State Management and Redux

Shan-Hung Wu & Datalab
CS, NTHU

Outline

WeatherMood: Posts

Why Redux?

Actions and Reducers

Async Actions and Middleware
Connecting with React Components
Remarks

Outline

WeatherMood: Posts

Why Redux?

Actions and Reducers

Async Actions and Middleware
Connecting with React Components
Remarks

Clone weathermood/react-post

Today Forecast Search

Today: Broken Clouds

© Mood ~ What's on your mind?

5 Hurry up! Time to prepare our mid-term project.

(:X Sunny day! No assignment, no lab, and no test. 4

Setup

S npm install --save @babel/polyfill \
moment uuid

 Babel Polyfill

— Use ES6 Promise to simulation asynchronous
post fetching

 Moment

— For displaying date & time
« UUID

— Generates unique IDs for new posts

https://babeljs.io/docs/usage/polyfill/
https://momentjs.com/
https://github.com/kelektiv/node-uuid

API for Posts

// in api/posts.js
listPosts (seatchText) .then (posts => {

b) g
createPost (mood, text) .then(post => {
// post.id

b) g
createVote (1d, mood) .then(() => {...});

* Asynchronous (ES6 Promise-based)

* Simulated currently

HTML 5 Web Storage

localStorage.setltem('key', 'value');
let v = localStorage.getltem('key')
localStorage.removeltem('key') ;

Specific to domain and protocol
>5MB

Values must be strings

— Use JSON.stringify () and JSON.parse () for
objects

sessionStorage is similar, except data gone
when window closed

Steps 1 & 2: Components & Props

Navbar

PostForm

Today

Steps 3 & 4: States

Navbar {
searchfext

}

PostForm {
mood, text
}

Today { posts }

Step 5: Callbacks

Navbar {
s+" " searchText
Today Forecast @ Search }
b Today: Broken Clouds

PostForm {
o mood, text

Today { posts }

10

Search box project

What's on your mind?

Form validation

7

Timestam P * Hurry up! Time to prepare ot

TOOltipS 0 assiEnment! no Iab| and no test.
Loading indicators

Details

11

Outline

WeatherMood: Posts

Why Redux?

Actions and Reducers

Async Actions and Middleware
Connecting with React Components
Remarks

12

React is Declarative in Terms of States

render () {
return (
<hl className={this.state.toggle}>

Hello {this.props.name}
</hl>

) ;
}
* Code for “states,” not “changes of states”
— Virtual DOM tracks changes automatically
* Ul = maps from states to visual looks
— Each component is a function of partial states

Limitations |

e States of a component may be controlled outside

— Main and Today contain Ul code and mixed state
logic from their childrens

WeatherDisplay {
telap, Al
weather, dese

}
WeatherForm {

EHzy, Ppds
}
Today { weather, temp, desc, city }

14

Limitations |l

* Cannot move/recompose components easily

— Bad for evolving projects (e.g., startups)

WeatherDisplay {
telap, WAl
waeaather, dese

}

WeatherForm {
city, unit

}

Today { weather, temp, desc, city }

15

Limitations |l

e States are hard to track
— Spread among multiple components
e State changes are implicit

— Who made this change? Is change correct?

e Stateful logic cannot be shared between
components

— E.g., stateful logic: “fetch data, render children if
200, otherwise show error ”

Redux

* A state management framework

— Restricts how you write state management code

* Not tied to, but works well with React

17

React Redux
(Ul) (State Store)

1. dispatch(action)
S —_ 2. reduce(action)

18

Advantages |

e Separation of concerns
— Stateful logic apart from (stateless) Ul rendering logic
— States easy to find and inspect

1. dispatch(action)
g 2r reduce(action)

Wy
q Qathe
r

3. connect(props}

19

Advantages I

* Unidirectional (top-down) data flow in React

— Loosely coupled components; Ul easy to recompose

1. dispatch(action)
g 2r reduce(action)

Wy
q Qathe
r

3. connect(props}

20

Advantages Il

 “Reducer” makes state changes less buggy

— Enforce determinism: same (prevState, action), same
nextState

1. dispatch(action)
g 2r reduce(action)

g
q Qathe
g

3. connect(props}

21

Advantages |V

e “Actions” make stateful logic shareable
— Action A: “fetch data—> render or show error ”
— Both comp. X and Y can call dispatch(A)

1. dispatch(action)
g 2r reduce(action)

g
q Qathe
g

3. connect(props}

22

Outline

WeatherMood: Posts

Why Redux?

Actions and Reducers

Async Actions and Middleware
Connecting with React Components
Remarks

23

Redux Store Is a State Machine

Reduce(D, parms)

e State transitions must be deterministic

* |.e., same (prev state, action, params), same
next state

24

// action generator
export function setWeather (code, temp) {
return { // action and parms
type: '@WEATHER/SET_WEATHER',
code,
temp

}; Actions & Reducers
}

// reducer
export function weather(state = {...}, action) {
switch (action.type) {
case 'Q@WEATHER/SET WEATHER':

return {

...State,
code: action.code, \ \

temp: action.temp Q —_— Cun
))
}; §§§ —

default: \\\\\\\
return state; \\\\\\N

Using Redux Store

// in UI
import {createStore} from 'redux';
import {setWeather, weather} from ...;

const store = createStore (weather);

// in Componentl
store.subscribe (() => {
console.log(store.getState()) ;

});

// in Component?2

store.dispatch (setWeather (800, 21));
26

Reducers Must Be Pure Functions

To ensure deterministic state transitions
Pure functions?

