
Lab 05 - Android Corutine

Software Studio - 2022 Spring

What problems do coroutines solve?

1. Long running tasks: tasks that take too long to block the main
thread.

2. Main-safety: ensures that any suspend function can be called
from the main thread.

Long Running tasks - tasks that take far too long for your app to
stop and wait for them!

1. Fetching a webpage

2. Interacting with an API both involve making a network request.
3. Reading from a database.

4.

Main-safety

We consider a function main-safe when it doesn't block UI updates on the main
thread.

On Android, every app has a main thread that is in charge of handling UI (like
drawing views) and coordinating user interactions.

Any long running task should be done without blocking the main thread, so
your app doesn’t display what’s called “jank,” like frozen animations, or
respond slowly to touch events.

In order to perform a network request off the main thread, a
common pattern is callbacks.

class ViewModel: ViewModel() {
 fun fetchDocs() {
 get("developer.android.com") { result ->
 show(result)
 }
 }
}

get is called from the main thread, it will use another thread to perform the network
request.
Once the result is returned from the network request, callback will be called from the
main thread.

Coroutines are a way to simplify the code used to manage long running tasks
like fetchDocs.

// Dispatchers.Main
suspend fun fetchDocs() {
 // Dispatchers.Main
 val result = get("developer.android.com")
 // Dispatchers.Main
 show(result)
}

// look at this in the next section
suspend fun get(url: String) = withContext(Dispatchers.IO){/*...*/}

Doesn’t this code block the main thread?

How does it return a result from get without waiting for the
network request and blocking?

Coroutines build upon regular functions by adding two new
operations. In addition to invoke (or call) and return, coroutines
add suspend and resume.

suspend — pause the execution of the current coroutine, saving all local variables
resume — continue a suspended coroutine from the place it was paused

You can only call suspend functions from other suspend functions, or by using a
coroutine builder like launch to start a new coroutine.

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines/launch.html

Suspend and resume work together to replace
callbacks.

get will suspend the coroutine before it starts the network
request.

Then, when the network request completes, instead of calling a
callback to notify the main thread, it can simply resume the
coroutine it suspended.

When all of the coroutines on the main
thread are suspended, the main thread is
free to do other work.

Main-safety with coroutines
In Kotlin coroutines, well written suspend functions are always safe to call from the
main thread. No matter what they do, they should always allow any thread to call them.

There’s a lot of things that are too slow to happen in the main
thread.

1. Network requests
2. Parsing JSON

3. Reading or writing from the database

4. Even just iterating over large lists

5. ...

Using suspend doesn’t tell Kotlin to run a function on a
background thread. It’s worth saying clearly and often that
coroutines will run on the main thread.

To make a function that does work that’s too slow for the main thread main-safe, you
can tell Kotlin coroutines to perform work on either the Default or IO dispatcher.

In Kotlin, all coroutines must run in a dispatcher — even when they’re running on the
main thread. Coroutines can suspend themselves, and the dispatcher is the thing that
knows how to resume them.

To specify where the coroutines should run, Kotlin provides three
Dispatchers you can use for thread dispatch.

+-----------------------------------+
| Dispatchers.Main |
+-----------------------------------+
| Main thread on Android, interact |
| with the UI and perform light |
| work |
+-----------------------------------+
| - Calling suspend functions |
| - Call UI functions |
| - Updating LiveData |
+-----------------------------------+

+-----------------------------------+
| Dispatchers.IO |
+-----------------------------------+
| Optimized for disk and network IO |
| off the main thread |
+-----------------------------------+
| - Database* |
| - Reading/writing files |
| - Networking** |
+-----------------------------------+

+-----------------------------------+
| Dispatchers.Default |
+-----------------------------------+
| Optimized for CPU intensive work |
| off the main thread |
+-----------------------------------+
| - Sorting a list |
| - Parsing JSON |
| - DiffUtils |
+-----------------------------------+

To continue with the example above, let’s use the dispatchers to define the get
function.

// Dispatchers.Main
suspend fun fetchDocs() {
 // Dispatchers.Main
 val result = get("developer.android.com")
 // Dispatchers.Main
 show(result)
}
// Dispatchers.Main
suspend fun get(url: String) =
 // Dispatchers.Main
 withContext(Dispatchers.IO) {
 // Dispatchers.IO
 /* perform blocking network IO here */
 }
 // Dispatchers.Main

withContext lets you control what thread any line of code
executes on without introducing a callback to return the result.

Because coroutines support suspend and resume , the coroutine
on the main thread will be resumed with the result as soon as the
withContext block is complete.

use withContext to make it safe to call from the main thread.
This is the pattern that coroutines based libraries like Retrofit
and Room follow.

Q: In android-mars-photos
retrofitService.getPhotos() is in the main thread or background thread?

viewModelScope.launch {
 try {
 val listResult = MarsApi.retrofitService.getPhotos()
 ...
 }
 ...
}

// Dispatchers.Main
viewModelScope.launch {
 // Dispatchers.Main
 try {
 val listResult = MarsApi.retrofitService.getPhotos()
 // Dispatchers.Main
 ...
 }
 ...
}

Networking libraries such as Retrofit and Volley manage
their own threads and do not require explicit main-safety in your
code when used with Kotlin coroutines.

