
Large-Scale Machine Learning

Shan-Hung Wu
shwu@cs.nthu.edu.tw

Department of Computer Science,
National Tsing Hua University, Taiwan

Machine Learning

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 1 / 67

Outline

1 When ML Meets Big Data

2 Advantages of Deep Learning
Representation Learning
Exponential Gain of Expressiveness
Memory and GPU Friendliness
Online & Transfer Learning

3 Learning Theory Revisited
Generalizability and Over-Parametrization
Wide-and-Deep NN is a Gaussian Process before Training*
Gradient Descent is an Affine Transformation*
Wide-and-Deep NN is a Gaussian Process after Training*

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 2 / 67

Outline

1 When ML Meets Big Data

2 Advantages of Deep Learning
Representation Learning
Exponential Gain of Expressiveness
Memory and GPU Friendliness
Online & Transfer Learning

3 Learning Theory Revisited
Generalizability and Over-Parametrization
Wide-and-Deep NN is a Gaussian Process before Training*
Gradient Descent is an Affine Transformation*
Wide-and-Deep NN is a Gaussian Process after Training*

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 3 / 67

The Big Data Era

Today, more and more of our activities are recorded by ubiquitous
computing devices

Networked computers make it easy to centralize these records and
curate them into a big dataset
Large-scale machine learning techniques solve problems by
leveraging the posteriori knowledge learned from the big data

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 4 / 67

The Big Data Era

Today, more and more of our activities are recorded by ubiquitous
computing devices
Networked computers make it easy to centralize these records and
curate them into a big dataset

Large-scale machine learning techniques solve problems by
leveraging the posteriori knowledge learned from the big data

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 4 / 67

The Big Data Era

Today, more and more of our activities are recorded by ubiquitous
computing devices
Networked computers make it easy to centralize these records and
curate them into a big dataset
Large-scale machine learning techniques solve problems by
leveraging the posteriori knowledge learned from the big data

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 4 / 67

Characteristics of Big Data

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 5 / 67

Challenges of Large-Scale ML

Variety and veracity
Feature engineering gets even
harder

Multi-task/transfer learning
Volume

Large D: curse of
dimensionality
Large N: training efficiency

Velocity
Online learning

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 6 / 67

Challenges of Large-Scale ML

Variety and veracity
Feature engineering gets even
harder
Multi-task/transfer learning

Volume
Large D: curse of
dimensionality
Large N: training efficiency

Velocity
Online learning

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 6 / 67

Challenges of Large-Scale ML

Variety and veracity
Feature engineering gets even
harder
Multi-task/transfer learning

Volume
Large D: curse of
dimensionality
Large N: training efficiency

Velocity
Online learning

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 6 / 67

Challenges of Large-Scale ML

Variety and veracity
Feature engineering gets even
harder
Multi-task/transfer learning

Volume
Large D: curse of
dimensionality
Large N: training efficiency

Velocity
Online learning

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 6 / 67

Advantages of Deep Learning

Neural Networks (NNs) that go deep

Automatic feature engineering
A kind of representation learning

Exponential gain of expressiveness
Counters the curse of dimensionality

Memory and GPU friendliness
SGD
GPU-based parallelism

Supporting online & transfer learning

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 7 / 67

Advantages of Deep Learning

Neural Networks (NNs) that go deep
Automatic feature engineering

A kind of representation learning

Exponential gain of expressiveness
Counters the curse of dimensionality

Memory and GPU friendliness
SGD
GPU-based parallelism

Supporting online & transfer learning

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 7 / 67

Advantages of Deep Learning

Neural Networks (NNs) that go deep
Automatic feature engineering

A kind of representation learning
Exponential gain of expressiveness

Counters the curse of dimensionality

Memory and GPU friendliness
SGD
GPU-based parallelism

Supporting online & transfer learning

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 7 / 67

Advantages of Deep Learning

Neural Networks (NNs) that go deep
Automatic feature engineering

A kind of representation learning
Exponential gain of expressiveness

Counters the curse of dimensionality
Memory and GPU friendliness

SGD
GPU-based parallelism

Supporting online & transfer learning

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 7 / 67

Advantages of Deep Learning

Neural Networks (NNs) that go deep
Automatic feature engineering

A kind of representation learning
Exponential gain of expressiveness

Counters the curse of dimensionality
Memory and GPU friendliness

SGD
GPU-based parallelism

Supporting online & transfer learning

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 7 / 67

Is Deep Learning a Panacea?

I have big data, so I have to use deep learning

Wrong! No free launch theorem: there is no single ML algorithm that
outperforms others in every domain
Deep learning is more useful when the function f to learn is complex
(nonlinear to the input dimension) and has composited patterns

E.g., image recognition, natural language processing

For simple (linear) f , there are specialized large-scale ML techniques
(e.g., LIBLINEAR [7]) that are much more efficient

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 8 / 67

Is Deep Learning a Panacea?

I have big data, so I have to use deep learning
Wrong! No free launch theorem: there is no single ML algorithm that
outperforms others in every domain

Deep learning is more useful when the function f to learn is complex
(nonlinear to the input dimension) and has composited patterns

E.g., image recognition, natural language processing

For simple (linear) f , there are specialized large-scale ML techniques
(e.g., LIBLINEAR [7]) that are much more efficient

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 8 / 67

Is Deep Learning a Panacea?

I have big data, so I have to use deep learning
Wrong! No free launch theorem: there is no single ML algorithm that
outperforms others in every domain
Deep learning is more useful when the function f to learn is complex
(nonlinear to the input dimension) and has composited patterns

E.g., image recognition, natural language processing

For simple (linear) f , there are specialized large-scale ML techniques
(e.g., LIBLINEAR [7]) that are much more efficient

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 8 / 67

Is Deep Learning a Panacea?

I have big data, so I have to use deep learning
Wrong! No free launch theorem: there is no single ML algorithm that
outperforms others in every domain
Deep learning is more useful when the function f to learn is complex
(nonlinear to the input dimension) and has composited patterns

E.g., image recognition, natural language processing

For simple (linear) f , there are specialized large-scale ML techniques
(e.g., LIBLINEAR [7]) that are much more efficient

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 8 / 67

Outline

1 When ML Meets Big Data

2 Advantages of Deep Learning
Representation Learning
Exponential Gain of Expressiveness
Memory and GPU Friendliness
Online & Transfer Learning

3 Learning Theory Revisited
Generalizability and Over-Parametrization
Wide-and-Deep NN is a Gaussian Process before Training*
Gradient Descent is an Affine Transformation*
Wide-and-Deep NN is a Gaussian Process after Training*

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 9 / 67

Outline

1 When ML Meets Big Data

2 Advantages of Deep Learning
Representation Learning
Exponential Gain of Expressiveness
Memory and GPU Friendliness
Online & Transfer Learning

3 Learning Theory Revisited
Generalizability and Over-Parametrization
Wide-and-Deep NN is a Gaussian Process before Training*
Gradient Descent is an Affine Transformation*
Wide-and-Deep NN is a Gaussian Process after Training*

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 10 / 67

Representation Learning

Gray boxes are learned automatically

Deep learning maps the most
abstract (deepest) features to the
output

Usually, a simple linear function
suffices

In deep learning,
features/presentations are distributed

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 11 / 67

Representation Learning

Gray boxes are learned automatically
Deep learning maps the most
abstract (deepest) features to the
output

Usually, a simple linear function
suffices

In deep learning,
features/presentations are distributed

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 11 / 67

Representation Learning

Gray boxes are learned automatically
Deep learning maps the most
abstract (deepest) features to the
output

Usually, a simple linear function
suffices

In deep learning,
features/presentations are distributed

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 11 / 67

Distributed Representations of Data

In deep learning, we assume that x’s
were generated by compositions of
factors, potentially at multiple levels
in a hierarchy

E.g., layer 3: face = 0.3 [corner] +
0.7 [circle] + 0 [curve]

[.] a predefined non-linear function
Weights (arrows) learned from
training examples

Given x, factors at the same level
output a layer of features of x

Layer 2: 1, 2, 0.5 for [corner],
[circle], and [curve] respectively

To be fed into the factors in the next
(deeper) level

Face = 0.3 * 1 + 0.7 * 2

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 12 / 67

Distributed Representations of Data

In deep learning, we assume that x’s
were generated by compositions of
factors, potentially at multiple levels
in a hierarchy

E.g., layer 3: face = 0.3 [corner] +
0.7 [circle] + 0 [curve]
[.] a predefined non-linear function
Weights (arrows) learned from
training examples

Given x, factors at the same level
output a layer of features of x

Layer 2: 1, 2, 0.5 for [corner],
[circle], and [curve] respectively

To be fed into the factors in the next
(deeper) level

Face = 0.3 * 1 + 0.7 * 2

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 12 / 67

Distributed Representations of Data

In deep learning, we assume that x’s
were generated by compositions of
factors, potentially at multiple levels
in a hierarchy

E.g., layer 3: face = 0.3 [corner] +
0.7 [circle] + 0 [curve]
[.] a predefined non-linear function
Weights (arrows) learned from
training examples

Given x, factors at the same level
output a layer of features of x

Layer 2: 1, 2, 0.5 for [corner],
[circle], and [curve] respectively

To be fed into the factors in the next
(deeper) level

Face = 0.3 * 1 + 0.7 * 2

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 12 / 67

Distributed Representations of Data

In deep learning, we assume that x’s
were generated by compositions of
factors, potentially at multiple levels
in a hierarchy

E.g., layer 3: face = 0.3 [corner] +
0.7 [circle] + 0 [curve]
[.] a predefined non-linear function
Weights (arrows) learned from
training examples

