
Web Security and Auth

Shan-Hung Wu
CS, NTHU

Outline

• Security risks of web applications
– Injection, broken authentication, XSS, CSRF, etc.
– Checklist of 23 Node.js security best practices

• Auth: Authentication, authorization, and session
management
– HTTP Basic auth
– HTTP Digest auth
– Cookies for stateful sessions
– Bearer tokens for stateless sessions

• Single Sign On (SSO)

2

https://medium.com/@nodepractices/were-under-attack-23-node-js-security-best-practices-e33c146cb87d

Outline

• Security risks of web applications
– Injection, broken authentication, XSS, CSRF, etc.
– Checklist of 23 Node.js security best practices

• Auth: Authentication, authorization, and session
management
– HTTP Basic auth
– HTTP Digest auth
– Cookies for stateful sessions
– Bearer tokens for stateless sessions

• Single Sign On (SSO)

3

https://medium.com/@nodepractices/were-under-attack-23-node-js-security-best-practices-e33c146cb87d

Authentication vs. Authorization

• Authentication: the
process to verify you
are who you said

• Authorization: the
process to decide if
you have permission
to access a resource

4

Session Management

• The process of securely handling multiple
requests to a server from a single client (user)

5

Were to Store Session States?

• Server
– Stateful sessions
– Server processes requests based on the states

• Client
– Stateless sessions
– Server processes requests based on their content

6

Outline

• Security risks of web applications
– Injection, broken authentication, XSS, CSRF, etc.
– Checklist of 23 Node.js security best practices

• Auth: Authentication, authorization, and session
management
– HTTP Basic auth
– HTTP Digest auth
– Cookies for stateful sessions
– Bearer tokens for stateless sessions

• Single Sign On (SSO)

7

https://medium.com/@nodepractices/were-under-attack-23-node-js-security-best-practices-e33c146cb87d

Which one should I choose?

8

Evaluation Criteria

• Complexity
• Reliance on HTTPS
• Reliance on CSRF protection
• Replay and integrity protection
• Session management

• User cases & tips

9

Outline

• Security risks of web applications
– Injection, broken authentication, XSS, CSRF, etc.
– Checklist of 23 Node.js security best practices

• Auth: Authentication, authorization, and session
management
– HTTP Basic auth
– HTTP Digest auth
– Cookies for stateful sessions
– Bearer tokens for stateless sessions

• Single Sign On (SSO)

10

https://medium.com/@nodepractices/were-under-attack-23-node-js-security-best-practices-e33c146cb87d

How It Works

• A client attaches clear text password to each
request:

• Seriously?

11

// Request from client
Authorization: Basic base64(username:password)

Evaluation

• Complexity: Dead simple; tons of libraries
• Reliance on HTTPS: Yes
• Reliance on CSRF protection: Yes
• Replay and integrity protection: Relies on TLS
• Session management: Poor
– Logout is complicated

• Tips: always use Basic Auth with HTTPS

12

https://stackoverflow.com/questions/233507/how-to-log-out-user-from-web-site-using-basic-authentication

Outline

• Security risks of web applications
– Injection, broken authentication, XSS, CSRF, etc.
– Checklist of 23 Node.js security best practices

• Auth: Authentication, authorization, and session
management
– HTTP Basic auth
– HTTP Digest auth
– Cookies for stateful sessions
– Bearer tokens for stateless sessions

• Single Sign On (SSO)

13

https://medium.com/@nodepractices/were-under-attack-23-node-js-security-best-practices-e33c146cb87d

HTTP Digest Auth

• Goal: not to rely on HTTPS/TLS anymore
• Idea: server challenges client
– No password in every request

• Not widely adopted due to complexity!

