Web Security and Auth

Shan-Hung Wu
CS, NTHU

Outline

* Security risks of web applications
— Injection, broken authentication, XSS, CSRF, etc.
— Checklist of 23 Node.js security best practices

https://medium.com/@nodepractices/were-under-attack-23-node-js-security-best-practices-e33c146cb87d

Outline

 Auth: Authentication, authorization, and session
management

— HTTP Basic auth

— HTTP Digest auth

— Cookies for stateful sessions

— Bearer tokens for stateless sessions

e Single Sign On (SSO)

https://medium.com/@nodepractices/were-under-attack-23-node-js-security-best-practices-e33c146cb87d

Authentication vs. Authorization

* Authentication: the Sign in
process to verify you -
are who you said L sen
— ==
* Authorization: the

process to decide if ———
you have permission

to access a resource =
@ Public
v fﬁerlds

Session Management

* The process of securely handling multiple
requests to a server from a single client (user)

Login Change state

Idle timeou Authenticated

Hard timeout

Re-authenticate

Destroy

Initialize

Were to Store Session States?

* Server
— Stateful sessions

— Server processes requests based on the states
* Client

— Stateless sessions
— Server processes requests based on their content

Outline

— HTTP Basic auth

— HTTP Digest auth

— Cookies for stateful sessions

— Bearer tokens for stateless sessions

https://medium.com/@nodepractices/were-under-attack-23-node-js-security-best-practices-e33c146cb87d

Which one should | choose?

Evaluation Criteria

Complexity
Reliance on HTTPS
Reliance on CSRF protection

Replay and integrity protection

Session management

User cases & tips

Outline

e Security risks of web applications

— Injection, broken authentication, XSS, CSRF, etc.

— Checklist of 23 Node.js security best practices
 Auth: Authentication, authorization, and session

management

— HTTP Basic auth

— HTTP Digest auth

— Cookies for stateful sessions

— Bearer tokens for stateless sessions

e Single Sign On (SSO)

10

https://medium.com/@nodepractices/were-under-attack-23-node-js-security-best-practices-e33c146cb87d

How It Works

* Aclient attaches clear text password to each
request:

// Request from client
Authorization: Basic baseb6b4 (username:password)

e Seriously?

Evaluation

Complexity: Dead simple; tons of libraries

Re
Re
Re

lance on HTTPS:
lance on CSRF protection:

olay and integrity protection:

Session management: Poor

— Logout is complicated
Tips: always use Basic Auth with HTTPS

12

https://stackoverflow.com/questions/233507/how-to-log-out-user-from-web-site-using-basic-authentication

Outline

e Security risks of web applications

— Injection, broken authentication, XSS, CSRF, etc.

— Checklist of 23 Node.js security best practices
 Auth: Authentication, authorization, and session

management

— HTTP Basic auth

— HTTP Digest auth

— Cookies for stateful sessions

— Bearer tokens for stateless sessions

e Single Sign On (SSO)

13

https://medium.com/@nodepractices/were-under-attack-23-node-js-security-best-practices-e33c146cb87d

HTTP Digest Auth

* Goal: not to rely on HTTPS/TLS anymore

* |dea: server challenges client
— No password in every request

* Not widely adopted due to complexity!

14

Outline

e Security risks of web applications

— Injection, broken authentication, XSS, CSRF, etc.

— Checklist of 23 Node.js security best practices
 Auth: Authentication, authorization, and session

management

— HTTP Basic auth

— HTTP Digest auth

— Cookies for stateful sessions

— Bearer tokens for stateless sessions

e Single Sign On (SSO)

15

https://medium.com/@nodepractices/were-under-attack-23-node-js-security-best-practices-e33c146cb87d

How It Works

// Login response from server
Set-Cookle: sessionlId=...;
Domain=.app.com;
Secure; SameSite; HttpOnly

// Subsequent requests from client
Cookie: sessionlId=...

* Cookies are managed by browser

— Sent to server in every subsequent request

https://www.securitydrops.com/cookies/

Browser

p
POST /auth

‘ username=tino&password=12345

\

4

‘ 200 OK
G . ,

} Set-Cookie: session=...

\

Stateful Sessions

GET /dashboard
Cookie: session=...

