
What you can build at the end of this semester?
A lot as long as you don't build everything yourself.

e.g. Compose Cookbook

https://github.com/Gurupreet/ComposeCookBook

What skills do you need to build upon others work
and modify it to fit your own ideas?
Ability to trace code and understand why it is implemented this way.

Challenge of what you have learnt in Unit.3

Outline
1. Activity

2. Fragment

3. ViewModel
4. LiveData

1. Activity

1.1. Why should we care about activity lifecycle?

We might need to be careful about onCreate (as for state initialization) and onDestroy
(as the states will be lost), but what about others like onStart , onResume , etc?

Good implementation of the lifecycle callbacks can help ensure that your app
avoids:

Crashing if the user receives a phone call or switches to another app while using
your app.

Consuming valuable system resources when the user is not actively using it.

Losing the user's progress if they leave your app and return to it at a later time.
Crashing or losing the user's progress when the screen rotates between landscape
and portrait orientation.

For more info: Official Doc

https://developer.android.com/guide/components/activities/activity-lifecycle

2. Fragment

2.1. Why do we need Fragment ?

Instead of using Fragment1 , Fragment2 for different pages, can't we just use
Activity1 , Activity2 ? What's the difference?

Modularity: Fragments introduce modularity and reusability into your activity’s UI
by allowing you to divide the UI into discrete chunks. Activities are an ideal place to
put global elements around your app's user interface, such as a navigation drawer.
Conversely, fragments are better suited to define and manage the UI of a single
screen or portion of a screen.

2.2. Fragment Lifecycle vs. ViewBiding

Q1. Why do we initiize the binding in onCreateView , but set its attribute in
onViewCreated ? Can't we just have them all in 1 method?

class StartFragment : Fragment() {
 ...
 override fun onCreateView(...): View? {
 val fragmentBinding = FragmentStartBinding.inflate(inflater, container, false)
 binding = fragmentBinding
 return fragmentBinding.root
 }

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 super.onViewCreated(view, savedInstanceState)
 binding?.startFragment = this
 }
}

Actually there is no obvious difference between onCreateView and onViewCreated ,
but the second is called immediately after the first. However, it is recommended to
initialize the sub component inside a view in onViewCreated

Here's an alternative way to acheive the same effect

class StartFragment : Fragment(R.layout.fragment_start) {
 ...

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
 binding = FragmentStartBinding.bind(view)
 binding?.startFragment = this
 }
}

Q2. Why do we need to have binding = null in onDestroyView ? Shouldn't it be
automatically removed once the Fragment dies?

class StartFragment : Fragment() {
 private var binding: FragmentStartBinding? = null

 override fun onDestroyView() {
 super.onDestroyView()
 binding = null
 }
}

onDestroyView is called when the view hierarchy associated with the fragment is being
removed, but not the fragment itself. Therefore, if we don't have binding = null , then
it will keep a reference to a viewbinding object that will no longer be used before
onDestroy is called

3. ViewModel

3.1. Why do we need ViewModel?

Instead of inheriting from ViewModel ,

class OrderViewModel : ViewModel() {
 ...
}

can't we just have a custom class to store the view state?

class OrderViewState() {
 ...
}

The ViewModel class is designed to store and manage UI-related data in a lifecycle
conscious way. The ViewModel class allows data to survive configuration changes
such as screen rotations.

3.2. What does property delegation(by) do? Why do we need to
use it when declaring a ViewModel in a Fragment ?

private val viewModel: OrderViewModel by OrderViewModel()

Can't we just use = instead?

private val viewModel: OrderViewModel = OrderViewModel()

Kotlin getter / setter & backing field

val viewModel: OrderViewModel
 get() {
 return field
 }
 set(value) {
 field = value
 }

Property Delegation

val viewModel: OrderViewModel
 get() {
 return OrderViewModel.getValue()
 }
 set(value) {
 OrderViewModel.setValue(value)
 }

By using property delegation, ViewModel will handle the lifecycle for us.

If we use = instead, everytime when configuration changes, the Fragment will get a
new instance of OrderViewModel , which will loss the state.

4. LiveData

4.1. Why do we need LiveData?

With LiveData, we have to attach an observer in different places to notify the change:

// OrderViewModel
val quantity = LiveData<Int>(0)

// StartFragment
viewModel.quantity.observe(lifeCycleOwner) { value ->
 observer1 = value
 observer2 = value
}

Can't we just use a custom setter?

// OrderViewModel
public var quantity: Int = 0
 set(value) {
 observer1 = value
 observer2 = value
 field = value
 }

LiveData is an observable data holder class. Unlike a regular observable, LiveData is
lifecycle-aware, meaning it respects the lifecycle of other app components, such as
activities, fragments, or services. This awareness ensures LiveData only updates app
component observers that are in an active lifecycle state.

4.2. Why do we write LiveData in ViewModel like this

private val _quantity = MutableLiveData<Int>()
val quantity: LiveData<Int> = _quantity

Protection: Never directly expose mutable data from a ViewModel.

