T1′,N , which can be described by a deterministic kernel function τ(L)(·, ·)
independent of a particular initialization [9, 11].

That is, each element Ti,j = τ(L)(x(i),x(j))
τ(L)(·, ·) depends only on the network structure and hyperparameters
of initial weights
τ(L)(·, ·) has a closed form for certain activation functions φ(·)’s,
including erf and ReLU

f (x′,θ (t))≈ p>
[

ŷ(0)

ŷ′(0)

]
+q is an affine transformation of a random

vector
[

ŷ(0)

ŷ′(0)

]
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ŷ′(0)

]
Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 49 / 67



NTK in Infinite Width

Consider the pre-activations z(1)i (·), z(2)i (·), · · · , z(L)(·) = ŷ(0)(·) at
different layers at time 0

Let ∇
θ
(≤1)z(1)i (·), ∇

θ
(≤2)z(2)i (·), · · · , ∇

θ
(≤L)z(L)(·) = ∇θ ŷ(0)(·) be the

corresponding derivatives
θ
(≤l) ≡ vec(θ (1), · · · ,θ (l))

We use induction to show that, when D→ ∞, we have

∇
θ
(≤l)z

(l)
i (x)>∇

θ
(≤l)z

(l)
i (x′) = τ(l)(x,x′)

= k(l)(x,x′)+
σ2

wτ(l−1)(x,x′)E
(z(l−1)

i (x),z(l−1)
i (x′))∼N (02,K

(l−1)
2,2 )

[
φ ′(z(l−1)

i (x))φ ′(z(l−1)
i (x′))

]
at any layer l, and τ(1)(x,x′) = k(1)(x,x′)

τ(l)(·, ·) is independent of i
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Deriving τ(1)(· , ·)

At the first layer, we have

∇
θ
(≤1)z(1)i (x)>∇

θ
(≤1)z(1)i (x′) =

σ2
w

D(0) x>x′+σ
2
b = k(1)(x,x′)

as D(0)→ ∞

Now, assume that when D(0)→ ∞, · · · ,D(l−2)→ ∞,
∇

θ
(≤l−1)z(l−1)

i (x)>∇
θ
(≤l−1)z(l−1)

i (x′) = τ(l−1)(x,x′) holds
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Deriving τ(l)(· , ·) I
At the l-th layer, we have

∇
θ
(≤l)z(l)i (x)>∇

θ
(≤l)z(l)i (x′)

= [∇
θ
(l)z(l)i (x),∇

θ
(≤l−1)z(l)i (x)][∇

θ
(l)z(l)i (x′),∇

θ
(≤l−1)z(l)i (x′)]>

= ∇
θ
(l)z(l)i (x)>∇

θ
(l)z(l)i (x′)+∇

θ
(≤l−1)z(l)i (x)>∇

θ
(≤l−1)z(l)i (x′)

As D(l−1)→ ∞, the first term

∇
θ
(l)z(l)i (x)>∇

θ
(l)z(l)i (x′) =

σ2
w

D(l−1) Σjφ(z
(l−1)
j (x))φ(z(l−1)

j (x′))+σ
2
b

converges to

σ2
wE

(z(l−1)
i (x),z(l−1)

i (x′))∼N (02,K
(l−1)
2,2 )

[
φ(z(l−1)

i (x))φ(z(l−1)
i (x′))

]
+σ2

b

= k(l)(x,x′)

because z(l−1)
i (·) and z(l−1)

j (·) are i.i.d.
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θ
(≤l−1)z(l)i (x′)]>

= ∇
θ
(l)z(l)i (x)>∇

θ
(l)z(l)i (x′)+∇

θ
(≤l−1)z(l)i (x)>∇

θ
(≤l−1)z(l)i (x′)

As D(l−1)→ ∞, the first term

∇
θ
(l)z(l)i (x)>∇

θ
(l)z(l)i (x′) =

σ2
w

D(l−1) Σjφ(z
(l−1)
j (x))φ(z(l−1)

j (x′))+σ
2
b

converges to

σ2
wE

(z(l−1)
i (x),z(l−1)

i (x′))∼N (02,K
(l−1)
2,2 )

[
φ(z(l−1)

i (x))φ(z(l−1)
i (x′))

