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Notice

• These slides will focus on how to submit you code

by using Git command line 

• You can also use other Git GUI tool or built-in Git 

tool in other IDE/editor
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Teaching Assistants
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How to Find Us?
• Office Hour (TAs)

- Mon. 10:10~12:00 at Delta 729

• Email (Personal question only)

- ssta2025@datalab.cs.nthu.edu.tw

- Shao-Che Feng: scfeng@datalab.cs.nthu.edu.tw

- Chun-Ping Fang: cpfang@datalab.cs.nthu.edu.tw

- Tzu-Ling Hsieh: tlhsieh@datalab.cs.nthu.edu.tw

• Online Forum

- eeclass
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If I have Question?
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If I have Question?

• Always Google first ! 

• Learn how to google is important.

• If you try your best but still can’t catch it.

• Feel free to ask us on eeclass or office hour.
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• Install Git command line tool in your computer.

• Follow appendix “Git Command-line Tool 

Installation”.

• Follow following steps.

Today’s exercise (1/2)
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Outline
• General Rule

• Introduction to Git

• Version control

• Git Basics

• Try Git!

• Remote Repositories

• How to Submit Your Code to Gitlab

• Tools & References
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The Policy of Labs

• All labs need to be submitted to GitLab.

• Late submission will not be accepted.

• Plagiarism will not be tolerated.

- If we find you copy someone’s code, you will get 

0 point for that lab.

• Grading

- Submission before lab ends gets 100% score

- Submission before 11:59pm gets 60% score
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Grading Example

• 4 problems, 25% each

• Solved 4 during the lab

- 100

• Solved 3 during the lab, 1 before 11:59pm

- 75 + 25*0.6 = 90

• Solved 4 after the lab, before 11:59pm

- 100 * 0.6 = 60
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Why use version control?
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We want to track what we 

did and when we did it.
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Students’ VCS
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Why use VCS?

• Managing your projects - tracking your files and 

modifications.

• Synchronization between modifications made by 

different developers.

• Revision history is still very helpful even if you work 

alone.
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Git
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Git

• Git is a popular version control system which is

• Fast

• Easy to use

• Distributed

• A git repository is a mini database that tracks your 

files.
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Git Workflow (1/2)
• With a local repository in your computer, you’ll need 

following operations to make git track your work:

1. Create/modify files

2. Let git monitor the files by adding them to 

staging files.

3. Commit your changes to and git will create 

snapshots (versions) of the files for you.
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Modifying Files

Staging Modified Files Committing A Version

Git Workflow (2/2)

2. add

3. commit

1. modify file
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Develop

Master

Branching Merging

Git Branch
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Be Professional
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Basic Git Commands
• git init

• Initialize a repository at current directory.

• git add [file_name] ( * git add . * → means add all files ) 

• Add files to git repository and let git track them.

• git commit -m "commit messages"

• Save the changes to the git repository and create snapshots of the files.

• git checkout [version]

• Go to a specific version.
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1. Find current directory

2. Go to that directory
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3. Add a new folder

5. Create a new file

4. Go to that folder

6. Put some contents and save
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$ git config --global user.name "name"

$ git config --global user.email "email"

7. Setup user information

With --global: for all repositories in computer

Without --global: for current repository 
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$ cd git-demo # go to git-demo directory

$ dir # list the files

$ git init # initialize a repository

8. Go to “git-demo”

9. Show the files in “git-demo”

10. Initialize a Git repository
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11. Add HelloGit.txt to staging files

12. Commit your changes

# Add HelloGit.txt to staging files

$ git add HelloGit.txt 

# Commit the changes to the repository

# where "version 1" is the commit message

$ git commit -m "version 1"
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14. Add it and commit again

13. Make some changes and save
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15. View your versions

Version 

ID

Commit 

messages

# Show the versions you’ve created so far

$ git log
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16. Go to a specific version

# Go to a specific version

$ git checkout {version_id}
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LIFE IS 
TOO SHORT
TO TYPE THAT
VERSION ID!

which is 40 characters long…
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# Show versions with short version id

$ git log --oneline

15. Show versions with short version ID

Version 

ID

56% 

shorter!
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16. Go to a specific version

# Go to a specific version.

# In fact, you only need to type

# the first 5 characters.

$ git checkout {short_version_id}
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17. Close and reopen HelloGit.txt

18. Back to the version 1!
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• Branching steps

• Creating a new branch

• Checking out the branch

git branch [branch name]

git checkout [branch name]

Try yourself (1/2)

38



• Merging steps

• Checking out a branch to merge

• Merging another branch

git checkout [branch 1 name]

git merge [branch 2 name]

Try yourself (2/2)
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Collaboration

• To work with others using git, you’ll need a server 

that store the repository.

• Git is distributed, which means

• Everyone can store a copy of the repository 

downloaded from the server to their computer 

and do their jobs independently. 
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Collaboration Workflows (1/2)

1. If you don’t have the project, clone (download) the 

repository from the server.

2. Do your work and commit the changes at local. Once 

done, push (upload) the repository to the server.

