Web/App Intelligence Part I: Supervised Machine Learning

Shan-Hung Wu shwu@cs.nthu.edu.tw

Department of Computer Science, National Tsing Hua University, Taiwan

Software Design & Studio

Outline

1 Web/App Intelligence

2 What's Machine Learning?

3 Post Toxicity Detection

Outline

1 Web/App Intelligence

2 What's Machine Learning?

3 Post Toxicity Detection

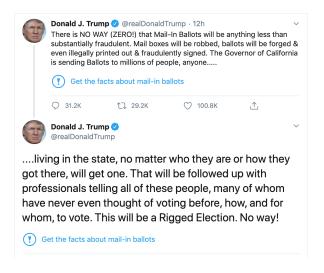
Let's Make WeatherMood More Intelligent...

- \$ git clone weathermood—toxicity—detection
- \$ npm install
- \$ npm run start

Customer Service Automation



Spam Detection



Product Recommendations

Frequently Bought Together

Price For All Three: \$258.02

Add all three to Cart

- This item: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics) by Trevor Hastie
- Pattern Recognition and Machine Learning (Information Science and Statistics) by Christopher M. Bishop
- Pattern Classification (2nd Edition) by Richard O. Duda

Customers Who Bought This Item Also Bought

(2nd Edition) by Richard O. Duda 合文文章 (27) \$117.25

Data Mining: Practical Machine Learning Tools an... by Ian H. Witten

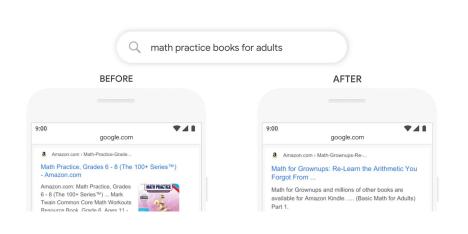
Bayesian Data Analysis, Second Edition (Texts in... by Andrew Gelman

Data Analysis Using Regression and Multilevel /... by Andrew Gelman

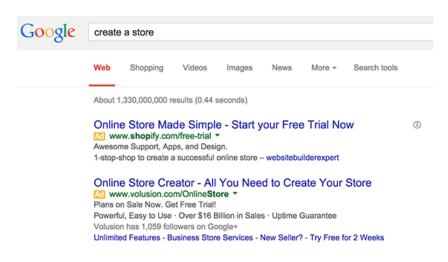
会会会会 (13) \$39.59

Customer Profiling

Intention Identification



Marketing & Advertisement



And much more...

How to do it?

How to do it?

Machine Learning

or Data Mining, Deep Learning, NLP, CV, etc.

Outline

1 Web/App Intelligence

What's Machine Learning?

3 Post Toxicity Detection

To solve a problem, we need an algorithmE.g., sorting

- To solve a problem, we need an algorithm
 - E.g., sorting
 - A priori knowledge is enough

- To solve a problem, we need an algorithm
 - E.g., sorting
 - A priori knowledge is enough
- For some problem, however, we do not have the a priori knowledge
 - E.g., to tell if a post is toxic or not
 - The correct answer varies in time and from site to site

- To solve a problem, we need an algorithm
 - E.g., sorting
 - A priori knowledge is enough
- For some problem, however, we do not have the a priori knowledge
 - E.g., to tell if a post is toxic or not
 - The correct answer varies in time and from site to site
- Machine learning algorithms use the a posteriori knowledge to solve problems

- To solve a problem, we need an algorithm
 - E.g., sorting
 - A priori knowledge is enough
- For some problem, however, we do not have the a priori knowledge
 - E.g., to tell if a post is toxic or not
 - The correct answer varies in time and from site to site
- Machine learning algorithms use the a posteriori knowledge to solve problems
 - Takes examples as extra input

Example Data X as Extra Input

• Unsupervised:

$$\mathbb{X} = \{ \boldsymbol{x}^{(i)} \}_{i=1}^{N}, \text{ where } \boldsymbol{x}^{(i)} \in \mathbb{R}^{D}$$

ullet E.g., $oldsymbol{x}^{(i)}$ a post

Example Data X as Extra Input

• Unsupervised:

$$\mathbb{X} = \{ \boldsymbol{x}^{(i)} \}_{i=1}^{N}, \text{ where } \boldsymbol{x}^{(i)} \in \mathbb{R}^{D}$$