Find session

200 0K

User ID

17

Evaluation

Complexity: simple; tons of libraries
Reliance on HTTPS:
— Set the Secure flag

Reliance on CSRF protection:
— Set the SameSite flag

Replay and integrity protection:
Session management: Good

Set the Ht tpOnly flag to prevent XSS
attacks from stealing it

Outline

e Security risks of web applications

— Injection, broken authentication, XSS, CSRF, etc.

— Checklist of 23 Node.js security best practices
 Auth: Authentication, authorization, and session

management

— HTTP Basic auth

— HTTP Digest auth

— Cookies for stateful sessions

— Bearer tokens for stateless sessions

* Single Sign On (SSO)

19

https://medium.com/@nodepractices/were-under-attack-23-node-js-security-best-practices-e33c146cb87d

How It Works

// Login response from server

{

token: e2ZahC5b // JWT token
}

// Subsequent request from client
Authorization: Bearer e2ZahCbb // added by JS

* AJWT token is self-descriping and immutable
— Includes user ID, expiration date, etc.

(uid, expdate, sha2b6(uid, expdate, secret))

20

https://jwt.io/

Sateless Sessions

| |

POST /auth \
username=tino&password=12345

200 0K

{"access_token'! [JWT token] '} |
L V.

(2y
GET /dashboard |
Authorization: Bearer [JWT token)

validate token

200 OK

(
+——L <html>...)
(

GET /api/v1/posts |
Authorization: Bearer [JWT token)

~— UseriD "’

‘(7 200 0K)

Y L {l'id":233,'subject’"."]} ‘
2 o

validate token

21

Evaluation

Complexity: sim

Re
Re
Re

lance on HTT
lance on CSR

ole with aid from libraries
PS:

- protection: No

olay and integrity protection:
Session management:

— Use access and refresh tokens
— Do not save tokens in local or session storage

22

https://tools.ietf.org/html/rfc6749

Client

Tips

1. Authorization grant and client credentials

SetCookie: alkccess=...; |Domain=.app.com;
) 2. Access token and refresh token Spcure; SameSite; . HttpOnly
SetCookie: refresh=...3] Domain=auth.app.com;
Secure; SameSite; HttpOnly
3. Access token R
" 4. Protected resource Resource Authorization
5. Access token server server
< a . COom
6. Invalid token error oP auth.app./com

7. Refresh token and client credentials

8. Access token and refresh token

* Secure = No token stealing
e HttpOnly = No XSS
e SameSite 2 No CSRE

23

Statefull or Sateless?

» Stateless: more scalable, but simpler lifecycle
— Good for single-page sites, APIs, or mobile apps

Login

Change state

------------- Authenticated | _.-"~)

Hard timeout

Re-authenticate

Destroy

Initialize > Bon
......... » Stateful only

24

More Authentication Schemes

e For server-to-server communications
— Based on symmetric/asymmetric key cryptography

* Signature Schemes

— |dea: to digitally sign every request to prevent
request tempering

— Used by AWS

e TLS Client Certificates

— |dea: to use TLS certificate to authenticate each
other

https://www.securitydrops.com/http-signatures/
https://www.securitydrops.com/tls-client-certificates/

Outline

e Security risks of web applications

— Injection, broken authentication, XSS, CSRF, etc.

— Checklist of 23 Node.js security best practices
 Auth: Authentication, authorization, and session

management

— HTTP Basic auth

— HTTP Digest auth

— Cookies for stateful sessions

— Bearer tokens for stateless sessions

* Single Sign On (SSO)

26

https://medium.com/@nodepractices/were-under-attack-23-node-js-security-best-practices-e33c146cb87d

Signgle Sign-On (SSO)

Sign in

2 | Usemame
& | Password
(] Remember me Forgot Password?

Login with your social media account

f Facebook G Google

27

Open ID Connect (OIDC) vs. OAuth

e Authentication e Authorization

28

Login with your social media account

OIDC Flow

Client app.com

302

Credentials (ngme, password) n

s02wjiDtoken

Login w/ ID token

Email or Phone

Verification
Password

Session

29

Client app.com fb.com api.fb.com
Login
302 OAuth|2 Flow

Credentials (ngme, password)

302 w/ D tokgn | granccode |

Login w/ ID token

WebsiteLoginDemo will receive:
your public profile and email address. @

Verification

[Edit This

Continue as Abhay

Session

Grant code

Accesstolen |

Session w/ access token

30