14

Outline

• Security risks of web applications
– Injection, broken authentication, XSS, CSRF, etc.
– Checklist of 23 Node.js security best practices

• Auth: Authentication, authorization, and session
management
– HTTP Basic auth
– HTTP Digest auth
– Cookies for stateful sessions
– Bearer tokens for stateless sessions

• Single Sign On (SSO)

15

https://medium.com/@nodepractices/were-under-attack-23-node-js-security-best-practices-e33c146cb87d

How It Works

• Cookies are managed by browser
– Sent to server in every subsequent request

16

// Login response from server
Set-Cookie: sessionId=...;

Domain=.app.com;
Secure; SameSite; HttpOnly

// Subsequent requests from client
Cookie: sessionId=...

https://www.securitydrops.com/cookies/

Stateful Sessions

17

User ID

Evaluation

• Complexity: simple; tons of libraries
• Reliance on HTTPS: Yes
– Set the Secure flag

• Reliance on CSRF protection: Yes
– Set the SameSite flag

• Replay and integrity protection: Relies on TLS
• Session management: Good
• Tips: Set the HttpOnly flag to prevent XSS

attacks from stealing it

18

Outline

• Security risks of web applications
– Injection, broken authentication, XSS, CSRF, etc.
– Checklist of 23 Node.js security best practices

• Auth: Authentication, authorization, and session
management
– HTTP Basic auth
– HTTP Digest auth
– Cookies for stateful sessions
– Bearer tokens for stateless sessions

• Single Sign On (SSO)

19

https://medium.com/@nodepractices/were-under-attack-23-node-js-security-best-practices-e33c146cb87d

How It Works

• A JWT token is self-descriping and immutable
– Includes user ID, expiration date, etc.

20

// Login response from server
{
token: e2ZahC5b // JWT token

}
// Subsequent request from client
Authorization: Bearer e2ZahC5b // added by JS

(uid, expdate, sha256(uid, expdate, secret))

https://jwt.io/

Sateless Sessions

21

User ID

User ID

Evaluation

• Complexity: simple with aid from libraries
• Reliance on HTTPS: Yes
• Reliance on CSRF protection: No
• Replay and integrity protection: Relies on TLS
• Session management: Limited
• Tips:
– Use access and refresh tokens
– Do not save tokens in local or session storage

22

https://tools.ietf.org/html/rfc6749

Tips

• Secure à No token stealing
• HttpOnly à No XSS
• SameSite à No CSRF

23

auth.app.comapp.com

SetCookie: access=...; Domain=.app.com;
Secure; SameSite; HttpOnly

SetCookie: refresh=...; Domain=auth.app.com;
Secure; SameSite; HttpOnly

Statefull or Sateless?

24

• Stateless: more scalable, but simpler lifecycle
– Good for single-page sites, APIs, or mobile apps

More Authentication Schemes

• For server-to-server communications
– Based on symmetric/asymmetric key cryptography

• Signature Schemes
– Idea: to digitally sign every request to prevent

request tempering
– Used by AWS

• TLS Client Certificates
– Idea: to use TLS certificate to authenticate each

other

25

https://www.securitydrops.com/http-signatures/
https://www.securitydrops.com/tls-client-certificates/

Outline

• Security risks of web applications
– Injection, broken authentication, XSS, CSRF, etc.
– Checklist of 23 Node.js security best practices

• Auth: Authentication, authorization, and session
management
– HTTP Basic auth
– HTTP Digest auth
– Cookies for stateful sessions
– Bearer tokens for stateless sessions

• Single Sign On (SSO)

26

https://medium.com/@nodepractices/were-under-attack-23-node-js-security-best-practices-e33c146cb87d

Signgle Sign-On (SSO)

27

Open ID Connect (OIDC) vs. OAuth

• Authentication • Authorization

28

OIDC Flow

29

Client app.com fb.com

Login

302

Credentials (name, password)

302 w/ ID token

Login w/ ID token

Session

Verification

OAuth 2 Flow

30

Client app.com fb.com auth.fb.com

Login

302

Credentials (name, password)

302 w/ ID token, grant code

api.fb.com

Login w/ ID token

Session

Grant code

Access token

Session w/ access token

Verification