Same input, same output
— NoMath.random () nor Date.now ()

No side effect

— Cannot update variables outside
— Cannot mutate input
— Cannot make API calls

Synchronous

export function code(state = -1, action) {
switch (action.type) {
case 'Q@CODE/SET CODE':
return action.code;

detault: Splitting Reducers

return state;

}
export function temp (state = 0, action) {
switch (action.type) {
case 'Q@TEMP/SET TEMP':
return action.temp;

default:
return state; e One reducer for

} independent “state group”

const store = createStore((state, action) => ({ // wrapper
code: code(state.code, action),
temp: temp (state.temp, action)

}))

Simplification

const store =
code: code(state.code, action),
temp: temp (state.temp, action)

})) g

// same as

import {combineReducers} from 'redux';
const store = createStore (combineReducers ({

code,
temp

1))

createStore((state, action) =

Outline

* Async Actions and Middleware

weathermood/redux-weather

* Looks the same as react-post

e But weather components (Today,
Forecast, etc.) use Redux to manage states

31

How to Design Reducers?

1. Identify independent “state groups”

— E.g., weather+forecast vs. posts

How to Design Reducers?

2. Come out lifted state hierarchy as in react
3. Move states of each component to a reducer

. ~q
Today City, ther
} 'Q()d {
@ %ty
Un; My
@, U 1Y
Toda Reducers for aSt{ o
y Forecast Ty, ig
Forecast t}

Async Actions

* For fetching weather, forecast, posts, etc.

* But reducers must be pure
— No API call, synchronous

* How?
1. Break async action into sequence of steps
— State transition for each step is deterministic

2. Dispatch steps in Ul following the sequence

// action generators
export function startGetWeather () {
return {type: '@WEATHER/START_GET_WEATHER'};
}
export function endGetWeather (code, temp) {
return {
type: '@WEATHER/END_GET_WEATHER',
code,
temp
I
}

// reducers (pure)

// in UI
store.dispatch (startGetWeather());
const {code, temp} = ... // AJAX callback

store.dispatch (endGetWeather (code, temp)):;

Problems?

Sate management in Ul again

$ npm install --save redux-thunk

// high-order action generator
export function getWeather () {
return (dispatch, state) => {
dispatch (startGetWeather());
const {code, temp} = ... // AJAX callback
dispatch (endGetWeather (code, temp))

}i
} Dispatching Action Sequences

// in UI

import {compose, applyMiddleware} from 'redux';
import thunkMiddleware from 'redux-thunk';
const store = createStore (combineReducers ({

}), compose (applyMiddleware (thunkMiddleware))) ;

store.dispatch (getWeather())

Outline

* Connecting with React Components

Forecast

39

Tedious Way

1. Create store inMain, then pass it down to
all descendants

— Lots of repeating props in JSX
2. In each component, call
store.subscribe () and dispatch ()
— Nothis.stateand setState ()

— Instead, use this.forceUpdate () and track
when to re-render

$ npm install --save react-redux

React-Redux
// in Main.jsx

import {Provider} from 'react-redux';

render () |

return (
<Provider store={...}>...</Provider>

) ;

// in Today.jsx

import {connect} from 'react-redux';

class Today extends React.Component {
// has this.props.dispatch

}
export default connect(state => ({ // state to props

...State.weather,
unit: state.unit

1)) (Today) ; * Only props in components

Outline

WeatherMood: Posts

Why Redux?

Actions and Reducers

Async Actions and Middleware
Connecting with React Components
Remarks

42

Remarks |

e Separation of concerns

e Components can be moved easily

Forecast

43

Remarks

States easy to inspect
Explicit, sharable actions (stateful logic)
Deterministic state transition => time travel

Redux DevTools

remotedev.io

ADDED TO CHROME

Yok dkok (226) Developer Tools

OVERVIEW REVIEWS SUPPORT RELATED

©® © ® ' [Redux TodomvC example x

¥ 1 Compatible with your device
zalmoxisus.github.io/redux-

Redux DevTools for debugging
application's state changes.

Reset
@ todos[0]
@ todos[1
@ todos[2:

ADD_T0D0
stote @ todos @ enhancer

R - The extension provides power-ups for your
Redux development workflow. Apart from
Reduy, it can be used with any other

architectures which handle the state.

Install extension
ote: 3 1 key
Action | Diff | State

P —@< > 1o FEEE
L -
type: "CORLETET000", filter
id: 1

eoINTT

COMPLETE_TODO

ADD_T0D0.

~ action: {} 1 key
text: "Add extension's enhancer’

Elements Console Sources

Action

O Stider

Action

Diff

State

It's an opensource project. See the official
repository for more details:
https://github.com/zalmoxisus/redux-
devtools-extension

A Website
© Report Abuse

Additional Information
14.3

Version:

Readings

* Advanced Redux walkthrough (optional)

— Async actions & flow

— Middlewares

— Usage with React Router
— More examples

http://redux.js.org/docs/advanced/

Assignment:
Post Components + Redux

Navbar

PostForm

Requirements

e Specify reducers and action types (with @'s)
iIn README

* Setup store to allow time travel using Redux
DevTools

