
Authentication &
Image Upload

Shan-Hung Wu
CS, NTHU

Let’s Chat!

• Real-time messaging
• Authentication
• Sign up & log in
• Single sign on

• Splash screen
• Image upload
• Security rules
• Custom claims in JWT
• Push notifications

2

Let’s Chat!

• Real-time messaging
• Authentication
• Sign up & log in
• Single sign on

• Splash screen
• Image upload
• Security rules
• Custom claims in JWT
• Push notifications

3

Authentication vs. Authorization
• Authentication: the

process to verify you are
who you said
• Firebase Auth

• Authorization: the
process to decide if you
have permission to
access a resource
• Firestore security rules

4

Session Management

• The process of securely handling multiple requests
to a server from a single client (user)

5

Sessions based on Signed Tokens

6

Signed token with user ID

Signed token with user ID

JavaScript Web Tokens (JWT)

• Signed tokens with self-descriping claims
• E.g., user ID, expiration date, etc.

• Cannot be forged due to signatures

7

// Login response from server
{
 token: e2ZahC5b // JWT token
}
// Subsequent request from client
Authorization: Bearer e2ZahC5b // added by JS

(uid, expdate, sha256(uid, expdate, secret))

https://jwt.io/

Types of Tokens

• ID token: identifies a particular user
• Access token: grants user access to resources
• Usually short-lived, e.g., a few minutes

• Refresh token: used to refresh other tokens
• Usually longer-lived, e.g., tens of days

• Need to be saved securely at clients

8

Let’s Chat!

• Real-time messaging
• Authentication
• Sign up & log in
• Single sign on

• Splash screen
• Image upload
• Security rules
• Custom claims in JWT
• Push notifications

9

Firebase Email/Password Auth

• User DB (credentials only) + token server (ID + refresh)
1. Enable it in Firebase Console
2. Use Auth SDK in client

10

Sign Up

• Firebase stores the email and a securely hashed
version of the password in its own database
• Firebase handles the storage and security of this

data, ensuring that passwords are never stored in
plain text

• See AuthenticationService.signUp()

11

Log In

• Firebase checks the submitted credentials against its
database
• If the credentials match, Firebase issues both ID token

and refresh tokens to the client
• Client-side Auth SDK stores these tokens in secure local

storage
• When the ID token expires, Auth SDK automatically

uses the refresh token to fetch a new ID token

• See AuthenticationService.logIn()

12

UI & Routing (1/2)
• In main, a StreamBuilder listens to auth state

change:

13

runApp(StreamBuilder<User?>(
 stream: FirebaseAuth.instance.authStateChanges(),
 builder: (context, snapshot) {
 if (snapshot.connectionState ==
ConnectionState.waiting) {
 return const SizedBox.shrink();
 }

 // Rebuild MyApp to update the route
 return MyApp(key: ValueKey(snapshot.data == null));
 },
));

UI & Routing (2/2)
• In NaigationService:

14

final routerConfig = GoRouter(
 routes: [...],
 redirect: (context, state) {
 // Get the current user
 final User? currentUser = FirebaseAuth.instance.currentUser;
 final bool goingToLoginPage = state.location == '/login';

 if (currentUser == null && !goingToLoginPage) {
 // User is not logged in and trying to access a route
 return '/login';
 }
 // no redirection otherwise
 return null;
 }
);

Let’s Chat!

• Real-time messaging
• Authentication
• Sign up & log in
• Single sign on

• Splash screen
• Image upload
• Security rules
• Custom claims in JWT
• Push notifications

15

Signgle Sign-On
(SSO)

16

Open ID Connect (OIDC) + OAuth

• Authentication • Authorization

17

OIDC Flow

18

Client app.com fb.com

Login

302

Credentials (name, password)

302 w/ ID token

Login w/ ID token

Session

Verification
Not your app’s ID

OAuth 2 Flow

19

Client app.com oidc.fb.com oauth.fb.com

Login

302

Credentials (name, password)

302 w/ ID token, grant code

api.fb.com

Login w/ ID token

Session

Grant code

Access token

Session w/ access token

Verification

with client’s SHA fingerprint defending
“man-in middle“ attack

Firebase Sign-in with Google
• Firebase creates an account in its own DB when

receiving a new OIDC ID token
• What if you already have an email account using the

same email address?
• Duplicated accounts
• Complicates account management, e.g., data syncing

• Account linking to email account for simplifying user
management

• See AuthenticationService
 .logInWithGoogle()

20

Let’s Chat!

• Real-time messaging
• Authentication
• Sign up & log in
• Single sign on

• Splash screen
• Image upload
• Security rules
• Custom claims in JWT
• Push notifications

21

Blinking Home Page
• When router redirects,
FirebaseAuth.instance.currentUser
returns null when
• Firebase Auth is initializing (e.g., loading ID token)
• User is not logged in

• On slower devices, initialization leads to a “blink”
before home page shows
• Auth page first, then home

• Add a splash page to avoid this problem
• Native; need separated generation command:

22

dart run flutter_native_splash:create

https://pub.dev/packages/flutter_native_splash

Splash Page
• In main():

23

WidgetsBinding widgetsBinding =
WidgetsFlutterBinding.ensureInitialized();

FlutterNativeSplash.preserve(widgetsBinding: widgetsBinding);

runApp(StreamBuilder<User?>(
 stream: FirebaseAuth.instance.authStateChanges(),
 builder: (context, snapshot) {
 if (snapshot.connectionState == ConnectionState.waiting) {
 // Keep splash screen until auth state is ready
 return const SizedBox.shrink();
 }

 FlutterNativeSplash.remove();

 // Rebuild MyApp to update the route based on the auth state
 return MyApp();
 },
));

Let’s Chat!

• Real-time messaging
• Authentication
• Sign up & log in
• Single sign on

• Splash screen
• Image upload
• Security rules
• Custom claims in JWT
• Push notifications

24

Cloud Storage

• Stores large files (>1MB)
• Optimized for uploading/downloading large files
• Charges based on data size and network bandwidth

• Limited query capabilities
• List files in bucket, download by path, get metadata

• No real-time listening

25

Image Picker

• The cross-platform image_picker package
• Configuration needed

• See AuthPage._submit() and
authenticationService.signUp()

1. Returns a file
2. Upload the image file to Cloud Storage and get

image URL
3. Save the URL in Firestore
4. Use NetworkImage to display the image in

widgets

26

https://pub.dev/packages/image_picker

References

• Manage users in Firebase Auth
• Account linking
• Anonymous authentication

27

https://firebase.google.com/docs/auth/flutter/manage-users
https://firebase.google.com/docs/auth/flutter/account-linking
https://firebase.google.com/docs/auth/flutter/anonymous-auth