3. If someone else modified the project, you can pull
(sync) the repository to get the updated project.

4. Repeat 2 and 3.
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Collaboration Workflows (2/2)

Local A Local B

Server

Clone Clone
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Collaboration Workflows (2/2)

Local A Local B

Server

Commit

A
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Version A



AA

Collaboration Workflows (2/2)

Local A Local B

Server

Push
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Version A



A

Collaboration Workflows (2/2)

Local A Local B

Server

A

Pull

A
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Version A

Version A



A

Collaboration Workflows (2/2)

Local A Local B

Server

A

Pull

A

A
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Version A



Something went wrong.
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AA

Authentication Failed

Local A Local B

Server

Push
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Version A

Authentication 
Failed



Why Authentication Failed?
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Collaboration Workflow

• If you tried to clone the code template from a server 

and want to push the modified file.

• You will get authentication failed.

• It’s because it was a project of others, which 

means you are not able to save the changes 

back to the server.

• So, how can I copy a project from others on a open 

source platform like Github?
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Fork
Introducing
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A

A

A1 A2

Forked from Red Commit Commit

A2

Open a Merge Request

Original 

Project

Forked 

Project
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Author

Editor



A

A

A1 A2

A2

Accept
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Author

Editor



A

A

A1 A2

A2
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Author

Editor



A

A

A1 A2

A2

A2

Forked from Red A2
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Git Collaboration Workflow

1. Fork a repository to make a copy of it.

2. Clone the repository you forked to your workspace.

3. Do your work and commit the changes in your 
workspace.

4. Push the repository to the server to synchronize 
them.

5. Open a merge request to origin repository .
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• git clone [url]

• Clone a repository from remote server

• git push [url] [branch-name]

• Push committed file to remote server

Basic Git Commands (2/2)
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Gitlab

• We have created account for you

• Account: student ID (e.g. 106012345)

• Password: student ID (e.g. 106012345)
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Gitlab
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Gitlab
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Gitlab
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Workflow
• For each lab, you should follow the workflow below

1. Fork our template repository on Gitlab

2. Clone the forked repository to your computer

3. Finish your lab

4. Commit in your computer

5. Push to Gitlab

6. Send merge request of your branch to our template 
repository
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Workflow
• For each lab, you should follow the workflow below
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You can access course projects in this group
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1. Click to fork
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4. Click to fork

3. Click Private

2. Select your name
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5. Check if this repository is under your account

6. Go to settings
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7. Set project to private 
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8. Scroll down and save changes



Workflow
• For each lab, you should follow the workflow below

1. Fork our template repository on Gitlab

2. Clone the forked repository to your computer

3. Finish your lab

4. Commit in your computer

5. Push to Gitlab

6. Send merge request of your branch to our template 
repository
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1. Choose HTTPS

2. Copy the link



If You use Windows
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3. Create a folder to put your repos

4. Type "git clone {URL}"

5. The repo has been successfully cloned
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Workflow
• For each lab, you should follow the workflow below

1. Fork our template repository on Gitlab

2. Clone the forked repository to your computer

3. Finish your lab

4. Commit in your computer

5. Push to Gitlab

6. Send merge request of your branch to our template 
repository
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1. -A means all files

2. Check if your file is added to git

3. Commit your changes
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If you see these message, type

git config --global user.name "{name}"

git config --global user.email "{email}" 

{email} is the email you use on gitlab
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Workflow
• For each lab, you should follow the workflow below

1. Fork our template repository on Gitlab

2. Clone the forked repository to your computer

3. Finish your lab

4. Commit in your computer

5. Push to Gitlab

6. Send merge request of your branch to our template 
repository
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Type "git push -u origin master"
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Workflow
• For each lab, you should follow the workflow below

1. Fork our template repository on Gitlab

2. Clone the forked repository to your computer

3. Finish your lab

4. Commit in your computer

5. Push to Gitlab

6. Send merge request of your branch to our template 
repository
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83

1. Click Merge Requests
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2. New merge request
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3. Choose the branch 

you pushed in your repo

Ensure that the commit in the version record of the 

selected branch matches the commit name of the final 

version you have in mind.
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4. Choose the branch 

named after your ID

Ensure that the source of the selected branch is the class 
folder (courses/software-studio/2024-spring/submission-

exercise) and your student ID (not master or someone else’s 
student ID).
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5. Compare branches
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6. Set title to "{ID} Submission"

You can also confirm or change whether the selected branch is correct in this 
section. For instance, in the picture, the course branch selected is master, 

which is incorrect. The correct one should be courses/software-studio/2024-
spring/submission-exercise: {your student ID}.
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7. If everything is OK, 

submit your merge request



Notice - Don’t do this
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91

Notice - Don’t do this
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Notice - Don’t do this



Here!!!!!
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The GitLab setup in our laboratory is 

accessible through the link.
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Tools

• Git GUI

- GitKraken

• Editor / IDE

- Visual Studio Code

- Atom

- Sublime Text

- Brackets

- Notepad++

- Webstorm
95



96



97



98



99



10

0



Reference

• Learn Git branching (interactive)

• http://pcottle.github.io/learnGitBranching/

• Pro Git

• http://git-scm.com/book/

• 寫給大家的 Git 教學

• http://www.slideshare.net/littlebtc/git-5528339
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Today’s exercise

• Install Git command line tool in your computer.

• Follow appendix “Git Command-line Tool 

Installation”.

• Try to submit in GitLab.

10
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