Given x, factors at the same level
output a layer of features of x

Layer 2: 1, 2, 0.5 for [corner],
[circle], and [curve] respectively

To be fed into the factors in the next
(deeper) level

Face = 0.3 * 1 + 0.7 * 2

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 12 / 67

Outline

1 When ML Meets Big Data

2 Advantages of Deep Learning
Representation Learning
Exponential Gain of Expressiveness
Memory and GPU Friendliness
Online & Transfer Learning

3 Learning Theory Revisited
Generalizability and Over-Parametrization
Wide-and-Deep NN is a Gaussian Process before Training*
Gradient Descent is an Affine Transformation*
Wide-and-Deep NN is a Gaussian Process after Training*

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 13 / 67

Curse of Dimensionality

Most classic nonlinear ML models find θ by assuming function
smoothness:

if x∼ x(i) ∈ X, then f (x;w)∼ f (x(i);w)

E.g., the non-parametric methods predict the label ŷ of x by simply
interpolating the labels of examples x(i)’s close to x:

ŷ = ∑
i

αiy(i)k(x(i),x)+b, where k(x(i),x) = exp(−γ‖x(i)−x‖2)

Suppose f is smooth within a bin, we need exponentially more
examples to get a good interpolation as D increases

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 14 / 67

Curse of Dimensionality

Most classic nonlinear ML models find θ by assuming function
smoothness:

if x∼ x(i) ∈ X, then f (x;w)∼ f (x(i);w)

E.g., the non-parametric methods predict the label ŷ of x by simply
interpolating the labels of examples x(i)’s close to x:

ŷ = ∑
i

αiy(i)k(x(i),x)+b, where k(x(i),x) = exp(−γ‖x(i)−x‖2)

Suppose f is smooth within a bin, we need exponentially more
examples to get a good interpolation as D increases

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 14 / 67

Curse of Dimensionality

Most classic nonlinear ML models find θ by assuming function
smoothness:

if x∼ x(i) ∈ X, then f (x;w)∼ f (x(i);w)

E.g., the non-parametric methods predict the label ŷ of x by simply
interpolating the labels of examples x(i)’s close to x:

ŷ = ∑
i

αiy(i)k(x(i),x)+b, where k(x(i),x) = exp(−γ‖x(i)−x‖2)

Suppose f is smooth within a bin, we need exponentially more
examples to get a good interpolation as D increases

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 14 / 67

Exponential Gains from Depth I

Functions representable with a deep
rectifier NN require an exponential
number of hidden units in a shallow
NN [13]

In deep learning, a deep factor is
defined by “reusing” the shallow ones

Face = 0.3 [corner] + 0.7 [circle]
With a shallow structure, a deep factor
needs to be replaced by exponentially
many factors

Face = 0.3 [0.5 [vertical] + 0.5
[horizontal]] + 0.7 [...]

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 15 / 67

Exponential Gains from Depth I

Functions representable with a deep
rectifier NN require an exponential
number of hidden units in a shallow
NN [13]
In deep learning, a deep factor is
defined by “reusing” the shallow ones

Face = 0.3 [corner] + 0.7 [circle]

With a shallow structure, a deep factor
needs to be replaced by exponentially
many factors

Face = 0.3 [0.5 [vertical] + 0.5
[horizontal]] + 0.7 [...]

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 15 / 67

Exponential Gains from Depth I

Functions representable with a deep
rectifier NN require an exponential
number of hidden units in a shallow
NN [13]
In deep learning, a deep factor is
defined by “reusing” the shallow ones

Face = 0.3 [corner] + 0.7 [circle]
With a shallow structure, a deep factor
needs to be replaced by exponentially
many factors

Face = 0.3 [0.5 [vertical] + 0.5
[horizontal]] + 0.7 [...]

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 15 / 67

Exponential Gains from Depth II

Another example: an NN with absolute value rectification units

Each hidden unit specifies where to fold the input space in order to
create mirror responses (on both sides of the absolute value)
A single fold in a deep layer creates an exponentially large number of
piecewise linear regions in input space

No need to see examples in each linear regions in input space

This exponential gain counters the exponential challenges posed by
the curse of dimensionality

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 16 / 67

Exponential Gains from Depth II

Another example: an NN with absolute value rectification units

Each hidden unit specifies where to fold the input space in order to
create mirror responses (on both sides of the absolute value)
A single fold in a deep layer creates an exponentially large number of
piecewise linear regions in input space

No need to see examples in each linear regions in input space

This exponential gain counters the exponential challenges posed by
the curse of dimensionality

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 16 / 67

Outline

1 When ML Meets Big Data

2 Advantages of Deep Learning
Representation Learning
Exponential Gain of Expressiveness
Memory and GPU Friendliness
Online & Transfer Learning

3 Learning Theory Revisited
Generalizability and Over-Parametrization
Wide-and-Deep NN is a Gaussian Process before Training*
Gradient Descent is an Affine Transformation*
Wide-and-Deep NN is a Gaussian Process after Training*

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 17 / 67

Stochastic Gradient Descent
Gradient Descent (GD)

w(0)← a randon vector;
Repeat until convergence {

w(t+1)← w(t)−η∇wCN(w(t);X);
}

Needs to scan the entire dataset to descent (many I/Os)

(Mini-Batched) Stochastic Gradient Descent (SGD)

w(0)← a randon vector;
Repeat until convergence {
Randomly partition the training set X into minibatches {X(j)}j;
w(t+1)← w(t)−η∇wC(w(t);X(j));

}

No I/O if the next mini-batch can be prefetched

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 18 / 67

Stochastic Gradient Descent
Gradient Descent (GD)

w(0)← a randon vector;
Repeat until convergence {

w(t+1)← w(t)−η∇wCN(w(t);X);
}

Needs to scan the entire dataset to descent (many I/Os)

(Mini-Batched) Stochastic Gradient Descent (SGD)

w(0)← a randon vector;
Repeat until convergence {
Randomly partition the training set X into minibatches {X(j)}j;
w(t+1)← w(t)−η∇wC(w(t);X(j));

}

No I/O if the next mini-batch can be prefetched

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 18 / 67

Stochastic Gradient Descent
Gradient Descent (GD)

w(0)← a randon vector;
Repeat until convergence {

w(t+1)← w(t)−η∇wCN(w(t);X);
}

Needs to scan the entire dataset to descent (many I/Os)

(Mini-Batched) Stochastic Gradient Descent (SGD)

w(0)← a randon vector;
Repeat until convergence {

Randomly partition the training set X into minibatches {X(j)}j;
w(t+1)← w(t)−η∇wC(w(t);X(j));

}

No I/O if the next mini-batch can be prefetched

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 18 / 67

Stochastic Gradient Descent
Gradient Descent (GD)

w(0)← a randon vector;
Repeat until convergence {

w(t+1)← w(t)−η∇wCN(w(t);X);
}

Needs to scan the entire dataset to descent (many I/Os)

(Mini-Batched) Stochastic Gradient Descent (SGD)

w(0)← a randon vector;
Repeat until convergence {

Randomly partition the training set X into minibatches {X(j)}j;
w(t+1)← w(t)−η∇wC(w(t);X(j));

}

No I/O if the next mini-batch can be prefetched
Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 18 / 67

GD vs. SGD

Is SGD really a better algorithm?

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 19 / 67

GD vs. SGD

Is SGD really a better algorithm?

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 19 / 67

Yes, If You Have Big Data

Performance is limited by training time

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 20 / 67

Asymptotic Analysis [4]

GD SGD
Time per iteration N 1
#Iterations to opt. error ρ log 1

ρ

1
ρ

Time to opt. error ρ N log 1
ρ

1
ρ

Time to excess error ε
1

ε1/α
log 1

ε
, where α ∈ [1

2 ,1]
1
ε

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 21 / 67

Parallelizing SGD

Data Parallelism Model Parallelism

Every core/GPU trains the full
model given partitioned data.

Every core/GPU train a
partitioned model given full

data.

The effectiveness depends on applications and available hardware
E.g., CPU/GPU speed, communication latency, bandwidth, etc.

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 22 / 67

Parallelizing SGD

Data Parallelism Model Parallelism

Every core/GPU trains the full
model given partitioned data.

Every core/GPU train a
partitioned model given full

data.

The effectiveness depends on applications and available hardware
E.g., CPU/GPU speed, communication latency, bandwidth, etc.

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 22 / 67

Outline

1 When ML Meets Big Data

2 Advantages of Deep Learning
Representation Learning
Exponential Gain of Expressiveness
Memory and GPU Friendliness
Online & Transfer Learning

3 Learning Theory Revisited
Generalizability and Over-Parametrization
Wide-and-Deep NN is a Gaussian Process before Training*
Gradient Descent is an Affine Transformation*
Wide-and-Deep NN is a Gaussian Process after Training*

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 23 / 67

Online Learning

So far, we assume that the training data X comes at once
What if data come sequentially?

Online learning: to update model when new data arrive
This a already supported by SGD

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 24 / 67

Online Learning

So far, we assume that the training data X comes at once
What if data come sequentially?
Online learning: to update model when new data arrive

This a already supported by SGD

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 24 / 67

Online Learning

So far, we assume that the training data X comes at once
What if data come sequentially?
Online learning: to update model when new data arrive
This a already supported by SGD

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 24 / 67

Muti-Task and Transfer Learning

Multi-task learning: to
learning a single model for
multiple tasks

Via shared layers

Transfer learning: to reuse the
knowledge learned from one task
to help another

Via pretrained layers (whose
weights may be further
updated when a smaller
learning rate)

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 25 / 67

Muti-Task and Transfer Learning

Multi-task learning: to
learning a single model for
multiple tasks

Via shared layers
Transfer learning: to reuse the
knowledge learned from one task
to help another

Via pretrained layers (whose
weights may be further
updated when a smaller
learning rate)

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 25 / 67

Muti-Task and Transfer Learning

Multi-task learning: to
learning a single model for
multiple tasks

Via shared layers
Transfer learning: to reuse the
knowledge learned from one task
to help another

Via pretrained layers (whose
weights may be further
updated when a smaller
learning rate)

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 25 / 67

Outline

1 When ML Meets Big Data

2 Advantages of Deep Learning
Representation Learning
Exponential Gain of Expressiveness
Memory and GPU Friendliness
Online & Transfer Learning

3 Learning Theory Revisited
Generalizability and Over-Parametrization
Wide-and-Deep NN is a Gaussian Process before Training*
Gradient Descent is an Affine Transformation*
Wide-and-Deep NN is a Gaussian Process after Training*

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 26 / 67

Learning Theory

How to learn a function fN from N examples X that is close to the
true function f ∗?

