
State Management and Redux

Shan-Hung Wu & DataLab
CS, NTHU

Outline

• WeatherMood: Posts
• Why Redux?
• Actions and Reducers
• Async Actions and Middleware
• Connecting with React Components
• Remarks

2

Outline

• WeatherMood: Posts
• Why Redux?
• Actions and Reducers
• Async Actions and Middleware
• Connecting with React Components
• Remarks

3

Clone weathermood/react-post

4

Setup

• Babel Polyfill
– Use ES6 Promise to simulation asynchronous

post fetching
• Moment
– For displaying date & time

• UUID
– Generates unique IDs for new posts

5

$ npm install --save @babel/polyfill \
moment uuid

https://babeljs.io/docs/usage/polyfill/
https://momentjs.com/
https://github.com/kelektiv/node-uuid

API for Posts

• Asynchronous (ES6 Promise-based)
• Simulated currently

6

// in api/posts.js

listPosts(seatchText).then(posts => {
...

});
createPost(mood, text).then(post => {
... // post.id

});
createVote(id, mood).then(() => {...});

HTML 5 Web Storage

• Specific to domain and protocol
• >5MB
• Values must be strings
– Use JSON.stringify() and JSON.parse() for

objects
• sessionStorage is similar, except data gone

when window closed

7

localStorage.setItem('key', 'value');
let v = localStorage.getItem('key');
localStorage.removeItem('key');

Steps 1 & 2: Components & Props

8

PostList
PostFormMain

Navbar

Today

PostItem

Steps 3 & 4: States

9

Main {
searchText

}

Today { posts }

PostList {
posts

}

PostForm {
mood, text

}

Navbar {
searchText

}

PostItem {
votes

}

Step 5: Callbacks

10

Main {
searchText

}

Today { posts }

PostList {
posts

}

PostForm {
mood, text

}

Navbar {
searchText

}

PostItem {
votes

}

Details• Search box

11

• Form validation

• Tooltips

• Timestamp

• Loading indicators

Outline

• WeatherMood: Posts
• Why Redux?
• Actions and Reducers
• Async Actions and Middleware
• Connecting with React Components
• Remarks

12

React is Declarative in Terms of States

• Code for “states,” not “changes of states”
– Virtual DOM tracks changes automatically

• UI = maps from states to visual looks
– Each component is a function of partial states

13

render() {
return (
<h1 className={this.state.toggle}>
Hello {this.props.name}

</h1>
);

}

Limitations I

14

Main { unit }

Today { weather, temp, desc, city }

• States of a component may be controlled outside
– Main and Today contain UI code and mixed state

logic from their childrens

WeatherForm {
city, unit

}

WeatherDisplay {
temp, unit
weather, desc

}

Limitations II

15

Main { unit }

Today { weather, temp, desc, city }

• Cannot move/recompose components easily
– Bad for evolving projects (e.g., startups)

WeatherForm {
city, unit

}

WeatherDisplay {
temp, unit
weather, desc

}

Limitations III

• States are hard to track
– Spread among multiple components

• State changes are implicit
– Who made this change? Is change correct?

• Stateful logic cannot be shared between
components
– E.g., stateful logic: “fetch data, render children if

200, otherwise show error ”

16

Redux

• A state management framework
– Restricts how you write state management code

• Not tied to, but works well with React
17

React
(UI)

18

Redux
(State Store)

1. dispatch(action)

3. connect(props)

2. reduce(action)

Advantages I

19

• Separation of concerns
– Stateful logic apart from (stateless) UI rendering logic
– States easy to find and inspect

1. dispatch(action)

3. connect(props)

2. reduce(action)

Advantages II

20

• Unidirectional (top-down) data flow in React
– Loosely coupled components; UI easy to recompose

1. dispatch(action)

3. connect(props)

2. reduce(action)

Advantages III

21

• “Reducer” makes state changes less buggy
– Enforce determinism: same (prevState, action), same

nextState

1. dispatch(action)

3. connect(props)

2. reduce(action)

Advantages IV

22

• “Actions” make stateful logic shareable
– Action A: “fetch dataà render or show error ”
– Both comp. X and Y can call dispatch(A)

1. dispatch(action)

3. connect(props)

2. reduce(action)

Outline

• WeatherMood: Posts
• Why Redux?
• Actions and Reducers
• Async Actions and Middleware
• Connecting with React Components
• Remarks

23

Redux Store Is a State Machine

• State transitions must be deterministic
• I.e., same (prev state, action, params), same

next state
24

State
1

State
2

State
3Reduce(A, parms)

Reduce(B, parms)

Reduce(C, parms)

Reduce(D, parms)

// action generator
export function setWeather(code, temp) {
return { // action and parms
type: '@WEATHER/SET_WEATHER',
code,
temp