- E.g., $x^{(i)}$ a post
- Supervised:

$$\mathbb{X} = \{(\pmb{x}^{(i)}, \pmb{y}^{(i)})\}_{i=1}^N, \text{ where } \pmb{x}^{(i)} \in \mathbb{R}^D \text{ and } \pmb{y}^{(i)} \in \mathbb{R}^K,$$

• E.g., label $y^{(i)} \in \{0,1\}$ indicates if the post $\boldsymbol{x}^{(i)}$ is toxic

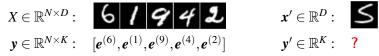
3 General Types of Learning (1/2)

• Supervised learning: learn to predict the labels of future data points

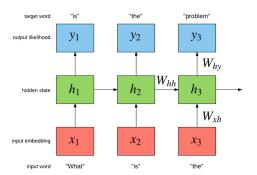
$$X \in \mathbb{R}^{N \times D}$$
: 6 1 9 4 2 $x' \in \mathbb{R}^{D}$: 5 $y \in \mathbb{R}^{N \times K}$: $[e^{(6)}, e^{(1)}, e^{(9)}, e^{(4)}, e^{(2)}]$ $y' \in \mathbb{R}^{K}$: ?

3 General Types of Learning (1/2)

Supervised learning: learn to predict the labels of future data points

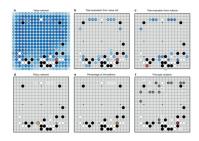


• Unsupervised learning: learn patterns or latent factors in X



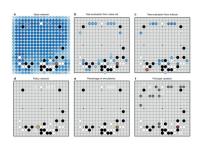
3 General Types of Learning (2/2)

 Reinforcement learning: learn from "good"/"bad" feedback of actions (instead of correct labels) to maximize the goal



3 General Types of Learning (2/2)

 Reinforcement learning: learn from "good"/"bad" feedback of actions (instead of correct labels) to maximize the goal



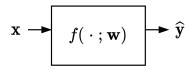
- AlphaGo is a hybrid of reinforcement learning and supervised learning
 - Supervised learning from the game records
 - Then, reinforcement learning from self-play

Supervised ML Step 1: Data Pre-processing

- Data collection and exploration
- 2 Data preprocessing (e.g., integration, cleaning, etc.)

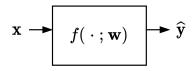
$$X = \{(x^{(i)}, y^{(i)})\}_{i=1}^{N}$$

Supervised ML Step 2: Model Development



- ① Assume a $\operatorname{model} \{f(\cdot; \mathbf{w})\}_{\mathbf{w}}$ that is a collection of candidate functions f's
 - Each f predicts label \hat{y} given an input x
 - ullet f is assumed to be parametrized by ${\it w}$

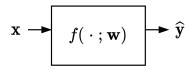
Supervised ML Step 2: Model Development



- ① Assume a model $\{f(\cdot; w)\}_w$ that is a collection of candidate functions f's
 - Each f predicts label \hat{y} given an input x
- ullet f is assumed to be parametrized by ${\it w}$

that measures "how good a particular $f(\cdot; w)$ can explain the training data \mathbb{X} " (posteriori knowledge)

Supervised ML Step 2: Model Development



- ① Assume a $\operatorname{model} \{f(\cdot; \mathbf{w})\}_{\mathbf{w}}$ that is a collection of candidate functions f's
 - Each f predicts label \hat{y} given an input x
 - ullet f is assumed to be parametrized by ${\it w}$
- 2 Define a cost function

that measures "how good a particular $f(\cdot; w)$ can explain the training data \mathbb{X} " (posteriori knowledge)

3 Training: employ an algorithm that solves

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} C(\mathbf{w}; \mathbb{X})$$

Supervised ML Step 3: Testing & Deployment

- ① **Testing**: evaluate the performance of the learned $f(\cdot; \mathbf{w}^*)$ using another, **unseen** test dataset \mathbb{X}'
 - ullet Examples in \mathbb{X}' should have the same distribution with those in \mathbb{X}

Supervised ML Step 3: Testing & Deployment

- **1 Testing**: evaluate the performance of the learned $f(\cdot; \mathbf{w}^*)$ using another, **unseen** test dataset \mathbb{X}'
 - Examples in \mathbb{X}' should have the same distribution with those in \mathbb{X}
- 2 If $f(\cdot; \mathbf{w}^*)$ has a good test performance, deploy it in a real world system

What is Deep Learning?