Empirical risk: CN [fN] = 1
N ∑

N
i=1 loss(fN(x(i)),y(i))

Expected risk: C[fN] =
∫

loss(f (x),y)dP(x,y)
Let f ∗ = argminf C[f] be the true function (our goal)
Since we are seeking a function in a model (hypothesis space) F, this
is what can have at best: f ∗F = argminf∈F C[f]

But we only minimizes errors on limited examples in our objective, so
we only have fN = argminf∈F CN [f]

The excess error E = C[fN]−C[f ∗]:

E = C[f ∗F]−C[f ∗]︸ ︷︷ ︸
Eapp

+C[fN]−C[f ∗F]︸ ︷︷ ︸
Eest

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 27 / 67

Learning Theory

How to learn a function fN from N examples X that is close to the
true function f ∗?
Empirical risk: CN [fN] = 1

N ∑
N
i=1 loss(fN(x(i)),y(i))

Expected risk: C[fN] =
∫

loss(f (x),y)dP(x,y)

Let f ∗ = argminf C[f] be the true function (our goal)
Since we are seeking a function in a model (hypothesis space) F, this
is what can have at best: f ∗F = argminf∈F C[f]

But we only minimizes errors on limited examples in our objective, so
we only have fN = argminf∈F CN [f]

The excess error E = C[fN]−C[f ∗]:

E = C[f ∗F]−C[f ∗]︸ ︷︷ ︸
Eapp

+C[fN]−C[f ∗F]︸ ︷︷ ︸
Eest

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 27 / 67

Learning Theory

How to learn a function fN from N examples X that is close to the
true function f ∗?
Empirical risk: CN [fN] = 1

N ∑
N
i=1 loss(fN(x(i)),y(i))

Expected risk: C[fN] =
∫

loss(f (x),y)dP(x,y)
Let f ∗ = argminf C[f] be the true function (our goal)

Since we are seeking a function in a model (hypothesis space) F, this
is what can have at best: f ∗F = argminf∈F C[f]

But we only minimizes errors on limited examples in our objective, so
we only have fN = argminf∈F CN [f]

The excess error E = C[fN]−C[f ∗]:

E = C[f ∗F]−C[f ∗]︸ ︷︷ ︸
Eapp

+C[fN]−C[f ∗F]︸ ︷︷ ︸
Eest

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 27 / 67

Learning Theory

How to learn a function fN from N examples X that is close to the
true function f ∗?
Empirical risk: CN [fN] = 1

N ∑
N
i=1 loss(fN(x(i)),y(i))

Expected risk: C[fN] =
∫

loss(f (x),y)dP(x,y)
Let f ∗ = argminf C[f] be the true function (our goal)
Since we are seeking a function in a model (hypothesis space) F, this
is what can have at best: f ∗F = argminf∈F C[f]

But we only minimizes errors on limited examples in our objective, so
we only have fN = argminf∈F CN [f]

The excess error E = C[fN]−C[f ∗]:

E = C[f ∗F]−C[f ∗]︸ ︷︷ ︸
Eapp

+C[fN]−C[f ∗F]︸ ︷︷ ︸
Eest

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 27 / 67

Learning Theory

How to learn a function fN from N examples X that is close to the
true function f ∗?
Empirical risk: CN [fN] = 1

N ∑
N
i=1 loss(fN(x(i)),y(i))

Expected risk: C[fN] =
∫

loss(f (x),y)dP(x,y)
Let f ∗ = argminf C[f] be the true function (our goal)
Since we are seeking a function in a model (hypothesis space) F, this
is what can have at best: f ∗F = argminf∈F C[f]

But we only minimizes errors on limited examples in our objective, so
we only have fN = argminf∈F CN [f]

The excess error E = C[fN]−C[f ∗]:

E = C[f ∗F]−C[f ∗]︸ ︷︷ ︸
Eapp

+C[fN]−C[f ∗F]︸ ︷︷ ︸
Eest

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 27 / 67

Learning Theory

How to learn a function fN from N examples X that is close to the
true function f ∗?
Empirical risk: CN [fN] = 1

N ∑
N
i=1 loss(fN(x(i)),y(i))

Expected risk: C[fN] =
∫

loss(f (x),y)dP(x,y)
Let f ∗ = argminf C[f] be the true function (our goal)
Since we are seeking a function in a model (hypothesis space) F, this
is what can have at best: f ∗F = argminf∈F C[f]

But we only minimizes errors on limited examples in our objective, so
we only have fN = argminf∈F CN [f]

The excess error E = C[fN]−C[f ∗]:

E = C[f ∗F]−C[f ∗]︸ ︷︷ ︸
Eapp

+C[fN]−C[f ∗F]︸ ︷︷ ︸
Eest

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 27 / 67

Excess Error

Wait, we may not have enough training time, so we stop iterations
early and have f̃N , where CN [f̃N]≤ CN [fN]+ρ

The excess error becomes E = C[f̃N]−C[f ∗]:

E = C[f ∗F]−C[f ∗]︸ ︷︷ ︸
Eapp

+C[fN]−C[f ∗F]︸ ︷︷ ︸
Eest

+C[f̃N]−C[fN]︸ ︷︷ ︸
Eopt

Approximation error Eapp: reduced by choosing a larger model
Estimation error Eest: reduced by

1 Increasing N, or
2 Choosing smaller model [5, 12, 15]

Optimization error Eopt: reduced by
1 Running optimization alg. longer (with smaller ρ)
2 Choosing more efficient optimization alg.

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 28 / 67

Excess Error

Wait, we may not have enough training time, so we stop iterations
early and have f̃N , where CN [f̃N]≤ CN [fN]+ρ

The excess error becomes E = C[f̃N]−C[f ∗]:

E = C[f ∗F]−C[f ∗]︸ ︷︷ ︸
Eapp

+C[fN]−C[f ∗F]︸ ︷︷ ︸
Eest

+C[f̃N]−C[fN]︸ ︷︷ ︸
Eopt

Approximation error Eapp: reduced by choosing a larger model
Estimation error Eest: reduced by

1 Increasing N, or
2 Choosing smaller model [5, 12, 15]

Optimization error Eopt: reduced by
1 Running optimization alg. longer (with smaller ρ)
2 Choosing more efficient optimization alg.

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 28 / 67

Excess Error

Wait, we may not have enough training time, so we stop iterations
early and have f̃N , where CN [f̃N]≤ CN [fN]+ρ

The excess error becomes E = C[f̃N]−C[f ∗]:

E = C[f ∗F]−C[f ∗]︸ ︷︷ ︸
Eapp

+C[fN]−C[f ∗F]︸ ︷︷ ︸
Eest

+C[f̃N]−C[fN]︸ ︷︷ ︸
Eopt

Approximation error Eapp: reduced by choosing a larger model

Estimation error Eest: reduced by
1 Increasing N, or
2 Choosing smaller model [5, 12, 15]

Optimization error Eopt: reduced by
1 Running optimization alg. longer (with smaller ρ)
2 Choosing more efficient optimization alg.

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 28 / 67

Excess Error

Wait, we may not have enough training time, so we stop iterations
early and have f̃N , where CN [f̃N]≤ CN [fN]+ρ

The excess error becomes E = C[f̃N]−C[f ∗]:

E = C[f ∗F]−C[f ∗]︸ ︷︷ ︸
Eapp

+C[fN]−C[f ∗F]︸ ︷︷ ︸
Eest

+C[f̃N]−C[fN]︸ ︷︷ ︸
Eopt

Approximation error Eapp: reduced by choosing a larger model
Estimation error Eest: reduced by

1 Increasing N, or
2 Choosing smaller model [5, 12, 15]

Optimization error Eopt: reduced by
1 Running optimization alg. longer (with smaller ρ)
2 Choosing more efficient optimization alg.

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 28 / 67

Excess Error

Wait, we may not have enough training time, so we stop iterations
early and have f̃N , where CN [f̃N]≤ CN [fN]+ρ

The excess error becomes E = C[f̃N]−C[f ∗]:

E = C[f ∗F]−C[f ∗]︸ ︷︷ ︸
Eapp

+C[fN]−C[f ∗F]︸ ︷︷ ︸
Eest

+C[f̃N]−C[fN]︸ ︷︷ ︸
Eopt

Approximation error Eapp: reduced by choosing a larger model
Estimation error Eest: reduced by

1 Increasing N, or
2 Choosing smaller model [5, 12, 15]

Optimization error Eopt: reduced by
1 Running optimization alg. longer (with smaller ρ)
2 Choosing more efficient optimization alg.

