
Lab 00

How to Survive &

Introduction to Git

Software Studio

DataLab, CS, NTHU

1

Notice

• These slides will focus on how to submit you code

by using Git command line

• You can also use other Git GUI tool or built-in Git

tool in other IDE/editor

2

Teaching Assistants

3

How to Find Us?
• Office Hour (TAs)

- Mon. 10:10~12:00 at Delta 729

• Email (Personal question only)

- ssta2025@datalab.cs.nthu.edu.tw

- Shao-Che Feng: scfeng@datalab.cs.nthu.edu.tw

- Chun-Ping Fang: cpfang@datalab.cs.nthu.edu.tw

- Tzu-Ling Hsieh: tlhsieh@datalab.cs.nthu.edu.tw

• Online Forum

- eeclass

4

mailto:tlhsieh@datalab.cs.nthu.edu.tw

If I have Question?

5

If I have Question?

• Always Google first !

• Learn how to google is important.

• If you try your best but still can’t catch it.

• Feel free to ask us on eeclass or office hour.

6

• Install Git command line tool in your computer.

• Follow appendix “Git Command-line Tool

Installation”.

• Follow following steps.

Today’s exercise (1/2)

7

Outline
• General Rule

• Introduction to Git

• Version control

• Git Basics

• Try Git!

• Remote Repositories

• How to Submit Your Code to Gitlab

• Tools & References

8

Outline
• General Rule

• Introduction to Git

• Version control

• Git Basics

• Try Git!

• Remote Repositories

• How to Submit Your Code to Gitlab

• Tools & References

9

The Policy of Labs

• All labs need to be submitted to GitLab.

• Late submission will not be accepted.

• Plagiarism will not be tolerated.

- If we find you copy someone’s code, you will get

0 point for that lab.

• Grading

- Submission before lab ends gets 100% score

- Submission before 11:59pm gets 60% score

10

Grading Example

• 4 problems, 25% each

• Solved 4 during the lab

- 100

• Solved 3 during the lab, 1 before 11:59pm

- 75 + 25*0.6 = 90

• Solved 4 after the lab, before 11:59pm

- 100 * 0.6 = 60

11

Outline
• General Rule

• Introduction to Git

• Version control

• Git Basics

• Try Git!

• Remote Repositories

• How to Submit Your Code to Gitlab

• Tools & References

12

Why use version control?

13

We want to track what we

did and when we did it.

14

Students’ VCS

15

Why use VCS?

• Managing your projects - tracking your files and

modifications.

• Synchronization between modifications made by

different developers.

• Revision history is still very helpful even if you work

alone.

16

Outline
• General Rule

• Introduction to Git

• Version control

• Git Basics

• Try Git!

• Remote Repositories

• How to Submit Your Code to Gitlab

• Tools & References

17

Git

18

Git

• Git is a popular version control system which is

• Fast

• Easy to use

• Distributed

• A git repository is a mini database that tracks your

files.

19

Git Workflow (1/2)
• With a local repository in your computer, you’ll need

following operations to make git track your work:

1. Create/modify files

2. Let git monitor the files by adding them to

staging files.

3. Commit your changes to and git will create

snapshots (versions) of the files for you.

20

Modifying Files

Staging Modified Files Committing A Version

Git Workflow (2/2)

2. add

3. commit

1. modify file

21

Develop

Master

Branching Merging

Git Branch

22

Outline
• General Rule

• Introduction to Git

• Version control

• Git Basics

• Try Git!

• Remote Repositories

• How to Submit Your Code to Gitlab

• Tools & References

23

Be Professional

24

Basic Git Commands
• git init

• Initialize a repository at current directory.

• git add [file_name] (* git add . * → means add all files)

• Add files to git repository and let git track them.

• git commit -m "commit messages"

• Save the changes to the git repository and create snapshots of the files.

• git checkout [version]

• Go to a specific version.

25

1. Find current directory

2. Go to that directory

26

3. Add a new folder

5. Create a new file

4. Go to that folder

6. Put some contents and save

27

$ git config --global user.name "name"

$ git config --global user.email "email"

7. Setup user information

With --global: for all repositories in computer

Without --global: for current repository

28

$ cd git-demo # go to git-demo directory

$ dir # list the files

$ git init # initialize a repository

8. Go to “git-demo”

9. Show the files in “git-demo”

10. Initialize a Git repository

29

11. Add HelloGit.txt to staging files

12. Commit your changes

Add HelloGit.txt to staging files

$ git add HelloGit.txt

Commit the changes to the repository

where "version 1" is the commit message

$ git commit -m "version 1"
30

14. Add it and commit again

13. Make some changes and save

31

15. View your versions

Version

ID

Commit

messages

Show the versions you’ve created so far

$ git log

32

16. Go to a specific version

Go to a specific version

$ git checkout {version_id}

33

LIFE IS
TOO SHORT
TO TYPE THAT
VERSION ID!

which is 40 characters long…
34

Show versions with short version id

$ git log --oneline

15. Show versions with short version ID

Version

ID

56%

shorter!

