Lab 10 ML: Weathermood Sentiment

Software Studio Datalab, CS, NTHU 2023

Gitlab

lab-weathermood-toxicity-detection

Outline

1. Sentiment analysis

- 2. TensorFlow.js
- 3. Weathermood toxicity detection

Sentiment analysis

- Natural language processing (NLP)
- Input = a piece of text or sentence
- Output = the score for the opinions and sentiments within

Sentiment analysis

Outline

- 1. Sentiment analysis
- 2. TensorFlow.js
- 3. Weathermood toxicity detection

Stand upon the shoulder of Google

TensorFlow: TensorFlow.js

- Develop ML models in JavaScript, and use ML directly in the browser or in Node.js
- tensorflow.org/js [link]

TensorFlow.js

TensorFlow.js models

Explore pre-trained models to add computer vision, natural language processing (NLP), and other common ML tasks to your web and browser-based applications.

Unlock new real-time experiences in the browser.

hands, and body with models from MediaPipe and beyond, optimized for JavaScript and Node.js.

Toxicity classifier

The toxicity model detects whether text contains toxic content

- Input = a sentence
- Output = whether the input contains toxic content

text	identity attack	insult	obscene	severe toxicity	sexual explicit	threat	toxicity
We're dudes on computers, moron. You are quite astonishingly stupid.	false	true	false	false	false	false	true
Please stop. If you continue to vandalize Wikipedia, as you did to Kmart, you will be blocked from editing.	false	false	false	false	false	false	false
I respect your point of view, and when this discussion originated on 8th April I would have tended to agree with you.	false	false	false	false	false	false	false

Enter text below and click 'Classify' to add it to the table.

Weathermood w/ sentiment

How to use a pre-trained model

Installation

- npm install
- npm install @tensorflow/tfjs @tensorflow-models/toxicity

Usage, no key needed

- To import in npm

```
require('@tensorflow/tfjs');
const toxicity = require('@tensorflow-models/toxicity');
```

- Or as a standalone script tag

```
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs"></script>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow-models/toxicity"></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script><
```

```
// The minimum prediction confidence.
const threshold = 0.9;
// Load the model. Users optionally pass in a threshold and an array of
// labels to include.
toxicity.load(threshold).then(model => {
    const sentences = ['you suck'];
    model.classify(sentences).then(predictions => {
        console.log(predictions);
        /*
    });
});
```

```
▼ Array(7) 🚺
 > 0: {label: 'identity_attack', results: Array(1)}
 ▶ 1: {label: 'insult', results: Array(1)}
 ▼ 2:
     label: "obscene"
   results: Array(1)
    ▼ 0:
        match: false
      probabilities: Float32Array(2) ③
          0: 0.9990488886833191
          1: 0.0009510404779575765
        buffer: ArrayBuffer(8) (1)
          byteLength: 8
          byte0ffset: 0
          length: 2
          Symbol(Symbol.toStringTag): "Float32Array"
        [[Prototype]]: TypedArray
      > [[Prototype]]: Object
       length: 1
     > [[Prototype]]: Array(0)
   > [[Prototype]]: Object
 > 3: {label: 'severe_toxicity', results: Array(1)}
 4: {label: 'sexual_explicit', results: Array(1)}
 > 5: {label: 'threat', results: Array(1)}
 ▶ 6: {label: 'toxicity', results: Array(1)}
   length: 7
```


text	identity attack	insult	obscene	severe toxicity	sexual explicit	threat	toxicity
We're dudes on computers, moron. You are quite astonishingly stupid.	false	true	false	false	false	false	true
Please stop. If you continue to vandalize Wikipedia, as you did to Kmart, you will be blocked from editing.	false	false	false	false	false	false	false
I respect your point of view, and when this discussion originated on 8th April I would have tended to agree with you.	false	false	false	false	false	false	false

Outline

- 1. Sentiment analysis
- 2. TensorFlow.js
- 3. Weathermood toxicity detection

lab-weathermood-toxicity-detection

Three types of mood

identity attack	insult	obscene	severe toxicity	sexual explicit	threat	toxicity	emoji
true	true	false	true	false	true	true	e sad
false	false	false	false	false	false	false	ee happy
false	false	true	false	true	false	false	fear

lab-weathermood-toxicity-detection

Toxicity prediction workflow in weathermood

- 1. User triggers the post button, calling handlePost()
- 2. Call predict() from <u>api/toxicity-classifier</u> to start the text classification
- After getting the result, createPost() from api/posts was called to create a post with mood
- Each PostItem will render text and mood, mood is represented through emoji by calling <u>getMoodIcon()</u>