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 28 / 67

Minimizing Excess Error

E = C[f ∗F]−C[f ∗]︸ ︷︷ ︸
Eapp

+C[fN]−C[f ∗F]︸ ︷︷ ︸
Eest

+C[f̃N]−C[fN]︸ ︷︷ ︸
Eopt

Small-scale ML tasks:

Mainly constrained by N
Computing time is not an issue, so Eopt can be insignificant by
choosing small ρ

Size of hypothesis is important to balance the trade-off between Eapp
and Eest

Large-scale ML tasks:
Mainly constrained by time (significant Eopt), so SGD is preferred
N is large, so Eest can be reduced
Large model is preferred to reduce Eapp

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 29 / 67

Minimizing Excess Error

E = C[f ∗F]−C[f ∗]︸ ︷︷ ︸
Eapp

+C[fN]−C[f ∗F]︸ ︷︷ ︸
Eest

+C[f̃N]−C[fN]︸ ︷︷ ︸
Eopt

Small-scale ML tasks:
Mainly constrained by N

Computing time is not an issue, so Eopt can be insignificant by
choosing small ρ

Size of hypothesis is important to balance the trade-off between Eapp
and Eest

Large-scale ML tasks:
Mainly constrained by time (significant Eopt), so SGD is preferred
N is large, so Eest can be reduced
Large model is preferred to reduce Eapp

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 29 / 67

Minimizing Excess Error

E = C[f ∗F]−C[f ∗]︸ ︷︷ ︸
Eapp

+C[fN]−C[f ∗F]︸ ︷︷ ︸
Eest

+C[f̃N]−C[fN]︸ ︷︷ ︸
Eopt

Small-scale ML tasks:
Mainly constrained by N
Computing time is not an issue, so Eopt can be insignificant by
choosing small ρ

Size of hypothesis is important to balance the trade-off between Eapp
and Eest

Large-scale ML tasks:
Mainly constrained by time (significant Eopt), so SGD is preferred
N is large, so Eest can be reduced
Large model is preferred to reduce Eapp

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 29 / 67

Minimizing Excess Error

E = C[f ∗F]−C[f ∗]︸ ︷︷ ︸
Eapp

+C[fN]−C[f ∗F]︸ ︷︷ ︸
Eest

+C[f̃N]−C[fN]︸ ︷︷ ︸
Eopt

Small-scale ML tasks:
Mainly constrained by N
Computing time is not an issue, so Eopt can be insignificant by
choosing small ρ

Size of hypothesis is important to balance the trade-off between Eapp
and Eest

Large-scale ML tasks:
Mainly constrained by time (significant Eopt), so SGD is preferred
N is large, so Eest can be reduced
Large model is preferred to reduce Eapp

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 29 / 67

Minimizing Excess Error

E = C[f ∗F]−C[f ∗]︸ ︷︷ ︸
Eapp

+C[fN]−C[f ∗F]︸ ︷︷ ︸
Eest

+C[f̃N]−C[fN]︸ ︷︷ ︸
Eopt

Small-scale ML tasks:
Mainly constrained by N
Computing time is not an issue, so Eopt can be insignificant by
choosing small ρ

Size of hypothesis is important to balance the trade-off between Eapp
and Eest

Large-scale ML tasks:

Mainly constrained by time (significant Eopt), so SGD is preferred
N is large, so Eest can be reduced
Large model is preferred to reduce Eapp

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 29 / 67

Minimizing Excess Error

E = C[f ∗F]−C[f ∗]︸ ︷︷ ︸
Eapp

+C[fN]−C[f ∗F]︸ ︷︷ ︸
Eest

+C[f̃N]−C[fN]︸ ︷︷ ︸
Eopt

Small-scale ML tasks:
Mainly constrained by N
Computing time is not an issue, so Eopt can be insignificant by
choosing small ρ

Size of hypothesis is important to balance the trade-off between Eapp
and Eest

Large-scale ML tasks:
Mainly constrained by time (significant Eopt), so SGD is preferred

N is large, so Eest can be reduced
Large model is preferred to reduce Eapp

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 29 / 67

Minimizing Excess Error

E = C[f ∗F]−C[f ∗]︸ ︷︷ ︸
Eapp

+C[fN]−C[f ∗F]︸ ︷︷ ︸
Eest

+C[f̃N]−C[fN]︸ ︷︷ ︸
Eopt

Small-scale ML tasks:
Mainly constrained by N
Computing time is not an issue, so Eopt can be insignificant by
choosing small ρ

Size of hypothesis is important to balance the trade-off between Eapp
and Eest

Large-scale ML tasks:
Mainly constrained by time (significant Eopt), so SGD is preferred
N is large, so Eest can be reduced

Large model is preferred to reduce Eapp

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 29 / 67

Minimizing Excess Error

E = C[f ∗F]−C[f ∗]︸ ︷︷ ︸
Eapp

+C[fN]−C[f ∗F]︸ ︷︷ ︸
Eest

+C[f̃N]−C[fN]︸ ︷︷ ︸
Eopt

Small-scale ML tasks:
Mainly constrained by N
Computing time is not an issue, so Eopt can be insignificant by
choosing small ρ

Size of hypothesis is important to balance the trade-off between Eapp
and Eest

Large-scale ML tasks:
Mainly constrained by time (significant Eopt), so SGD is preferred
N is large, so Eest can be reduced
Large model is preferred to reduce Eapp

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 29 / 67

Big Data + Big Models

9. COTS HPC unsupervised convolutional network [6]
10. GoogleLeNet [14]

With domain-specific architecture such as convolutional NNs
(CNNs) and recurrent NNs (RNNs)

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 30 / 67

Big Data + Big Models

9. COTS HPC unsupervised convolutional network [6]
10. GoogleLeNet [14]

With domain-specific architecture such as convolutional NNs
(CNNs) and recurrent NNs (RNNs)

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 30 / 67

Outline

1 When ML Meets Big Data

2 Advantages of Deep Learning
Representation Learning
Exponential Gain of Expressiveness
Memory and GPU Friendliness
Online & Transfer Learning

3 Learning Theory Revisited
Generalizability and Over-Parametrization
Wide-and-Deep NN is a Gaussian Process before Training*
Gradient Descent is an Affine Transformation*
Wide-and-Deep NN is a Gaussian Process after Training*

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 31 / 67

Over-Parametrized NNs
Let D(l) be the output dimension (“width”) of a layer f (l)(· ; θ

(l)) of an
NN

Input/output dimension: (x,y) ∈ RD(0) ×RD(L)

D = min(D(0), · · · ,D(L)) the network width
From the statistical learning theory point of view, the larger the D, the
worse the generalizability

However, as D grows, the generalizability actually increases [20]; i.e.,
over-parametrization leads to better performance
Why such a paradox?

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 32 / 67

Over-Parametrized NNs
Let D(l) be the output dimension (“width”) of a layer f (l)(· ; θ

(l)) of an
NN

Input/output dimension: (x,y) ∈ RD(0) ×RD(L)

D = min(D(0), · · · ,D(L)) the network width
From the statistical learning theory point of view, the larger the D, the
worse the generalizability

However, as D grows, the generalizability actually increases [20]; i.e.,
over-parametrization leads to better performance

Why such a paradox?

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 32 / 67

Over-Parametrized NNs
Let D(l) be the output dimension (“width”) of a layer f (l)(· ; θ

(l)) of an
NN

Input/output dimension: (x,y) ∈ RD(0) ×RD(L)

D = min(D(0), · · · ,D(L)) the network width
From the statistical learning theory point of view, the larger the D, the
worse the generalizability

However, as D grows, the generalizability actually increases [20]; i.e.,
over-parametrization leads to better performance
Why such a paradox?

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 32 / 67

Wide-and-Deep NNs as Gaussian Processes
Recent studies [10, 9, 11] show that a wide NN of any depth can
be approximated by a Gaussian process (GP)

Either before, during, or after training

Recall that a GP is a non-parametric model whose complexity depends
only on the size of training set |X| and the hyperparameters of kernel
function k(·, ·):[

yN
yM

]
∼N (

[
mN

mM

]
,

[
KN,N KN,M

KM,N KM,M

]
with Bayesian inference for test points X′:

P(yM |X′,X) = N (KM,NK−1
N,NyN , KM,M−KM,NK−1

N,NKN,M)

Therefore, wide-and-deep NNs do not overfit as one may expect
The D, once becoming large, does not reflect true model complexity

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 33 / 67

Wide-and-Deep NNs as Gaussian Processes
Recent studies [10, 9, 11] show that a wide NN of any depth can
be approximated by a Gaussian process (GP)

Either before, during, or after training

Recall that a GP is a non-parametric model whose complexity depends
only on the size of training set |X| and the hyperparameters of kernel
function k(·, ·):[

yN
yM

]
∼N (

[
mN

mM

]
,

[
KN,N KN,M

KM,N KM,M

]
with Bayesian inference for test points X′:

P(yM |X′,X) = N (KM,NK−1
N,NyN , KM,M−KM,NK−1

N,NKN,M)

Therefore, wide-and-deep NNs do not overfit as one may expect
The D, once becoming large, does not reflect true model complexity

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 33 / 67

Outline

1 When ML Meets Big Data

2 Advantages of Deep Learning
Representation Learning
Exponential Gain of Expressiveness
Memory and GPU Friendliness
Online & Transfer Learning

3 Learning Theory Revisited
Generalizability and Over-Parametrization
Wide-and-Deep NN is a Gaussian Process before Training*
Gradient Descent is an Affine Transformation*
Wide-and-Deep NN is a Gaussian Process after Training*

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 34 / 67

Example: NN for Regression

For simplicity, we consider an L-layer NN f (· ; θ) for the regression
problem:

f (x ; θ) = a(l) = φ
(l)(W(l)>a(l−1)+b(l)), for l = 1, . . . ,L,

where
the activation functions φ (1)(·) = · · ·= φ (L−1)(·)≡ φ(·) and φ (L−1)(·) is
an identify function
a(0) = x and ŷ = a(L) = z(L) ∈ R the mean of a Gaussian
θ
(l) = vec(W(l),b(l)) and θ = vec(θ (1), · · · ,θ (L))