35

16. Go to a specific version

Go to a specific version.

In fact, you only need to type

the first 5 characters.

$ git checkout {short_version_id}

36

17. Close and reopen HelloGit.txt

18. Back to the version 1!

37

• Branching steps

• Creating a new branch

• Checking out the branch

git branch [branch name]

git checkout [branch name]

Try yourself (1/2)

38

• Merging steps

• Checking out a branch to merge

• Merging another branch

git checkout [branch 1 name]

git merge [branch 2 name]

Try yourself (2/2)

39

Outline
• General Rule

• Introduction to Git

• Version control

• Git Basics

• Try Git!

• Remote Repositories

• How to Submit Your Code to Gitlab

• Tools & References

40

Collaboration

• To work with others using git, you’ll need a server

that store the repository.

• Git is distributed, which means

• Everyone can store a copy of the repository

downloaded from the server to their computer

and do their jobs independently.

41

Collaboration Workflows (1/2)

1. If you don’t have the project, clone (download) the

repository from the server.

2. Do your work and commit the changes at local. Once

done, push (upload) the repository to the server.

3. If someone else modified the project, you can pull
(sync) the repository to get the updated project.

4. Repeat 2 and 3.

42

Collaboration Workflows (2/2)

Local A Local B

Server

Clone Clone

43

Collaboration Workflows (2/2)

Local A Local B

Server

Commit

A

44

Version A

AA

Collaboration Workflows (2/2)

Local A Local B

Server

Push

45

Version A

A

Collaboration Workflows (2/2)

Local A Local B

Server

A

Pull

A

46

Version A

Version A

A

Collaboration Workflows (2/2)

Local A Local B

Server

A

Pull

A

A

47

Version A

Something went wrong.

48

AA

Authentication Failed

Local A Local B

Server

Push

49

Version A

Authentication
Failed

Why Authentication Failed?

50

Collaboration Workflow

• If you tried to clone the code template from a server

and want to push the modified file.

• You will get authentication failed.

• It’s because it was a project of others, which

means you are not able to save the changes

back to the server.

• So, how can I copy a project from others on a open

source platform like Github?

51

Fork
Introducing

52

A

A

A1 A2

Forked from Red Commit Commit

A2

Open a Merge Request

Original

Project

Forked

Project

53

Author

Editor

A

A

A1 A2

A2

Accept

54

Author

Editor

A

A

A1 A2

A2

55

Author

Editor

A

A

A1 A2

A2

A2

Forked from Red A2

56

Git Collaboration Workflow

1. Fork a repository to make a copy of it.

2. Clone the repository you forked to your workspace.

3. Do your work and commit the changes in your
workspace.

4. Push the repository to the server to synchronize
them.

5. Open a merge request to origin repository .

57

• git clone [url]

• Clone a repository from remote server

• git push [url] [branch-name]

• Push committed file to remote server

Basic Git Commands (2/2)

58

Outline
• General Rule

• Introduction to Git

• Version control

• Git Basics

• Try Git!

• Remote Repositories

• How to Submit Your Code to Gitlab

• Tools & References

59

60

Gitlab

• We have created account for you

• Account: student ID (e.g. 106012345)

• Password: student ID (e.g. 106012345)

61

Gitlab

62

Gitlab

63

Gitlab

64

Workflow
• For each lab, you should follow the workflow below

1. Fork our template repository on Gitlab

2. Clone the forked repository to your computer

3. Finish your lab

4. Commit in your computer

5. Push to Gitlab

6. Send merge request of your branch to our template
repository

65

Workflow
• For each lab, you should follow the workflow below

1. Fork our template repository on Gitlab

2. Clone the forked repository to your computer

3. Finish your lab

4. Commit in your computer

5. Push to Gitlab

6. Send merge request of your branch to our template
repository

66

You can access course projects in this group

67

https://shwu10.cs.nthu.edu.tw/courses/software-studio/2024-spring

68

1. Click to fork

69

4. Click to fork

3. Click Private

2. Select your name

70

5. Check if this repository is under your account

6. Go to settings

71

7. Set project to private

72

8. Scroll down and save changes

Workflow
• For each lab, you should follow the workflow below

1. Fork our template repository on Gitlab

2. Clone the forked repository to your computer

3. Finish your lab

4. Commit in your computer

5. Push to Gitlab

6. Send merge request of your branch to our template
repository

73

74

1. Choose HTTPS

2. Copy the link

If You use Windows

75

3. Create a folder to put your repos

4. Type "git clone {URL}"

5. The repo has been successfully cloned

76

Workflow
• For each lab, you should follow the workflow below

1. Fork our template repository on Gitlab

2. Clone the forked repository to your computer

3. Finish your lab

4. Commit in your computer

5. Push to Gitlab

6. Send merge request of your branch to our template
repository

77

1. -A means all files

2. Check if your file is added to git

3. Commit your changes

78

If you see these message, type

git config --global user.name "{name}"

git config --global user.email "{email}"