• ML where an $f(\cdot; w)$ has many (deep) layers

$$\hat{\mathbf{y}} = f^{(L)}(\cdots f^{(2)}(f^{(1)}(\mathbf{x}; \mathbf{w}^{(1)}); \mathbf{w}^{(2)}) \cdots; \mathbf{w}^{(L)})$$

$$\mathbf{x} \longrightarrow f^{(1)}(\cdot; \mathbf{w}^{(1)}) \longrightarrow f^{(2)}(\cdot; \mathbf{w}^{(2)}) \longrightarrow \cdots \qquad f^{(L)}(\cdot; \mathbf{w}^{(L)}) \longrightarrow \hat{\mathbf{y}}$$

What is Deep Learning?

• ML where an $f(\cdot; w)$ has many (deep) layers

$$\hat{\mathbf{y}} = f^{(L)}(\cdots f^{(2)}(f^{(1)}(\mathbf{x}; \mathbf{w}^{(1)}); \mathbf{w}^{(2)}) \cdots ; \mathbf{w}^{(L)})$$

$$\mathbf{x} \longrightarrow f^{(1)}(\cdot; \mathbf{w}^{(1)}) \longrightarrow f^{(2)}(\cdot; \mathbf{w}^{(2)}) \longrightarrow \cdots \qquad f^{(L)}(\cdot; \mathbf{w}^{(L)}) \longrightarrow \hat{\mathbf{y}}$$

- Pros:
 - Learns to pre-process data automatically
 - Learns a complex function (e.g., visual objects to labels)

What is Deep Learning?

• ML where an $f(\cdot; w)$ has many (deep) layers

$$\hat{\mathbf{y}} = f^{(L)}(\cdots f^{(2)}(f^{(1)}(\mathbf{x}; \mathbf{w}^{(1)}); \mathbf{w}^{(2)}) \cdots; \mathbf{w}^{(L)})$$

$$\mathbf{x} \longrightarrow f^{(1)}(\cdot; \mathbf{w}^{(1)}) \longrightarrow f^{(2)}(\cdot; \mathbf{w}^{(2)}) \longrightarrow \cdots \qquad f^{(L)}(\cdot; \mathbf{w}^{(L)}) \longrightarrow \hat{\mathbf{y}}$$

- Pros:
 - Learns to pre-process data automatically
 - Learns a complex function (e.g., visual objects to labels)
- Cons:
 - Usually needs large data to train a model well
 - High computation costs (at both training and test time)

Outline

1 Web/App Intelligence

2 What's Machine Learning?

3 Post Toxicity Detection

text	identity attack	insult	obscene	severe toxicity	sexual explicit	threat	toxicity
We're dudes on computers, moron. You are quite astonishingly stupid.	false	true	false	false	false	false	true

Get and preprocess a dataset, e.g., <u>civil comments</u>

1 Training dataset: $\mathbb{X} = \{(\boldsymbol{x}^{(i)}, \boldsymbol{y}^{(i)})\}_i$

2 Testing dataset: $X' = \{(x'^{(i)}, y'^{(i)})\}_i$

 $^{^{1}1(\}text{condition}) = 1$ if condition is true; otherwise 0.

text	identity attack	insult	obscene	severe toxicity	sexual explicit	threat	toxicity
We're dudes on computers, moron. You are quite astonishingly stupid.	false	true	false	false	false	false	true

- Get and preprocess a dataset, e.g., <u>civil comments</u>
 - **1** Training dataset: $\mathbb{X} = \{(\pmb{x}^{(i)}, \pmb{y}^{(i)})\}_i$
 - 2 Testing dataset: $X' = \{(x'^{(i)}, y'^{(i)})\}_i$
- 2 Model development
 - **1 Model**: $\{f: f(x; w) = w^{\top} x\}_{w}$