};
}
// reducer
export function weather(state = {...}, action) {
switch (action.type) {
case '@WEATHER/SET_WEATHER':

return {
...state,
code: action.code,
temp: action.temp

};
default:

return state;
}

}

Actions & Reducers

25

// in UI
import {createStore} from 'redux';
import {setWeather, weather} from ...;

const store = createStore(weather);

// in Component1
store.subscribe(() => {
console.log(store.getState());

});

// in Component2
store.dispatch(setWeather(800, 21));

Using Redux Store

26

Reducers Must Be Pure Functions
• To ensure deterministic state transitions
• Pure functions?
• Same input, same output
– No Math.random() nor Date.now()

• No side effect
– Cannot update variables outside
– Cannot mutate input
– Cannot make API calls

• Synchronous

27

export function code(state = -1, action) {
switch (action.type) {
case '@CODE/SET_CODE':
return action.code;

default:
return state;

}
}
export function temp(state = 0, action) {
switch (action.type) {
case '@TEMP/SET_TEMP':
return action.temp;

default:
return state;

}
}

const store = createStore((state, action) => ({ // wrapper
code: code(state.code, action),
temp: temp(state.temp, action)

}));

Splitting Reducers

• One reducer for
independent “state group”

28

Simplification

29

const store = createStore((state, action) => ({
code: code(state.code, action),
temp: temp(state.temp, action)

}));

// same as

import {combineReducers} from 'redux';

const store = createStore(combineReducers({
code,
temp

}));

Outline

• WeatherMood: Posts
• Why Redux?
• Actions and Reducers
• Async Actions and Middleware
• Connecting with React Components
• Remarks

30

weathermood/redux-weather

31

• Looks the same as react-post
• But weather components (Today,
Forecast, etc.) use Redux to manage states

How to Design Reducers?

1. Identify independent “state groups”
– E.g., weather+forecast vs. posts

32

How to Design Reducers?

2. Come out lifted state hierarchy as in react
3. Move states of each component to a reducer

33

Today

Forecast

Reducers for
Today

Reducers for
Forecast

Async Actions

• For fetching weather, forecast, posts, etc.
• But reducers must be pure
– No API call, synchronous

• How?
1. Break async action into sequence of steps
– State transition for each step is deterministic

2. Dispatch steps in UI following the sequence

34

35

// action generators
export function startGetWeather() {
return {type: '@WEATHER/START_GET_WEATHER'};

}
export function endGetWeather(code, temp) {
return {
type: '@WEATHER/END_GET_WEATHER',
code,
temp

};
}
// reducers (pure)
...

// in UI
store.dispatch(startGetWeather());
const {code, temp} = ... // AJAX callback
store.dispatch(endGetWeather(code, temp));

Problems?

36

Sate management in UI again

Dispatching Action Sequences

37

$ npm install --save redux-thunk

// high-order action generator
export function getWeather() {
return (dispatch, state) => {
dispatch(startGetWeather());
const {code, temp} = ... // AJAX callback
dispatch(endGetWeather(code, temp));

};
}

// in UI
import {compose, applyMiddleware} from 'redux';
import thunkMiddleware from 'redux-thunk';

const store = createStore(combineReducers({
...

}), compose(applyMiddleware(thunkMiddleware)));

store.dispatch(getWeather());

Outline

• WeatherMood: Posts
• Why Redux?
• Actions and Reducers
• Async Actions and Middleware
• Connecting with React Components
• Remarks

38

How?

39

Today

Forecast

Tedious Way

1. Create store in Main, then pass it down to
all descendants
– Lots of repeating props in JSX

2. In each component, call
store.subscribe() and dispatch()
– No this.state and setState()
– Instead, use this.forceUpdate() and track

when to re-render

40

React-Redux

• Only props in components

$ npm install --save react-redux

// in Main.jsx
import {Provider} from 'react-redux';
render() {
return (
<Provider store={...}>...</Provider>

);
}

// in Today.jsx
import {connect} from 'react-redux';
class Today extends React.Component {
... // has this.props.dispatch

}
export default connect(state => ({ // state to props
...state.weather,
unit: state.unit

}))(Today);

41

Outline

• WeatherMood: Posts
• Why Redux?
• Actions and Reducers
• Async Actions and Middleware
• Connecting with React Components
• Remarks

42

Remarks I

• Separation of concerns
• Components can be moved easily

43

Today

Forecast

Remarks II

• States easy to inspect
• Explicit, sharable actions (stateful logic)
• Deterministic state transition => time travel

44

Readings

• Advanced Redux walkthrough (optional)
– Async actions & flow
– Middlewares
– Usage with React Router
– More examples

45

http://redux.js.org/docs/advanced/

Assignment:
Post Components + Redux

46

Main

Today

PostList

PostForm

Navbar

PostItem

Requirements

• Specify reducers and action types (with @'s)
in README

• Setup store to allow time travel using Redux
DevTools

47