{email} is the email you use on gitlab

79

Workflow
• For each lab, you should follow the workflow below

1. Fork our template repository on Gitlab

2. Clone the forked repository to your computer

3. Finish your lab

4. Commit in your computer

5. Push to Gitlab

6. Send merge request of your branch to our template
repository

80

Type "git push -u origin master"

81

Workflow
• For each lab, you should follow the workflow below

1. Fork our template repository on Gitlab

2. Clone the forked repository to your computer

3. Finish your lab

4. Commit in your computer

5. Push to Gitlab

6. Send merge request of your branch to our template
repository

82

83

1. Click Merge Requests

84

2. New merge request

85

3. Choose the branch

you pushed in your repo

Ensure that the commit in the version record of the

selected branch matches the commit name of the final

version you have in mind.

86

4. Choose the branch

named after your ID

Ensure that the source of the selected branch is the class
folder (courses/software-studio/2024-spring/submission-

exercise) and your student ID (not master or someone else’s
student ID).

87

5. Compare branches

88

6. Set title to "{ID} Submission"

You can also confirm or change whether the selected branch is correct in this
section. For instance, in the picture, the course branch selected is master,

which is incorrect. The correct one should be courses/software-studio/2024-
spring/submission-exercise: {your student ID}.

89

7. If everything is OK,

submit your merge request

Notice - Don’t do this

90

91

Notice - Don’t do this

92

Notice - Don’t do this

Here!!!!!

93

The GitLab setup in our laboratory is

accessible through the link.

Outline
• General Rule

• Introduction to Git

• Version control

• Git Basics

• Try Git!

• Remote Repositories

• How to Submit Your Code to Gitlab

• Tools & References

94

Tools

• Git GUI

- GitKraken

• Editor / IDE

- Visual Studio Code

- Atom

- Sublime Text

- Brackets

- Notepad++

- Webstorm
95

96

97

98

99

10

0

Reference

• Learn Git branching (interactive)

• http://pcottle.github.io/learnGitBranching/

• Pro Git

• http://git-scm.com/book/

• 寫給大家的 Git 教學

• http://www.slideshare.net/littlebtc/git-5528339

10

1

http://pcottle.github.io/learnGitBranching/
http://git-scm.com/book/
http://www.slideshare.net/littlebtc/git-5528339

Today’s exercise

• Install Git command line tool in your computer.

• Follow appendix “Git Command-line Tool

Installation”.

• Try to submit in GitLab.

10

2

	Slide 1: Lab 00 How to Survive & Introduction to Git
	Slide 2: Notice
	Slide 3: Teaching Assistants
	Slide 4: How to Find Us?
	Slide 5: If I have Question?
	Slide 6: If I have Question?
	Slide 7
	Slide 8: Outline
	Slide 9: Outline
	Slide 10: The Policy of Labs
	Slide 11: Grading Example
	Slide 12: Outline
	Slide 13: Why use version control?
	Slide 14: We want to track what we did and when we did it.
	Slide 15: Students’ VCS
	Slide 16: Why use VCS?
	Slide 17: Outline
	Slide 18: Git
	Slide 19: Git
	Slide 20: Git Workflow (1/2)
	Slide 21
	Slide 22
	Slide 23: Outline
	Slide 24
	Slide 25: Basic Git Commands
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40: Outline
	Slide 41: Collaboration
	Slide 42: Collaboration Workflows (1/2)
	Slide 43: Collaboration Workflows (2/2)
	Slide 44: Collaboration Workflows (2/2)
	Slide 45: Collaboration Workflows (2/2)
	Slide 46: Collaboration Workflows (2/2)
	Slide 47: Collaboration Workflows (2/2)
	Slide 48: Something went wrong.
	Slide 49: Authentication Failed
	Slide 50: Why Authentication Failed?
	Slide 51: Collaboration Workflow
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57: Git Collaboration Workflow
	Slide 58
	Slide 59: Outline
	Slide 60
	Slide 61: Gitlab
	Slide 62: Gitlab
	Slide 63: Gitlab
	Slide 64: Gitlab
	Slide 65: Workflow
	Slide 66: Workflow
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73: Workflow
	Slide 74
	Slide 75: If You use Windows
	Slide 76
	Slide 77: Workflow
	Slide 78
	Slide 79
	Slide 80: Workflow
	Slide 81
	Slide 82: Workflow
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94: Outline
	Slide 95: Tools
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102