 $^{^{1}1(}condition) = 1$ if condition is true; otherwise 0.

text	identity attack	insult	obscene	severe toxicity	sexual explicit	threat	toxicity
We're dudes on computers, moron. You are quite astonishingly stupid.	false	true	false	false	false	false	true

- Get and preprocess a dataset, e.g., <u>civil comments</u>
 - $oldsymbol{1}$ Training dataset: $\mathbb{X} = \{(oldsymbol{x}^{(i)}, oldsymbol{y}^{(i)})\}_i$
 - 2 Testing dataset: $X' = \{(x'^{(i)}, y'^{(i)})\}_i$
- 2 Model development
 - **1 Model**: $\{f: f(x; w) = w^{\top} x\}_{w}$
 - **2** Cost function: $C(\mathbf{w}; \mathbb{X}) = \sum_{(\mathbf{x}^{(i)}, \mathbf{v}^{(i)}) \in \mathbb{X}} 1(f(\mathbf{x}^{(i)}; \mathbf{w}) \neq \mathbf{y}^{(i)})^1$

 $^{^{1}1(\}text{condition}) = 1$ if condition is true; otherwise 0.

text	identity attack	insult	obscene	severe toxicity	sexual explicit	threat	toxicity
We're dudes on computers, moron. You are quite astonishingly stupid.	false	true	false	false	false	false	true

- Get and preprocess a dataset, e.g., <u>civil comments</u>
 - **①** Training dataset: $\mathbb{X} = \{(\pmb{x}^{(i)}, \pmb{y}^{(i)})\}_i$
 - 2 Testing dataset: $X' = \{(x'^{(i)}, y'^{(i)})\}_i$
- 2 Model development
 - **1 Model**: $\{f: f(x; w) = w^{\top} x\}_{w}$
 - **2** Cost function: $C(w; \mathbb{X}) = \sum_{(\mathbf{x}^{(i)}, \mathbf{v}^{(i)}) \in \mathbb{X}} 1(f(\mathbf{x}^{(i)}; \mathbf{w}) \neq \mathbf{y}^{(i)})^1$
 - **3** *Training*: to solve $w^* = \arg\min_{w} C(w; \mathbb{X})$

 $^{^{1}1(\}text{condition}) = 1$ if condition is true; otherwise 0.

text	identity attack	insult	obscene	severe toxicity	sexual explicit	threat	toxicity
We're dudes on computers, moron. You are quite astonishingly stupid.	false	true	false	false	false	false	true

- 1 Get and preprocess a dataset, e.g., civil comments
 - **1** Training dataset: $\mathbb{X} = \{(\pmb{x}^{(i)}, \pmb{y}^{(i)})\}_i$
 - 2 Testing dataset: $X' = \{(x'^{(i)}, y'^{(i)})\}_i$
- 2 Model development
 - **1 Model**: $\{f: f(x; w) = w^{\top} x\}_{w}$
 - **2** Cost function: $C(w; \mathbb{X}) = \sum_{(\mathbf{x}^{(i)}, \mathbf{v}^{(i)}) \in \mathbb{X}} 1(f(\mathbf{x}^{(i)}; \mathbf{w}) \neq \mathbf{y}^{(i)})^1$
 - **3** Training: to solve $w^* = \arg\min_{w} C(w; \mathbb{X})$
- $\textbf{3} \quad \textit{Testing}: \text{ accuracy } \frac{1}{|\mathbb{X}'|} \Sigma_{(\textbf{x}'^{(i)}, \textbf{y}'^{(i)}) \in \mathbb{X}'} 1(f(\textbf{x}'^{(i)}; \textbf{w}^*) = \textbf{y}'^{(i)})$

 $^{^{1}1(\}text{condition}) = 1$ if condition is true; otherwise 0.

text	identity attack	insult	obscene	severe toxicity	sexual explicit	threat	toxicity
We're dudes on computers, moron. You are quite astonishingly stupid.	false	true	false	false	false	false	true

