
Lab 06 - Android Flow

Software Studio - 2022 Spring

1

In coroutines, a flow is a type that can emit multiple values sequentially, as
opposed to suspend functions that return only a single value.

A flow is very similar to an Iterator that produces a sequence of values, but it
uses suspend functions to produce and consume values asynchronously.

This means, for example, that the flow can safely make a network request to
produce the next value without blocking the main thread.

2

Explain why we use Flow

There is a developer called Pancoho.

3

Explain why we use Flow

4

Explain why we use Flow

5

Explain why we use Flow

6

Without Flow

You can do it with lots of
suspend functions.

However, after doing that for a
while, it takes a lot of time for
developers to invest in the
infrastructures.

7

With Flow

Instead of requesting data, we
observe it.

Observing it like installing tubes
for water.
Any updates to the source data
will flow down to the view
automatically, you don't have to
walk to the lake!!

8

Without Flow

9

With Flow

10

Kotlin Flow<T>

Producers emits data to the flow.

Data Sources or Repositories

Consumers collects data from the flow.

UI layer

11

Creating Flows

Most of the times, you don't need to create a flow. The libraries in your data
sources are already integreated with coroutines and flows.

12

13

Room DAO

The Room library acts as a producer and emit the content of the query every time.

@Dao
interface ScheduleDao {

 @Query("SELECT * FROM schedule ORDER BY arrival_time ASC")
 fun getAll(): Flow<List<Schedule>>
}

14

Creating Flows By Yourself!!

import kotlinx.coroutines.flow.*
import kotlinx.coroutines.runBlocking
import kotlinx.coroutines.delay

fun getSequence(): Flow<Int> = flow {
 for (i in 1..3) {
 delay(1000)
 emit(i)
 }
}
fun main() = runBlocking {
 getSequence()
 .collect { value ->
 println(value)
 }
}

15

Creating Flows By Yourself!!

flow() is a flow builder. It would create a Flow<T> .

emit() send the result into flow. And we know that flow can emit multiple times and
values.

collect() receive the values from emit() . Every time emit() is called, the block in
collect() will be executed.

16

Flow Builder

1. flow()

2. asFlow()

3. flowOf()

4. ...

17

flow()

fun <T> flow(
 block: suspend FlowCollector<T>.() -> Unit
): Flow<T>

It creates a cold flow.
The flow being cold means that the block is called every time a terminal operator is
applied to the resulting flow.

18

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flow.html

Example of flow()

fun getSequence(): Flow<Int> = flow {
 for (i in 1..3) {
 delay(100)
 println("Emit $i")
 emit(i)
 }
}
fun main() = runBlocking {
 val f = getSequence()
 println("Start to collect")
 f.collect { value ->
 delay(1000)
 println("Collected $value")
 }
}

19

Result of flow()

Start to collect
Emit 1
Collected 1
Emit 2
Collected 2
Emit 3
Collected 3

20

21

asFlow()

fun IntRange.asFlow(): Flow<Int>

Creates a flow that produces values from the range.

22

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/as-flow.html

Example of asFlow()

fun main() = runBlocking {
 val f = (1..3).asFlow()
 println("1. Start to collect")
 f.collect { value ->
 println("Collected $value")
 }
 println("2. Start to collect")
 f.collect { value ->
 println("Collected $value")
 }
}

23

Result of asFlow()

1. Start to collect
Collected 1
Collected 2
Collected 3
2. Start to collect
Collected 1
Collected 2
Collected 3

24

flowOf()

fun <T> flowOf(vararg elements: T): Flow<T>

Creates a flow that produces values from the specified vararg -arguments.

25

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/flow-of.html

Example of flowOf()

fun main() = runBlocking {
 val f = flowOf(1, 2, 3)
 println("1. Start to collect")
 f.collect { value ->
 println("Collected $value")
 }
 println("2. Start to collect")
 f.collect { value ->
 println("Collected $value")
 }
}

26

Result of flowOf()

1. Start to collect
Collected 1
Collected 2
Collected 3
2. Start to collect
Collected 1
Collected 2
Collected 3

27

Operators

Flow is sequential.
Before calling collect() , we can use different function operators to deal with or
transform the value in flow.

28

map()

fun main() = runBlocking {
 (1..3).asFlow()
 .map { "Hello $it" }
 .collect { println(it) }
}

Result :

Hello 1
Hello 2
Hello 3

29

filter()

fun main() = runBlocking {
 (1..10).asFlow()
 .filter { it % 2 == 0 }
 .collect { println(it) }
}

Result :

2
4
6
8
10

30

transform()

transform() is a flexible function that may transform emitted element, skip it or emit it
multiple times.

fun main() = runBlocking {
 (1..10).asFlow()
 .transform {
 if (it % 2 == 0) {
 emit(it)
 emit(it)
 }
 }
 .collect { println(it) }
}

31

https://kotlin.github.io/kotlinx.coroutines/kotlinx-coroutines-core/kotlinx.coroutines.flow/transform.html

Advanced example

32

Advanced example

33

Advanced example

34

Advanced example

35

Advanced example

36

Advanced example

37

Advanced example

38

Reference

Kotlin flows on Android
Asynchronous Flow
Kotlin Coroutine Flow

39

https://developer.android.com/kotlin/flow
https://kotlinlang.org/docs/flow.html
https://waynestalk.com/kotlin-coroutine-flow-tutorial/