Let ŷN = [f (x(1);θ), · · · , f (x(N);θ)]> ∈ RN be the predictions for the
points in training set X= {(x(i),y(i))}N

i=1 = {XN ∈ RN×D(0)
,yN ∈ RN}

Maximum-likelihood estimation:

argmax
θ

P(X |θ) = argmin
θ

C(ŷN ,yN) = argmin
θ

1
2
‖ŷN− yN‖2

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 35 / 67

Example: NN for Regression

For simplicity, we consider an L-layer NN f (· ; θ) for the regression
problem:

f (x ; θ) = a(l) = φ
(l)(W(l)>a(l−1)+b(l)), for l = 1, . . . ,L,

where
the activation functions φ (1)(·) = · · ·= φ (L−1)(·)≡ φ(·) and φ (L−1)(·) is
an identify function
a(0) = x and ŷ = a(L) = z(L) ∈ R the mean of a Gaussian
θ
(l) = vec(W(l),b(l)) and θ = vec(θ (1), · · · ,θ (L))

Let ŷN = [f (x(1);θ), · · · , f (x(N);θ)]> ∈ RN be the predictions for the
points in training set X= {(x(i),y(i))}N

i=1 = {XN ∈ RN×D(0)
,yN ∈ RN}

Maximum-likelihood estimation:

argmax
θ

P(X |θ) = argmin
θ

C(ŷN ,yN) = argmin
θ

1
2
‖ŷN− yN‖2

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 35 / 67

Weight Initialization and Normalization

a(l) = φ
(l)(W(l)>a(l−1)+b(l))

Common initialization: W(l)
i,j ∼N (0,σ2

w) and b(l)i ∼N (0,σ2
b)

To normalize the forward and backward gradient signals w.r.t. layer
width D(l), we can define an equivalent NN:

a(l) = φ
(l)(W(l)>a(l−1)+b(l)),

where W(l)
i,j = σw√

D(l−1)
ω

(l)
i,j , b(l)i = σbβ

(l)
i , and ω

(l)
i,j ,β

(l)
i ∼N (0,1)

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 36 / 67

Weight Initialization and Normalization

a(l) = φ
(l)(W(l)>a(l−1)+b(l))

Common initialization: W(l)
i,j ∼N (0,σ2

w) and b(l)i ∼N (0,σ2
b)

To normalize the forward and backward gradient signals w.r.t. layer
width D(l), we can define an equivalent NN:

a(l) = φ
(l)(W(l)>a(l−1)+b(l)),

where W(l)
i,j = σw√

D(l−1)
ω

(l)
i,j , b(l)i = σbβ

(l)
i , and ω

(l)
i,j ,β

(l)
i ∼N (0,1)

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 36 / 67

Distribution of ŷ
Given an x, what is the distribution of its prediction ŷ?

Recall that

ŷ = z(L) = w(L)>a(L−1)+b(L) =
σw√

D(l−1)
Σjω

(L)
j φ(z(L−1)

j)+σbβ
(L)

Since ω
(l)
j ’s and β (l) are Gaussian random variables with zero means,

their sum ŷ is also a zero-mean Gaussian
Now consider the predictions ŷN = [ŷ(x(1)), · · · , ŷ(x(N))]> ∈ RN for N
points, we have ŷ(x(1))

...
ŷ(x(N))

=
σw√

D(l−1)
Σjω

(l)
j,i


φ(z(l−1)

j (x(1)))
...

φ(z(l−1)
j (x(N)))

+σbβ
(l)
i 1N

As D(L−1)→ ∞, by multidimensional Central Limit Theorem, ŷ is a
multivariate Gaussian with mean 0N and covariance Σ

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 37 / 67

Distribution of ŷ
Given an x, what is the distribution of its prediction ŷ?
Recall that

ŷ = z(L) = w(L)>a(L−1)+b(L) =
σw√

D(l−1)
Σjω

(L)
j φ(z(L−1)

j)+σbβ
(L)

Since ω
(l)
j ’s and β (l) are Gaussian random variables with zero means,

their sum ŷ is also a zero-mean Gaussian

Now consider the predictions ŷN = [ŷ(x(1)), · · · , ŷ(x(N))]> ∈ RN for N
points, we have ŷ(x(1))

...
ŷ(x(N))

=
σw√

D(l−1)
Σjω

(l)
j,i


φ(z(l−1)

j (x(1)))
...

φ(z(l−1)
j (x(N)))

+σbβ
(l)
i 1N

As D(L−1)→ ∞, by multidimensional Central Limit Theorem, ŷ is a
multivariate Gaussian with mean 0N and covariance Σ

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 37 / 67

Distribution of ŷ
Given an x, what is the distribution of its prediction ŷ?
Recall that

ŷ = z(L) = w(L)>a(L−1)+b(L) =
σw√

D(l−1)
Σjω

(L)
j φ(z(L−1)

j)+σbβ
(L)

Since ω
(l)
j ’s and β (l) are Gaussian random variables with zero means,

their sum ŷ is also a zero-mean Gaussian
Now consider the predictions ŷN = [ŷ(x(1)), · · · , ŷ(x(N))]> ∈ RN for N
points, we have ŷ(x(1))

...
ŷ(x(N))

=
σw√

D(l−1)
Σjω

(l)
j,i


φ(z(l−1)

j (x(1)))
...

φ(z(l−1)
j (x(N)))

+σbβ
(l)
i 1N

As D(L−1)→ ∞, by multidimensional Central Limit Theorem, ŷ is a
multivariate Gaussian with mean 0N and covariance Σ

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 37 / 67

Wide-and-Deep NN as a Gaussian Process
The covariance Σ completely describes the behavior of our NN
ŷ(·) = f (·) over N points
Furthermore, we will show that Σ can be describe by a deterministic
kernel function k(L)(· , ·) independent of a particular initialization such
that

Σ =

 k(L)(x(1),x(1)) · · · k(L)(x(1),x(N))
...

. . .
...

k(L)(x(N),x(1)) · · · k(L)(x(N),x(N))

≡ K(L)
N,N

This implies that the NN is in correspondent with a GP called NN-GP:[
ŷN
ŷM

]
∼N (

[
0N

0M

]
,

[
K(L)

N,N K(L)
N,M

K(L)
M,N K(L)

M,M

]
)

What’s the k(L)(· , ·)?

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 38 / 67

Wide-and-Deep NN as a Gaussian Process
The covariance Σ completely describes the behavior of our NN
ŷ(·) = f (·) over N points
Furthermore, we will show that Σ can be describe by a deterministic
kernel function k(L)(· , ·) independent of a particular initialization such
that

Σ =

 k(L)(x(1),x(1)) · · · k(L)(x(1),x(N))
...

. . .
...

k(L)(x(N),x(1)) · · · k(L)(x(N),x(N))

≡ K(L)
N,N

This implies that the NN is in correspondent with a GP called NN-GP:[
ŷN
ŷM

]
∼N (

[
0N

0M

]
,

[
K(L)

N,N K(L)
N,M

K(L)
M,N K(L)

M,M

]
)

What’s the k(L)(· , ·)?
Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 38 / 67

Deriving k(1)(· , ·)
We use induction to show that z(1)i (·), z(2)i (·), · · · , z(L)(·) = ŷ(·) are
GPs, which are govern by kernels k(1)(·, ·), · · · ,k(L)(·, ·) independent
with i, respectively

Consider z(1)i (x) = σw√
D(0)

Σjω
(l)
j,i xj +σbβ

(l)
i a zero-mean Gaussian

As D(0)→ ∞, we have [z(1)i (x(1)), · · · ,z(1)i (x(N))]> ∼ N(0N ,K
(1)
N,N) by

multidimensional Central Limit Theorem, where

k(1)(x,x′) = Cov[z(1)i (x),z(1)i (x′)] = E
ω

(l)
:,i ,β

(l)
i
[z(1)i (x)z(1)i (x′)]

=
σ 2

w
D(0) E

[
Σj,kω

(l)
j,i ω

(l)
k,i xjx′k

]
+ σwσb√

D(0)
E
[
β
(l)
i Σjω

(l)
j,i xj

]
+ σwσb√

D(0)
E
[
β
(l)
i Σjω

(l)
j,i x′j

]
+σ2

b E
[
β
(l)
i β

(l)
i

]
=

σ 2
w

D(0) ΣjE
[
ω
(l)
j,i ω

(l)
j,i

]
xjx′j +σ2

b E
[
β
(l)
i β

(l)
i

]
=

σ 2
w

D(0) x>x′+σ2
b ,

is independent with i

Note that z(1)i (·) and z(1)j (·) are independent with each other, ∀i 6= j

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 39 / 67

Deriving k(1)(· , ·)
We use induction to show that z(1)i (·), z(2)i (·), · · · , z(L)(·) = ŷ(·) are
GPs, which are govern by kernels k(1)(·, ·), · · · ,k(L)(·, ·) independent
with i, respectively

Consider z(1)i (x) = σw√
D(0)

Σjω
(l)
j,i xj +σbβ

(l)
i a zero-mean Gaussian

As D(0)→ ∞, we have [z(1)i (x(1)), · · · ,z(1)i (x(N))]> ∼ N(0N ,K
(1)
N,N) by

multidimensional Central Limit Theorem, where

k(1)(x,x′) = Cov[z(1)i (x),z(1)i (x′)] = E
ω

(l)
:,i ,β

(l)
i
[z(1)i (x)z(1)i (x′)]

