
Rendering & Responsive UI

Shan-Hung Wu
CS, NTHU

Today’s Topics

• Build & rendering
• Element tree
• Render tree
• Responsive layout
• Custom painting &

parallax scrolling

2

Build & Rendering Process

• Widget tree: UI declaration
• Element tree: states & build context
• Render tree: layout & rendering

3

Widget Tree

• For each stateful widget,
its child widgets tree are
reconstructed whenever
state changes
• Keep your stateful widget

as small as needed
• Extract stateful subtree to

new stateful widget
• Favor composition over

inheritance

4

Today’s Topics

• Build & rendering
• Element tree
• Render tree
• Responsive layout
• Custom painting &

parallax scrolling

5

Element Tree & Node

• Every widget has createElement() method
• Each element node “points to” corresponding widget
• Provides build context and state for the widget

6

Accessing Inherited Widgets

• What happens below?

1. Start from element associated with context
2. Moving up along element tree to find nearest

inherited widget of matching type

7

Theme.of(context)

MediaQuery.of(context)

Navigator.of(context)

Element Nodes are Long-lived

• initState() and dispose() not called on
every widget reconstruction
• How to map widget node to element node?

8

Node Mapping

• By default, element node checks the class of widget
node to detect changes

9

Widget 1

Widget 2

Widget 3

Element 1

Element 2

element 3

Node Mapping

• By default, element node checks the class of widget
node to detect changes
• Not ideal for changing list items of the same type
• If Key available, element node use it to detect

changes

10

Widget 3

Widget 2

Widget 1

Element 1

Element 2

element 3

Today’s Topics

• Build & rendering
• Element tree
• Render tree
• Responsive layout
• Custom painting &

parallax scrolling

11

Render Tree

• Map element to RenderObject to perform actual
rendering

12

Rendering Process

• We focus on layout and painting here

13

Layout: Constraints, Sizes, Positions

• Constraints go down (depth-first)
• Parents tell children min/max width/height

14

Layout: Constraints, Sizes, Positions

• Sizes go up (depth-first)
• Children pass sizes up to their parents

15

Layout: Constraints, Sizes, Positions

• Parents set positions (breadth-first)
1. Position children based on layout concept
2. Then, bubble up sizes to grand-parents

16

position
children

Constraints

• Tight constraints (min = max)
• App and Expanded (Flexible with tight fit)

• Loose constraints (min < max)
• Center transforms tight constraints from parent to

loose constraints for its child, allowing “centering”
• Flexible with loose fit

• Unbounded constraints
• Flex box (Row or Column) unless Flexible presents
• Scrollable widgets (ListView or Sliver widgets)

17

https://www.youtube.com/watch?v=R9C5KMJKluE&list=PLjxrf2q8roU23XGwz3Km7sQZFTdB996iG&index=145

Sizing

• Be as big as possible:
• Center and ListView, etc.

• Fit to children size:
• Transform and Opacity, etc.

• Be a particular size:
• Image and Text, etc.

• It depends:
• Container: as big as possible, but fits children if it or

its children has width / height
• Flex box (Row or Column): fit children if unbounded in

primary direction; otherwise as big as possible
• No nested ListVew in former case

18

Inspecting Layouts

• Children of ListView have no constraints
• In Row, Expanded wraps Chart (with infinite width)

to avoid layout problems

19

Challenge for You!

• Try explain layout examples by yourself

20

Why some widget with width:
100 isn’t 100 pixels wide?

Why some FittedBox isn’t working?

Why that Column is overflowing?

What IntrinsicWidth is supposed to be doing?

https://docs.flutter.dev/ui/layout/constraints

Why Position Late?

