Rendering & Responsive Ul

Shan-Hung Wu
CS, NTHU

Today’s Topics

Carrier F 10:35AM

* Build & rendering
o Element tree >r Expenselracker i%

e Render tree

8 3/12/2024

* Responsive layout e p—

* Custom painting &
parallax scrolling

i 3/11/2024

B 3/11/2024

Build & Rendering Process

* Widget tree: Ul declaration
* Element tree: states & build context
* Render tree: layout & rendering

Container ComponentElement

) ColoredBox RenderObjectElement RenderDecoratedBox

RenderObjectElement RenderFlex
lement
RenderParagraph

RenderImage
RawImage (| RichText ‘ 6 RenderObjectElement

Widget Tree

* For each stateful widget,
its child widgets tree are
reconstructed whenever
state changes

» Keep your stateful widget
as small as needed

» Extract stateful subtreeto ... (*

new stateful widget

* Favor composition over
inheritance

RawImage

| Contailner

+ ColoredBox

| Row

| Text

) RichText

Today’s Topics

Carrier & 10:35AM

Flutter ExpenseTracker

10:44PM

o E | e m e nt t re e >r Expenselracker

Flutter Course

$19.99 i 3/12/2024
Cinema
$15.69 W 3/12/2024

@ 3/11/2024

B 3/11/2024

Element Tree & Node

* Every widget has createElement () method
* Each element node “points to” corresponding widget
* Provides build context and state for the widget

@ Container ‘ | ComponentElement

1 ColoredBox — RenderObjectElement

Row < — RenderObjectElement

Image Text | ComponentElement

RawImage ! ; ! RichText < 6 ‘ RenderObjectElement

Accessing Inherited Widgets

* What happens below?

Theme.of (context)
MediaQuery.of (context)

Navigator.of (context)

1. Start from element associated with context

2. Moving up along element tree to find nearest
inherited widget of matching type

Element Nodes are Long-lived

e initState () and dispose () not called on
every widget reconstruction

* How to map widget node to element node?

Q Container ComponentElement

1 ColoredBox RenderObjectElement
Row RenderObjectElement
Image Text ComponentElement

RawImage ; ! RichText 6 6 RenderObjectElement

Node Mapping

* By default, element node checks the class of widget
node to detect changes

Widget 1 Element 1

Widget 2 Element 2

Widget 3 element 3

Node Mapping

* By default, element node checks the class of widget
node to detect changes

* Not ideal for changing list items of the same type

* If Key available, element node use it to detect
changes

Widget 3 Element 1

Widget 2 Element 2

Widget 1 element 3

10

Today’s Topics

Carrier & 10:35AM

Flutter ExpenseTracker

10:44PM

>r Expenselracker

Flutter Course

¢ Re n d e r t re e $19.99 8 3/12/2024

Cinema
$15.69 W 3/12/2024

@ 3/11/2024

B 3/11/2024

11

Render Tree

N

' ComponentElement

(
N

RenderObjectElement RenderDecoratedBox
RenderObjectElement [::::::{:> RenderFlex
@
K\ ComponentElement
- - RenderImage RenderParagraph
‘ 6 RenderObjectElement

* Map element to RenderObject to perform actual
rendering

12

Rendering Process

]V[[[eM App code that creates widgets on the screen
Layout Positioning and sizing elements on the screen
*%~1lai@ Converting elements into a visual representation
Composition EeNCEEVLRETERENESILE I,

2 1=1gr{=0 Translating output into GPU render instructions

* We focus on layout and painting here

ONIY3IANTY

13

Layout: Constraints, Sizes, Positions

(7))
)
k= o
=)
3 N
C ()]
o
O

* Constraints go down (depth-first)
* Parents tell children min/max width/height

14

Layout: Constraints, Sizes, Positions

constraints

<

* Sizes go up (depth-first)

e Children pass sizes up to their parents

PN

sizes

15

Layout: Constraints, Sizes, Positions

constraints
sizes

* Parents set positions (breadth-first)
1. Position children based on layout concept
2. Then, bubble up sizes to grand-parents

16

Constraints

* Tight constraints (min = max)
 App and Expanded (Flexible with tight £it)

e Loose constraints (min < max)

e Center transforms tight constraints from parent to
loose constraints for its child, allowing “centering”

e Flexible withloose fit

* Unbounded constraints
* Flex box (Row or Column) unless Flexible presents
e Scrollable widgets (ListView or Sliver widgets)

17

https://www.youtube.com/watch?v=R9C5KMJKluE&list=PLjxrf2q8roU23XGwz3Km7sQZFTdB996iG&index=145

Sizing

* Be as big as possible:
e Center and ListView, etc.

* Fit to children size:
e Transformand Opacity, etc.

* Be a particular size:
e Image and Text, etc.

* |t depends:

e Container: as big as possible, but fits children if it or
its children has width / height

* Flex box (Row or Column): fit children if unbounded in
primary direction; otherwise as big as possible

* No nested LListVew in former case

Inspecting Layouts

e Children of .1 stView have no constraints

* In Row, Expanded wraps Chart (with infinite width)
to avoid layout problems

Widget Tree Q C Layout Explorer Widget Details Tree

@ MaterialApp
v @ Expenses
v = Scaffold
v (I Row
|:> Expanded
v |=| Expanded
v @ ExpensesLi...
v E ListView
v () Dismissi...
v @ Expense
v | Paddi
v Asg

19

Challenge for You!

on't 100 pixels wide?

. 01S
ogidths 10
Why some W

Why that Column js overflowing?

What IntrinsicWidth is supposed to be doing?

Why
SOMme 1.
1t
“edp OX isn’
Work,'n
8?