=
σ 2

w
D(0) E

[
Σj,kω

(l)
j,i ω

(l)
k,i xjx′k

]
+ σwσb√

D(0)
E
[
β
(l)
i Σjω

(l)
j,i xj

]
+ σwσb√

D(0)
E
[
β
(l)
i Σjω

(l)
j,i x′j

]
+σ2

b E
[
β
(l)
i β

(l)
i

]
=

σ 2
w

D(0) ΣjE
[
ω
(l)
j,i ω

(l)
j,i

]
xjx′j +σ2

b E
[
β
(l)
i β

(l)
i

]
=

σ 2
w

D(0) x>x′+σ2
b ,

is independent with i

Note that z(1)i (·) and z(1)j (·) are independent with each other, ∀i 6= j

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 39 / 67

Deriving k(l)(· , ·)
Given that D(0)→ ∞, · · · ,D(l−2)→ ∞ and

[z(l−1)
i (x(1)), · · · ,z(l−1)

i (x(N))]> ∼ N(0N ,K
(l−1)
N,N)

z(l−1)
i (·) and z(l−1)

j (·) are independent with each other, ∀i 6= j

Consider z(l)i (x) = σw√
D(l−1)

Σjω
(l)
j,i φ(z(l−1)

j (x))+σbβ
(l)
i a zero-mean

Gaussian
As D(l−1)→ ∞, we have [z(l)i (x(1)), · · · ,z(l)i (x(N))]> ∼ N(0N ,K

(l)
N,N) by

multidimensional Central Limit Theorem, where

k(l)(x,x′) = Cov[z(l)i (x),z(l)i (x′)] = E
ω

(l)
:,i ,β

(l)
i ,z(l−1)(x)[z

(l)
i (x)z(l)i (x′)]

=
σ 2

w
D(l−1) E

[
Σj,kω

(l)
j,i ω

(l)
k,i φ(z(l−1)

j (x))φ(z(l−1)
k (x′))

]
+σ2

b E
[
β
(l)
i β

(l)
i

]
+ σwσb√

D(l−1)

(
E
[
β
(l)
i Σjω

(l)
j,i φ(z(l−1)

j (x))
]
+E

[
β
(l)
i Σjω

(l)
j,i φ(z(l−1)

j (x′))
])

=
σ 2

w
D(l−1) ΣjE

[
ω
(l)
j,i ω

(l)
j,i

]
E
[
φ(z(l−1)

j (x))φ(z(l−1)
j (x′))

]
+σ2

b E
[
β
(l)
i β

(l)
i

]
= σ2

wE
(z(l−1)

i (x),z(l−1)
i (x′))∼N (02,K

(l−1)
2,2)

[
φ(z(l−1)

i (x))φ(z(l−1)
i (x′))

]
+σ2

b ,

where
K(l−1)

2,2 =

[
k(l−1)(x,x) k(l−1)(x,x′)
k(l−1)(x,x′) k(l−1)(x′,x′)

]

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 40 / 67

Deriving k(l)(· , ·)
Given that D(0)→ ∞, · · · ,D(l−2)→ ∞ and

[z(l−1)
i (x(1)), · · · ,z(l−1)

i (x(N))]> ∼ N(0N ,K
(l−1)
N,N)

z(l−1)
i (·) and z(l−1)

j (·) are independent with each other, ∀i 6= j

Consider z(l)i (x) = σw√
D(l−1)

Σjω
(l)
j,i φ(z(l−1)

j (x))+σbβ
(l)
i a zero-mean

Gaussian
As D(l−1)→ ∞, we have [z(l)i (x(1)), · · · ,z(l)i (x(N))]> ∼ N(0N ,K

(l)
N,N) by

multidimensional Central Limit Theorem, where

k(l)(x,x′) = Cov[z(l)i (x),z(l)i (x′)] = E
ω

(l)
:,i ,β

(l)
i ,z(l−1)(x)[z

(l)
i (x)z(l)i (x′)]

=
σ 2

w
D(l−1) E

[
Σj,kω

(l)
j,i ω

(l)
k,i φ(z(l−1)

j (x))φ(z(l−1)
k (x′))

]
+σ2

b E
[
β
(l)
i β

(l)
i

]
+ σwσb√

D(l−1)

(
E
[
β
(l)
i Σjω

(l)
j,i φ(z(l−1)

j (x))
]
+E

[
β
(l)
i Σjω

(l)
j,i φ(z(l−1)

j (x′))
])

=
σ 2

w
D(l−1) ΣjE

[
ω
(l)
j,i ω

(l)
j,i

]
E
[
φ(z(l−1)

j (x))φ(z(l−1)
j (x′))

]
+σ2

b E
[
β
(l)
i β

(l)
i

]
= σ2

wE
(z(l−1)

i (x),z(l−1)
i (x′))∼N (02,K

(l−1)
2,2)

[
φ(z(l−1)

i (x))φ(z(l−1)
i (x′))

]
+σ2

b ,

where
K(l−1)

2,2 =

[
k(l−1)(x,x) k(l−1)(x,x′)
k(l−1)(x,x′) k(l−1)(x′,x′)

]
Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 40 / 67

Evaluating K(l)

For certain activation functions φ(·), such as tanh and ReLU,
k(l)(x,x′) has a closed form [10]
For other φ(·)’s, Markov Chain Monte Carlo (MCMC) sampling is
required to devaluate k(l)(x,x′)

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 41 / 67

Outline

1 When ML Meets Big Data

2 Advantages of Deep Learning
Representation Learning
Exponential Gain of Expressiveness
Memory and GPU Friendliness
Online & Transfer Learning

3 Learning Theory Revisited
Generalizability and Over-Parametrization
Wide-and-Deep NN is a Gaussian Process before Training*
Gradient Descent is an Affine Transformation*
Wide-and-Deep NN is a Gaussian Process after Training*

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 42 / 67

Weight Dynamics

Observation: the weights of a wide NN do not change much during
gradient descent

Why?

A small change in a large number of neurons is enough to
significantly change the output
This allows us to approximate an NN f (· ; θ) w.r.t. weights using the
first-order Taylor expansion

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 43 / 67

Weight Dynamics

Observation: the weights of a wide NN do not change much during
gradient descent

Why? A small change in a large number of neurons is enough to
significantly change the output
This allows us to approximate an NN f (· ; θ) w.r.t. weights using the
first-order Taylor expansion

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 43 / 67

Linearization of f (· ; θ)

Let θ
(t) be the parameters of the NN at the t-th step of gradient

descent
ŷ(t)N = [f (x(1);θ

(t)), · · · , f (x(N);θ
(t))]> be the predictions over training

points

Since θ
(t) is close to θ

(0) at any time t, we can approximate f (· ;θ
(t))

using the first-order Taylor expansion w.r.t. θ
(t) around θ

(0):

f (x,θ (t))≈ f̄ (x,θ (t)) = f (x,θ (0))+∇θ f (x,θ (0))>(θ (t)−θ
(0))

f̄ is still non-linear in terms of x
Let ȳ(t)N = [f̄ (x(1);θ

(t)), · · · , f̄ (x(N);θ
(t))]> be the predictions of f̄ at time

t

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 44 / 67

Weight and Prediction Dynamics

f (x,θ (t))≈ f̄ (x,θ (t)) = f (x,θ (0))+∇θ f (x,θ (0))>(θ (t)−θ
(0))

Gradient descent with learning rate η makes the following changes:

θ
(t+1)−θ

(t) ≈−η∇θ C(ȳ(t)N ,yN)

=−η∇θ ȳ(t)N ∇ȳ(t)N
C(ȳ(t)N ,yN)

=−η∇θ ŷ(0)N ∇ȳ(t)N
C(ȳ(t)N ,yN)

and
ȳ(t+1)

N − ȳ(t)N = ∇θ ŷ(0)>N (θ (t+1)−θ
(t))

≈−η∇θ ŷ(0)>N︸ ︷︷ ︸
N×D

∇θ ŷ(0)N︸ ︷︷ ︸
D×N

∇ȳ(t)N
C(ȳ(t)N ,yN),

where T(0)
N,N ≡ ∇θ ŷ(0)>N ∇θ ŷ(0)N ∈ RN×N is called the Neural Tangent

Kernel (NTK) matrix

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 45 / 67

Prediction Dynamics in Regression
In regression where C(ȳ(0)N ,yN) =

1
2‖ȳ

(0)
N − yN‖2, we have

ȳ(t+1)
N − ȳ(t)N ≈−ηT(0)

N,N∇ȳ(t)N
C(ȳ(t)N ,yN) =−ηT(0)

N,N(ȳ
(t)
N − yN)

With a sufficiently small learning rate η , we can think t as continuous
time and each GD step as ∆t, where

lim∆t→0
ȳ(t+∆t)

N −ȳ(t)N
∆t =

∂ ȳ(t)N
∂ t ≈−ηT(0)

N,N(ȳ
(t)
N − yN)

Letting u(t) = ȳ(t)N − yN , we have an ordinary differential equation:

∂ ȳ(t)N
∂ t ≈−ηT(0)

N,N(ȳ
(t)
N − yN)

⇒ ∂u(t)

∂ t ≈−ηT(0)
N,Nu(t)

Therefore, u(t) = e−ηT(0)
N,N tu(0)

Recall that eAt = 1
0! I+ t

1! A+ t2
2! A2 + · · · for a symmetric A

So, ∂eAt

∂ t = 1
0! A+ t

1! A2 + · · ·= (1
0! I+ t

1! A+ · · ·)A = AeAt

This implies that
ȳ(t)N = e−ηT(0)

N,N tȳ(0)N +(I− e−ηT(0)
N,N t)yN = e−ηT(0)

N,N tŷ(0)N +(I− e−ηT(0)
N,N t)yN

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 46 / 67

Prediction Dynamics in Regression
In regression where C(ȳ(0)N ,yN) =

1
2‖ȳ

(0)
N − yN‖2, we have

ȳ(t+1)
N − ȳ(t)N ≈−ηT(0)

N,N∇ȳ(t)N
C(ȳ(t)N ,yN) =−ηT(0)

N,N(ȳ
(t)
N − yN)

With a sufficiently small learning rate η , we can think t as continuous
time and each GD step as ∆t, where

lim∆t→0
ȳ(t+∆t)

N −ȳ(t)N
∆t =

∂ ȳ(t)N
∂ t ≈−ηT(0)