• Different from Android and iOS layout process

• Benefits:
• Predictable & consistent widgets/ layout behavior
• Fast: single pass; good for animations/transitions
• Flexible for different screen sizes
• Easy to understood and simplifies development process

• Example: fast scrollable Sliver widgets

21

https://www.youtube.com/watch?v=R9C5KMJKluE&list=PLjxrf2q8roU23XGwz3Km7sQZFTdB996iG&index=145

Limitations

• Widget usually can’t have any size it wants
• Constraints from parent

• Widget can’t know and doesn’t decide its own
position in the screen
• Position determined only after layout of entire tree

• Be specific when defining alignment
• Otherwise, some children’s sizes may be ignored

22

Today’s Topics

• Build & rendering
• Element tree
• Render tree
• Responsive layout
• Custom painting &

parallax scrolling

23

Making Expense App Responsive

24

Locking Device Orientation

• For some apps, this could be the best solution

25

import 'package:flutter/services.dart';

void main() async {
 // Ensure Flutter framework is initialized
 WidgetsFlutterBinding.ensureInitialized();

 await SystemChrome.setPreferredOrientations([
 DeviceOrientation.portraitUp,
]);

 ...
}

Dynamic Layout

• At top of widget tree, use MediaQuery to trigger
layout change
• E.g., Columnà Row when screen width > 600
• See predefined layout breakpoints

• At lower part of tree, use LayoutBuilder
• Get constraints from parent programmably
• Then, build widget dynamically
• See new_expense.dart

26

https://m3.material.io/foundations/layout/applying-layout/window-size-classes

Handling Keyboard Inset (1/2)

• Dynamic sizing:

• With Scaffold
• resizeToAvoidBottomInset set to true by default
• No further action needed

• Without Scaffold (e.g., in modal)
• Use MediaQuery.viewInsets.bottom to detect KB
• Add bottom padding dynamically

27

Handling Keyboard Inset (2/2)

• Avoiding obscuration:

• With Scaffold
• Auto-scrolling available
• But need conditional padding for body to create space

between input widget (TextField) and KB

• Without Scaffold (e.g., in modal)
• Wrap root widget with SingleChildScrollView
• Implement manual scrolling
• See new_expense.dart

28

Safe Area

• Different across
devices

• Use SafeArea widget
• For modal, set useSafeArea argumentm to true

when calling showModalBottomSheet()

29

Responsiveness ≠ Adaptiveness

• Responsiveness: UI renders well across different screen
sizes and orientations

• Adaptiveness: different layouts and functionalities for
different platforms
• Example iOS adaptation:

• Platform.isIOS
• showCupertinoAlert() in new_expenses.dart

30

Automatic Platform Adaptation

• Theming
• On iOS, title in AppBar is centered by default

• Platform-specific (Cupertino) widgets
• Adaptive constructors
• E.g., Icon.adaptive.share, AdaptiveDialog

31

https://docs.flutter.dev/platform-integration/platform-adaptations

Today’s Topics

• Build & rendering
• Element tree
• Render tree
• Responsive layout
• Custom painting &

parallax scrolling

32

Painting

• In painting phase, we can still apply matrix
transformations to RenderObject
• Translation, rotation, scaling, skewing, etc.

• Transform: for single widget
• Flow: for multiple widgets or custom layout

33

https://api.flutter.dev/flutter/widgets/Transform-class.html
https://api.flutter.dev/flutter/widgets/Flow-class.html

Flow Widget

• Does not pass constraints down to children
• So, children retain their intrinsic sizes

• FlowDelegate offers you control on:
• Layout: getSize() and setChildParentData()
• Paint: paintChildren() and shouldRepaint()

34

Demo:
Efficient Parallax
Scrolling

35

• No rebuild & re-layout
costs while scrolling

Suggested Reading

• Take layout examples as a challenge
• Transform widget

• Sliver Widgets
• Short intro (CustomScrollView + SliverAppBar)
• Longer hands-on tutorial

• Automatic Platform Adaptation
• Flutter Internals*

37

https://docs.flutter.dev/ui/layout/constraints
https://docs.flutter.dev/ui/layout/constraints
https://www.youtube.com/watch?v=R9C5KMJKluE&list=PLjxrf2q8roU23XGwz3Km7sQZFTdB996iG&index=145
https://www.youtube.com/watch?v=YY-_yrZdjGc&t=139s
https://docs.flutter.dev/platform-integration/platform-adaptations
https://docs.flutter.dev/resources/architectural-overview

