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Unsupervised Learning

Dataset: X= {x(i)}i

No supervision such as labels

What can we learn?
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Product Recommendations
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Clustering I

Goal: to divide x(i)’s into K groups/clusters
Based on some pairwise similarity/distance measure

E.g. cos(x(i),x(j)) or ‖x(i)−x(j)‖
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Clustering II

K-means algorithm (K fixed)
Repeat until converge:

Decide K cluster heads
Partition points in X based on the similarity measure
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Problems
It requires a way to transform items to vectors
Also, the semantic similarity between items needs to be preserved

E..g, pop songs should be closer to R&B songs than classic music
How?

Unsupervised deep machine learning like BERT:
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Rating Matrix Factorization
Goal: to uncover the factors behind X

Useful when each x(i) represents item clicks

Let X, Xi,: = x(i), be a rating matrix

Non-negative matrix factorization (NMF):

arg min
W≥O,H≥O

‖X−WH‖F

X∗ = W∗H∗ a dense matrix and can be used to predict user interests
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Generative Models
Identify the patterns/structures within existing data to generate new
content
Common models:

ChatGPT
Midjourney
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What Can It Do to WeatherMood?

$ g i t c l o n e weathermood−s t a r g an
$ npm i n s t a l l
$ npm run s t a r t
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How to do it?

Generative Adversarial Networks
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Basic Idea of GANs

Generator g: to generate data points from random codes
Discriminator f : to distinguish generated points from real ones in X

After training: user g to generate images
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Results
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Conditional GAN

Let g and f take a condition vector as extra input

Example: text as condition

“This bird is completely red with black wings and pointy beak.”
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StarGAN (for Face Generation)
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Good Luck for Your Final Demo!
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