* Try explain layout examples by yourself

20

https://docs.flutter.dev/ui/layout/constraints

Why Position Late?

e Different from Android and iOS layout process

* Benefits:
* Predictable & consistent widgets/ layout behavior
* Fast: single pass; good for animations/transitions
* Flexible for different screen sizes
e Easy to understood and simplifies development process

* Example: fast scrollable Sliver widgets

https://www.youtube.com/watch?v=R9C5KMJKluE&list=PLjxrf2q8roU23XGwz3Km7sQZFTdB996iG&index=145

Limitations

* Widget usually can’t have any size it wants
e Constraints from parent

* Widget can’t know and doesn’t decide its own
position in the screen

e Position determined only after layout of entire tree

* Be specific when defining alignment
* Otherwise, some children’s sizes may be ignored

Today’s Topics

* Responsive layout

Carrier &

Flutter ExpenseTracker

Flutter Course
$19.99

Cinema
$15.69

10:44PM

>r Expenselracker

8 3/12/2024

W 3/12/2024

@ 3/11/2024

B 3/11/2024

23

Making Expense App Responsive

Carrier 2 10:15PM

Expense Tracker

Expense Tracker

Launch

Launch
$3.50 == 3/18/2024

$3.50 = 3/18/2024
Flutter Course

Flutter Course

@ 3/18/2024

$19.99 i 3/18/2024

Cinema

$15.69 W 3/17/2024

24

Locking Device Orientation

import 'package:flutter/services.dart';
void main () async {
// Ensure Flutter framework is initialized

WidgetsFlutterBinding.ensurelnitialized() ;

await SystemChrome.setPreferredOrientations ([
DeviceOrientation.portraitUp,

1)

* For some apps, this could be the best solution

25

Dynamic Layout

* At top of widget tree, use MediaQuery to trigger
layout change
* E.g., Column =2 Row when screen width > 600
* See predefined layout breakpoints

* At lower part of tree, use LayoutBuilder
* Get constraints from parent programmably
* Then, build widget dynamically
* See new expense.dart

26

https://m3.material.io/foundations/layout/applying-layout/window-size-classes

Handling Keyboard Inset (1/2)

* Dynamic sizing:

e With Scaffold

* resizeToAvoidBottomInset setto true by default
* No further action needed

 Without Scaffold (e.g., in modal)
* Use MediaQuery.viewInsets.bottomto detect KB
* Add bottom padding dynamically

Handling Keyboard Inset (2/2)

e Avoiding obscuration:

e With Scaffold

* Auto-scrolling available

* But need conditional padding for body to create space
between input widget (TextField) and KB

 Without Scaffold (e.g., in modal)
* Wrap root widget with SingleChildScrollView
* Implement manual scrolling
* See new expense.dart

Safe Area

e Different across

devices Safe Area Safe Area

e Use SafeArea widget

 For modal, set useSafeArea argumentm to true
when calling showModalBottomSheet ()

Responsiveness # Adaptiveness

* Responsiveness: Ul renders well across different screen
sizes and orientations

* Adaptiveness: different layouts and functionalities for
different platforms

* Example iOS adaptation:
* Platform.1sIOS
* showCupertinoAlert () innew expenses.dart

Automatic Platform Adaptation

* Theming
* OniQOSs, title in AppBar is centered by default

 Platform-specific (Cupertino) widgets

* Adaptive constructors
* £E.g.,, Icon.adaptive.share, AdaptiveDialog

31

https://docs.flutter.dev/platform-integration/platform-adaptations

Today’s Topics

* Custom painting &
parallax scrolling

Carrier & 10:35AM

Flutter ExpenseTracker

10:44PM

>r Expenselracker

Flutter Course
$19.99 i 3/12/2024

Cinema
$15.69 W 3/12/2024

@ 3/11/2024

B 3/11/2024

32

P a i n t i n g ={8l{leM App code that creates widgets on the screen

I=\elUjl Positioning and sizing elements on the screen
=%-1[a}@ Converting elements into a visual representation
@lelpa]efelS1ifelall Overlaying visual elements in draw order

*EI0=1gP4=0 Translating output into GPU render instructions

* In painting phase, we can still apply matrix
transformations to RenderObject

* Translation, rotation, scaling, skewing, etc.

e Transform: for single widget

e '1 ow: for multiple widgets or custom layout

ONIYIANIS

33

https://api.flutter.dev/flutter/widgets/Transform-class.html
https://api.flutter.dev/flutter/widgets/Flow-class.html

Flow Widget

* Does not pass constraints down to children
e So, children retain their intrinsic sizes

 FlowDelegate offers you control on:
* Layout: getSize () and setChildParentData ()
* Paint: paintChildren () and shouldRepaint ()

Demo:
Efficient Parallax
Scrolling

* No rebuild & re-layout
costs while scrolling

Expense Tracker

Launch

$3.50 == 3/18/2024

Flutter Course

$19.99 i 3/18/2024

Cinema

$15.69 W 3/17/2024

35

Suggested Reading

* Take layout examples as a challenge

* Transform widget

e Sliver Widgets
e Shortintro (CustomScrollView+ SliverAppBar)
* Longer hands-on tutorial

e Automatic Platform Adaptation

e Flutter Internals*

37

https://docs.flutter.dev/ui/layout/constraints
https://docs.flutter.dev/ui/layout/constraints
https://www.youtube.com/watch?v=R9C5KMJKluE&list=PLjxrf2q8roU23XGwz3Km7sQZFTdB996iG&index=145
https://www.youtube.com/watch?v=YY-_yrZdjGc&t=139s
https://docs.flutter.dev/platform-integration/platform-adaptations
https://docs.flutter.dev/resources/architectural-overview