- ① Get and preprocess a dataset, e.g., <u>civil comments</u>
 - **1** Training dataset: $\mathbb{X} = \{(\pmb{x}^{(i)}, \pmb{y}^{(i)})\}_i$
 - **2** Testing dataset: $X' = \{(x'^{(i)}, y'^{(i)})\}_i$
- 2 Model development
 - **1 Model**: $\{f: f(x; w) = w^{\top} x\}_{w}$
 - **2** Cost function: $C(w; \mathbb{X}) = \sum_{(\mathbf{x}^{(i)}, \mathbf{v}^{(i)}) \in \mathbb{X}} 1(f(\mathbf{x}^{(i)}; \mathbf{w}) \neq \mathbf{y}^{(i)})^1$
 - **3** Training: to solve $w^* = \arg\min_{w} C(w; \mathbb{X})$
- - ① Then, integrate $f(\cdot; \mathbf{w}^*)$ into WeatherMood

Shan-Hung Wu (CS, NTHU)

 $^{^{1}1(\}text{condition}) = 1$ if condition is true; otherwise 0.

Pre-trained Toxicity Classifier

The chef who ran to the store was out of food $\begin{bmatrix} 4 \\ -2 \\ 3 \end{bmatrix} \begin{bmatrix} 1 \\ 9 \\ -2 \end{bmatrix} \begin{bmatrix} 3 \\ -4 \\ 2 \end{bmatrix} \begin{bmatrix} 7 \\ -4 \\ 0 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ -5 \end{bmatrix} \begin{bmatrix} 1 \\ -6 \\ 2 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \\ 9 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \\ 8 \end{bmatrix} \begin{bmatrix} -8 \\ 3 \\ -6 \end{bmatrix} \begin{bmatrix} 0 \\ 7 \\ 9 \end{bmatrix} \longrightarrow \boxed{f^{(1)} \Big(\cdot ; \mathbf{w}^{(1)} \Big)} \longrightarrow \boxed{f^{(2)} \Big(\cdot ; \mathbf{w}^{(2)} \Big)} \longrightarrow \cdots \boxed{f^{(L)} \Big(\cdot ; \mathbf{w}^{(L)} \Big)} \longrightarrow \widehat{\mathbf{y}}$

- Google's Pre-trained Toxicity Classifier on GitHub
 - It's free
- Deep model:
 - 1 Transforms each word into a fixed-length vector
 - 2 Sums then normalizes the word vectors
 - 3 Feeds the sum into a deep classification model

Using the Pre-trained Toxicity Classifier

```
// installation
$ npm install @tensorflow/tfis @tensorflow-models/toxicity
// usage in code
const toxicity = require('@tensorflow-models/toxicity');
const model = await toxicity.load(0.9); // threshold
const inputs = ['We're dudes on comupters, moron...'];
const classes = await model.classify(inputs);
inputs.forEach((text, i) \Rightarrow {
  console.log(text);
  classes.forEach(cls => {
    console.log(cls.label, cls.results[i].match);
 });
});
```

	attack	mount	Obsection	toxicity	explicit	uncut	toxicity
We're dudes on computers, moron. You are quite astonishingly stupid.	false	true	false	false	false	false	true

tovt

Demo 3

- Implement the prototype you shown in Demo 2
- Final project demo:
 - 6/20 1pm-6pm
 - 4 min for team (strict)
 - 10 min for QA

Demo 3

- Implement the prototype you shown in Demo 2
- Final project demo:
 - 6/20 1pm-6pm
 - 4 min for team (strict)
 - 10 min for QA
- Evaluation:
 - Completeness (60%)
 - Complexity (40%)

Completeness (60%)

- How many main features have you completed?
- List each of them
- How well does your final implementation match your Demo 2 design?
 (40%)
 - Key features
 - Key flows
 - UI & transitions

Complexity (40%)

- Explain one or two most
 - challenging aspects you implemented, or
- Discuss issues encountered and you solutions

Bonus

- Best Minimal Viable Products (MVPs)
 - +15%, +10%, and +5% for #1, #2, and #3, respectively
- Cross-team peer review
 - Each team has three non-self votes
 - Judged by completeness, complexity, and design
- Intra-team peer review
 - Scaled based on team score