]
+σ2

b

= k(l)(x,x′)

because z(l−1)
i (·) and z(l−1)

j (·) are i.i.d.
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Deriving τ(l)(· , ·) II
Consider the second term

∇
θ
(≤l−1)z(l)i (x)>∇

θ
(≤l−1)z(l)i (x′)

= ∇z(l−1)(x)z
(l)
i (x)>∇

θ
(≤l−1)z(l−1)(x)>∇

θ
(≤l−1)z(l−1)(x′)∇z(l−1)(x)z

(l)
i (x′)

= ∇z(l−1)(x)z
(l)
i (x)>

 τ(l−1)(x,x′) 0 0

0
. . . 0

0 0 τ(l−1)(x,x′)

∇z(l−1)(x)z
(l)
i (x)

= τ(l−1)(x,x′)Σj
∂ z(l)i (x)

∂ z(l−1)
j (x)

· ∂ z(l)i (x′)
∂ z(l−1)

j (x′)

= τ(l−1)(x,x′) σ2
w

D(l−1) Σjω
(l)
j,i ω

(l)
j,i φ ′(z(l−1)

j (x))φ ′(z(l−1)
j (x′))

As D(l−1)→ ∞, it becomes

σ
2
wτ

(l−1)(x,x′)E
(z(l−1)

i (x),z(l−1)
i (x′))∼N (02,K

(l−1)
2,2 )

[
φ
′(z(l−1)

i (x))φ ′(z(l−1)
i (x′))

]
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Wide-and-Deep NN as a Gaussian Process I

As D→ ∞, randomly initialized NN has a corresponding NN-GP:[
ŷN
ŷM

]
∼N (

[
0N

0M

]
,

[
K(L)

N,N K(L)
N,M

K(L)
M,N K(L)

M,M

]
)

As D→ ∞, GD-based training is an affine transformation:

f (x′,θ (t))≈ f̄ (x′;θ
(t)) = p>

[
ŷ(0)N
ŷ′(0)

]
+q

where
p = [−T1′,NT−1

N,N(I− e−ηTN,N t),1]> ∈ RN+1

q = T1′,NT−1
N,N(I− e−ηTN,N t)yN

TN,N and T1′,N the NTK matrices
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Wide-and-Deep NN as a Gaussian Process II

Therefore, as D→ ∞, the trained NN is still in correspondent with a
GP, called NTK-GP, whose predictions for M test points are[

ŷN
ŷM

]
∼N (

[
AyN
ByN

]
,C>

[
K(L)

N,N K(L)
N,M

K(L)
M,N K(L)

M,M

]
C),

where
A = (I− e−ηTN,N t) ∈ RN×N

B = TM,NT−1
N,N(I− e−ηTN,N t) ∈ RM×N

C =

[
IN,N−A ON,M
−B IM,M

]
∈ R(N+M)×(N+M)
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Mean Predictions of NTK-GP

Prior (unconditioned) mean predictions for training set:

ŷN = AyN = (I− e−ηTN,N t)yN

As t→ ∞, the ŷN always approaches true labels yN
This explains why the SGD-based training of large NNs seldom
encounters significant obstacles such as local minima [8]

Prior mean predictions for test set:

ŷM = By = TM,NT−1
N,N(I− e−ηTN,N t)yN

As t→ ∞, we have ŷM = TM,NT−1
N,NyN

Weight hyperparameters are important because they determines
TM,NT−1

N,N
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ŷN = AyN = (I− e−ηTN,N t)yN
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Analytic vs. Real Predictions

Wide residual network [19] trained by SGD with momentum on MSE
loss on CIFAR-10

First two panes shows the output dynamics for a randomly selected
subset of train and test points
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Remarks

Wide-and-deep NNs can be approximated by a class of GPs
Either before, during, or after training

Therefore, complexity of wide-and-deep NNs grows with N, not |θ |

Applicable to other architectures including CNN [2, 16], RNN [17, 1],
and any architecture [18]
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Limitations
Approximation holds only when the NNs have:

Infinite width
Small learning rate: η < 2

λmax+λmin
where λmax/min is the max/min

eigenvalue of TN,N [17]
Proper initialization (to be discussed next)

The prior NTK-GP inference ŷNTK-GP = TM,NT−1
N,NyN is inconsistent

with the Bayesian inference of NN-GP ŷNN-GP = KM,NK−1
N,NyN

SGP introduces bias [3]
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