N,N(ȳ
(t)
N − yN)

Letting u(t) = ȳ(t)N − yN , we have an ordinary differential equation:

∂ ȳ(t)N
∂ t ≈−ηT(0)

N,N(ȳ
(t)
N − yN)

⇒ ∂u(t)

∂ t ≈−ηT(0)
N,Nu(t)

Therefore, u(t) = e−ηT(0)
N,N tu(0)

Recall that eAt = 1
0! I+ t

1! A+ t2
2! A2 + · · · for a symmetric A

So, ∂eAt

∂ t = 1
0! A+ t

1! A2 + · · ·= (1
0! I+ t

1! A+ · · ·)A = AeAt

This implies that
ȳ(t)N = e−ηT(0)

N,N tȳ(0)N +(I− e−ηT(0)
N,N t)yN = e−ηT(0)

N,N tŷ(0)N +(I− e−ηT(0)
N,N t)yN

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 46 / 67

Weight Dynamics in Regression

By definition of ȳ(t)N , we also have ȳ(t)N = ŷ(0)N +∇θ ŷ(0)>N (θ (t)−θ
(0))

Solving θ
(t) in

e−ηT(0)
N,N tŷ(0)N +(I− e−ηT(0)

N,N t)yN = ŷ(0)N +∇θ ŷ(0)>N (θ (t)−θ
(0)),

we have

θ
(t) = θ

(0)−∇θ ŷ(0)N T(0)−1
N,N (I− e−ηT(0)

N,N t)(ŷ(0)N − yN)

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 47 / 67

Predictions of Trained NN

Substituting θ
(t) in ȳ(t)N = ŷ(0)N +∇θ ŷ(0)>N (θ (t)−θ

(0)), we have that:
For an arbitrary (training or test) point x′, the prediction of trained
NN is

f (x′,θ (t))≈ f̄ (x′;θ
(t)) = p>

[
ŷ(0)N
ŷ′(0)

]
+q,

where
p = [−T(0)

1′,NT(0)−1
N,N (I− e−ηT(0)

N,N t),1]> ∈ RN+1,

q = T(0)
1′,NT(0)−1

N,N (I− e−ηT(0)
N,N t)yN

T(0)
N,N = ∇θ ŷ(0)>N ∇θ ŷ(0)N ∈ RN×N is the NTK matrix for XN

T(0)
1′,N = ∇θ ŷ′(0)>∇θ ŷ(0)N ∈ R1×N is the NTK matrix between x′ and XN

No actual training needed!

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 48 / 67

Predictions of Trained NN

Substituting θ
(t) in ȳ(t)N = ŷ(0)N +∇θ ŷ(0)>N (θ (t)−θ

(0)), we have that:
For an arbitrary (training or test) point x′, the prediction of trained
NN is

f (x′,θ (t))≈ f̄ (x′;θ
(t)) = p>

[
ŷ(0)N
ŷ′(0)

]
+q,

where
p = [−T(0)

1′,NT(0)−1
N,N (I− e−ηT(0)

N,N t),1]> ∈ RN+1,

q = T(0)
1′,NT(0)−1

N,N (I− e−ηT(0)
N,N t)yN

T(0)
N,N = ∇θ ŷ(0)>N ∇θ ŷ(0)N ∈ RN×N is the NTK matrix for XN

T(0)
1′,N = ∇θ ŷ′(0)>∇θ ŷ(0)N ∈ R1×N is the NTK matrix between x′ and XN

No actual training needed!

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 48 / 67

Gradient Descent as an Affine Transformation

Theorem (NTK in infinite width)

As the NN’s width goes to infinity, T(0)
N,N and T(0)

1′,N converges to TN,N and
T1′,N , which can be described by a deterministic kernel function τ(L)(·, ·)
independent of a particular initialization [9, 11].

That is, each element Ti,j = τ(L)(x(i),x(j))
τ(L)(·, ·) depends only on the network structure and hyperparameters
of initial weights
τ(L)(·, ·) has a closed form for certain activation functions φ(·)’s,
including erf and ReLU

f (x′,θ (t))≈ p>
[

ŷ(0)

ŷ′(0)

]
+q is an affine transformation of a random

vector
[

ŷ(0)

ŷ′(0)

]

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 49 / 67

Gradient Descent as an Affine Transformation

Theorem (NTK in infinite width)

As the NN’s width goes to infinity, T(0)
N,N and T(0)

1′,N converges to TN,N and
T1′,N , which can be described by a deterministic kernel function τ(L)(·, ·)
independent of a particular initialization [9, 11].

That is, each element Ti,j = τ(L)(x(i),x(j))
τ(L)(·, ·) depends only on the network structure and hyperparameters
of initial weights
τ(L)(·, ·) has a closed form for certain activation functions φ(·)’s,
including erf and ReLU

f (x′,θ (t))≈ p>
[

ŷ(0)

ŷ′(0)

]
+q is an affine transformation of a random

vector
[

ŷ(0)

ŷ′(0)

]
Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 49 / 67

NTK in Infinite Width

Consider the pre-activations z(1)i (·), z(2)i (·), · · · , z(L)(·) = ŷ(0)(·) at
different layers at time 0

Let ∇
θ
(≤1)z(1)i (·), ∇

θ
(≤2)z(2)i (·), · · · , ∇

θ
(≤L)z(L)(·) = ∇θ ŷ(0)(·) be the

corresponding derivatives
θ
(≤l) ≡ vec(θ (1), · · · ,θ (l))

We use induction to show that, when D→ ∞, we have

∇
θ
(≤l)z

(l)
i (x)>∇

θ
(≤l)z

(l)
i (x′) = τ(l)(x,x′)

= k(l)(x,x′)+
σ2

wτ(l−1)(x,x′)E
(z(l−1)

i (x),z(l−1)
i (x′))∼N (02,K

(l−1)
2,2)

[
φ ′(z(l−1)

i (x))φ ′(z(l−1)
i (x′))

]
at any layer l, and τ(1)(x,x′) = k(1)(x,x′)

τ(l)(·, ·) is independent of i

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 50 / 67

Deriving τ(1)(· , ·)

At the first layer, we have

∇
θ
(≤1)z(1)i (x)>∇

θ
(≤1)z(1)i (x′) =

σ2
w

D(0) x>x′+σ
2
b = k(1)(x,x′)

as D(0)→ ∞

Now, assume that when D(0)→ ∞, · · · ,D(l−2)→ ∞,
∇

θ
(≤l−1)z(l−1)

i (x)>∇
θ
(≤l−1)z(l−1)

i (x′) = τ(l−1)(x,x′) holds

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 51 / 67

Deriving τ(1)(· , ·)

At the first layer, we have

∇
θ
(≤1)z(1)i (x)>∇

θ
(≤1)z(1)i (x′) =

σ2
w

D(0) x>x′+σ
2
b = k(1)(x,x′)

as D(0)→ ∞

Now, assume that when D(0)→ ∞, · · · ,D(l−2)→ ∞,
∇

θ
(≤l−1)z(l−1)

i (x)>∇
θ
(≤l−1)z(l−1)

i (x′) = τ(l−1)(x,x′) holds

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 51 / 67

Deriving τ(l)(· , ·) I
At the l-th layer, we have

∇
θ
(≤l)z(l)i (x)>∇

θ
(≤l)z(l)i (x′)

= [∇
θ
(l)z(l)i (x),∇

θ
(≤l−1)z(l)i (x)][∇

θ
(l)z(l)i (x′),∇

θ
(≤l−1)z(l)i (x′)]>

= ∇
θ
(l)z(l)i (x)>∇

θ
(l)z(l)i (x′)+∇

θ
(≤l−1)z(l)i (x)>∇

θ
(≤l−1)z(l)i (x′)

As D(l−1)→ ∞, the first term

∇
θ
(l)z(l)i (x)>∇

θ
(l)z(l)i (x′) =

σ2
w

D(l−1) Σjφ(z
(l−1)
j (x))φ(z(l−1)

j (x′))+σ
2
b

converges to

σ2
wE

(z(l−1)
i (x),z(l−1)

i (x′))∼N (02,K
(l−1)
2,2)

[
φ(z(l−1)

i (x))φ(z(l−1)
i (x′))

]
+σ2

b

= k(l)(x,x′)

because z(l−1)
i (·) and z(l−1)

j (·) are i.i.d.

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 52 / 67

Deriving τ(l)(· , ·) I
At the l-th layer, we have

∇
θ
(≤l)z(l)i (x)>∇

θ
(≤l)z(l)i (x′)

= [∇
θ
(l)z(l)i (x),∇

θ
(≤l−1)z(l)i (x)][∇

θ
(l)z(l)i (x′),∇

θ
(≤l−1)z(l)i (x′)]>

= ∇
θ
(l)z(l)i (x)>∇

θ
(l)z(l)i (x′)+∇

θ
(≤l−1)z(l)i (x)>∇

θ
(≤l−1)z(l)i (x′)

As D(l−1)→ ∞, the first term

∇
θ
(l)z(l)i (x)>∇

θ
(l)z(l)i (x′) =

σ2
w

D(l−1) Σjφ(z
(l−1)
j (x))φ(z(l−1)

j (x′))+σ
2
b

converges to

σ2
wE

(z(l−1)
i (x),z(l−1)

i (x′))∼N (02,K
(l−1)
2,2)

[
φ(z(l−1)

i (x))φ(z(l−1)
i (x′))

]
+σ2

b

= k(l)(x,x′)

because z(l−1)
i (·) and z(l−1)

j (·) are i.i.d.

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 52 / 67

Deriving τ(l)(· , ·) II
Consider the second term

∇
θ
(≤l−1)z(l)i (x)>∇

θ
(≤l−1)z(l)i (x′)

= ∇z(l−1)(x)z
(l)
i (x)>∇

θ
(≤l−1)z(l−1)(x)>∇

θ
(≤l−1)z(l−1)(x′)∇z(l−1)(x)z

(l)
i (x′)

= ∇z(l−1)(x)z
(l)
i (x)>

 τ(l−1)(x,x′) 0 0

0
. . . 0

0 0 τ(l−1)(x,x′)

∇z(l−1)(x)z
(l)
i (x)

= τ(l−1)(x,x′)Σj
∂ z(l)i (x)

∂ z(l−1)
j (x)

· ∂ z(l)i (x′)
∂ z(l−1)

j (x′)

= τ(l−1)(x,x′) σ2
w

D(l−1) Σjω
(l)
j,i ω

(l)
j,i φ ′(z(l−1)

j (x))φ ′(z(l−1)
j (x′))

As D(l−1)→ ∞, it becomes

σ
2
wτ

(l−1)(x,x′)E
(z(l−1)

i (x),z(l−1)
i (x′))∼N (02,K

(l−1)
2,2)

[
φ
′(z(l−1)

i (x))φ ′(z(l−1)
i (x′))

]

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 53 / 67

Outline

1 When ML Meets Big Data

2 Advantages of Deep Learning
Representation Learning
Exponential Gain of Expressiveness
Memory and GPU Friendliness
Online & Transfer Learning

3 Learning Theory Revisited
Generalizability and Over-Parametrization
Wide-and-Deep NN is a Gaussian Process before Training*
Gradient Descent is an Affine Transformation*
Wide-and-Deep NN is a Gaussian Process after Training*

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 54 / 67

Wide-and-Deep NN as a Gaussian Process I

As D→ ∞, randomly initialized NN has a corresponding NN-GP:[
ŷN
ŷM

]
∼N (

[
0N

0M

]
,

[
K(L)

N,N K(L)
N,M

K(L)
M,N K(L)

M,M

]
)

As D→ ∞, GD-based training is an affine transformation:

f (x′,θ (t))≈ f̄ (x′;θ
(t)) = p>

[
ŷ(0)N
ŷ′(0)

]
+q

where
p = [−T1′,NT−1

N,N(I− e−ηTN,N t),1]> ∈ RN+1

q = T1′,NT−1
N,N(I− e−ηTN,N t)yN

TN,N and T1′,N the NTK matrices

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 55 / 67

Wide-and-Deep NN as a Gaussian Process II

Therefore, as D→ ∞, the trained NN is still in correspondent with a
GP, called NTK-GP, whose predictions for M test points are[

ŷN
ŷM

]
∼N (

[
AyN
ByN

]
,C>

[
K(L)

N,N K(L)
N,M

K(L)
M,N K(L)

M,M

]
C),

where
A = (I− e−ηTN,N t) ∈ RN×N

B = TM,NT−1
N,N(I− e−ηTN,N t) ∈ RM×N

C =

[
IN,N−A ON,M
−B IM,M

]
∈ R(N+M)×(N+M)

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 56 / 67

Mean Predictions of NTK-GP

Prior (unconditioned) mean predictions for training set:

ŷN = AyN = (I− e−ηTN,N t)yN

As t→ ∞, the ŷN always approaches true labels yN
This explains why the SGD-based training of large NNs seldom
encounters significant obstacles such as local minima [8]

Prior mean predictions for test set:

ŷM = By = TM,NT−1
N,N(I− e−ηTN,N t)yN

As t→ ∞, we have ŷM = TM,NT−1
N,NyN

Weight hyperparameters are important because they determines
TM,NT−1

N,N

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 57 / 67

Mean Predictions of NTK-GP

Prior (unconditioned) mean predictions for training set:

ŷN = AyN = (I− e−ηTN,N t)yN

As t→ ∞, the ŷN always approaches true labels yN
This explains why the SGD-based training of large NNs seldom
encounters significant obstacles such as local minima [8]

Prior mean predictions for test set:

ŷM = By = TM,NT−1
N,N(I− e−ηTN,N t)yN

As t→ ∞, we have ŷM = TM,NT−1
N,NyN

Weight hyperparameters are important because they determines
TM,NT−1

N,N

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 57 / 67

Analytic vs. Real Predictions

Wide residual network [19] trained by SGD with momentum on MSE
loss on CIFAR-10

First two panes shows the output dynamics for a randomly selected
subset of train and test points

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 58 / 67

Remarks

Wide-and-deep NNs can be approximated by a class of GPs
Either before, during, or after training

Therefore, complexity of wide-and-deep NNs grows with N, not |θ |

Applicable to other architectures including CNN [2, 16], RNN [17, 1],
and any architecture [18]

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 59 / 67

Remarks

Wide-and-deep NNs can be approximated by a class of GPs
Either before, during, or after training

Therefore, complexity of wide-and-deep NNs grows with N, not |θ |
Applicable to other architectures including CNN [2, 16], RNN [17, 1],
and any architecture [18]

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 59 / 67

Limitations
Approximation holds only when the NNs have:

Infinite width
Small learning rate: η < 2

λmax+λmin
where λmax/min is the max/min

eigenvalue of TN,N [17]
Proper initialization (to be discussed next)

The prior NTK-GP inference ŷNTK-GP = TM,NT−1
N,NyN is inconsistent

with the Bayesian inference of NN-GP ŷNN-GP = KM,NK−1
N,NyN

SGP introduces bias [3]

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 60 / 67

Reference I

[1] Sina Alemohammad, Zichao Wang, Randall Balestriero, and Richard
Baraniuk.
The recurrent neural tangent kernel.
arXiv preprint arXiv:2006.10246, 2020.

[2] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R
Salakhutdinov, and Ruosong Wang.
On exact computation with an infinitely wide neural net.
In Advances in Neural Information Processing Systems, pages
8141–8150, 2019.

[3] Alberto Bietti and Julien Mairal.
On the inductive bias of neural tangent kernels.
In Advances in Neural Information Processing Systems, pages
12893–12904, 2019.

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 61 / 67

Reference II

[4] Léon Bottou.
Large-scale machine learning with stochastic gradient descent.
In Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[5] Olivier Bousquet.
Concentration inequalities and empirical processes theory applied to
the analysis of learning algorithms.
Ph.D. thesis, Ecole Polytechnique, Palaiseau, France, 2002.

[6] Adam Coates, Brody Huval, Tao Wang, David Wu, Bryan Catanzaro,
and Ng Andrew.
Deep learning with cots hpc systems.
In Proceedings of The 30th International Conference on Machine
Learning, pages 1337–1345, 2013.

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 62 / 67

Reference III

[7] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and
Chih-Jen Lin.
Liblinear: A library for large linear classification.
Journal of machine learning research, 9(Aug):1871–1874, 2008.

[8] Ian J Goodfellow, Oriol Vinyals, and Andrew M Saxe.
Qualitatively characterizing neural network optimization problems.
arXiv preprint arXiv:1412.6544, 2014.

[9] Arthur Jacot, Franck Gabriel, and Clément Hongler.
Neural tangent kernel: Convergence and generalization in neural
networks.
In Advances in neural information processing systems, pages
8571–8580, 2018.

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 63 / 67

Reference IV

[10] Jaehoon Lee, Yasaman Bahri, Roman Novak, Samuel S Schoenholz,
Jeffrey Pennington, and Jascha Sohl-Dickstein.
Deep neural networks as gaussian processes.
arXiv preprint arXiv:1711.00165, 2017.

[11] Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri,
Roman Novak, Jascha Sohl-Dickstein, and Jeffrey Pennington.
Wide neural networks of any depth evolve as linear models under
gradient descent.
In Advances in neural information processing systems, pages
8572–8583, 2019.

[12] Pascal Massart.
Some applications of concentration inequalities to statistics.
In Annales de la Faculté des sciences de Toulouse: Mathématiques,
volume 9, pages 245–303, 2000.

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 64 / 67

Reference V

[13] Guido F Montufar, Razvan Pascanu, Kyunghyun Cho, and Yoshua
Bengio.
On the number of linear regions of deep neural networks.
In Advances in neural information processing systems, pages
2924–2932, 2014.

[14] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and
Andrew Rabinovich.
Going deeper with convolutions.
In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 1–9, 2015.

[15] Vladimir N Vapnik and A Ya Chervonenkis.
On the uniform convergence of relative frequencies of events to their
probabilities.
In Measures of Complexity, pages 11–30. Springer, 2015.

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 65 / 67

Reference VI

[16] Greg Yang.
Scaling limits of wide neural networks with weight sharing: Gaussian
process behavior, gradient independence, and neural tangent kernel
derivation.
arXiv preprint arXiv:1902.04760, 2019.

[17] Greg Yang.
Wide feedforward or recurrent neural networks of any architecture are
gaussian processes.
In Advances in Neural Information Processing Systems, pages
9951–9960, 2019.

[18] Greg Yang.
Tensor programs ii: Neural tangent kernel for any architecture.
arXiv preprint arXiv:2006.14548, 2020.

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 66 / 67

Reference VII

[19] Sergey Zagoruyko and Nikos Komodakis.
Wide residual networks.
arXiv preprint arXiv:1605.07146, 2016.

[20] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and
Oriol Vinyals.
Understanding deep learning requires rethinking generalization.
arXiv preprint arXiv:1611.03530, 2016.

Shan-Hung Wu (CS, NTHU) Large-Scale ML Machine Learning 67 / 67

	When ML Meets Big Data
	Advantages of Deep Learning
	Representation Learning
	Exponential Gain of Expressiveness
	Memory and GPU Friendliness
	Online & Transfer Learning

	Learning Theory Revisited
	Generalizability and Over-Parametrization
	Wide-and-Deep NN is a Gaussian Process before Training*
	Gradient Descent is an Affine Transformation*
	Wide-and-Deep NN is a Gaussian Process after Training*

