
Lab 00
How to Survive &
Introduction to Git

Software Studio
DataLab, CS, NTHU

1

Teaching Assistants

3

How to Find Us?
• Office Hour (TAs)

- Tue. 1:30pm-3:30pm at Delta 729

- Thur. 10:00am-12:00pm at Delta 729

• Email

‐ ssta2025@datalab.cs.nthu.edu.tw

• Online Forum

- eeclass

4

If I have Question?

5

If I have Question?
• Always Google or ask Chatgpt first!

• Learn how to google and generative AI is
important.

• If you try your best but still can’t catch it.

• Feel free to ask us on eeclass or office hour.

6

Today’s exercise

• Install Git command line tool in your computer

• Follow appendix “Git Command-line Tool
Installation”.

• Try to submit in GitLab.

• Set up flutter environment (If we have time)

7

Outline
• General Rule

• Introduction to Git

• Version control

• Branch and merge

• How to Submit Your Code to Gitlab

• Tools & References

8

Outline
• General Rule

• Introduction to Git

• Version control

• Branch and merge

• How to Submit Your Code to Gitlab

• Tools & References

9

The Policy of Labs
• All labs need to be submitted to GitLab.

• Late submission will not be accepted.

• Plagiarism will not be tolerated.

- If we find you copy someone’s code, you will get
0 point for that lab.

• Grading

- Submission before lab ends gets 100% score

- Submission before 11:59pm gets 60% score

10

Grading Example
• 4 problems, 25% each

• Solved 4 during the lab

- 100

• Solved 3 during the lab, 1 before 11:59pm

- 75 + 25*0.6 = 90

• Solved 4 after the lab, before 11:59pm

- 100 * 0.6 = 60

11

Outline
• General Rule

• Introduction to Git

• Version control

• Branch and merge

• How to Submit Your Code to Gitlab

• Tools & References

12

Why should we use
version control?

13

We want to track what we
did and when we did it.

14

Why use version control
system?

• Managing your projects - tracking your files and
modifications.

• Synchronization between modifications made by
different developers.

• Revision history is still very helpful even if you work
alone.

15

Students’ VCS

16

Git

17

Git
• Git is a popular version control system which is

• Fast

• Easy to use

• Distributed

• A git repository is a mini database that tracks your
files.

18

Be Professional

19

Outline
• General Rule

• Introduction to Git

• Version control

• Branch and merge

• How to Submit Your Code to Gitlab

• Tools & References

20

Git VCS (1/2)
• With a local repository in your computer, you’ll need

following operations to make git track your work:

1. Create/modify files

2. Let git monitor the files by adding them to
staging files.

3. Commit your changes to and git will create
snapshots (versions) of the files for you.

21

Modifying Files

Staging Modified Files

Git VCS (2/2)

2. add

3. commit

1. modify file

22

Committing A Version
Committing B Version

Basic Git Commands
• git init

• Initialize a repository at current directory.

• git add [file_name] (* git add . * → means add all files)

• Add files to git repository and let git track them.

• git commit -m "commit messages"

• Save the changes to the git repository and create snapshots of the files.

• git checkout [version]

• Go to a specific version.

23

scenario

• Create a project repository and initialize Git, and
track the HelloGit.txt file for version control.

24

25

1. Navigate to the repository where you want to place

the project.

26

2. Create a folder for your project.

27

3. In your project folder create a HelloGit.txt file.

4. Write something in the HelloGit.txt file.

28

5. Navigate to the project fold.

6. Use the ‘’dir’’ command to list the contents of a

folder. (if windows)

7. Use the ‘’git init’’ command to initialize a Git

repository.

29

8. Use the ‘’git add’’ command to add HelloGit.txt to

staging file.

9. Use the “git commit –m” command to commit the

change.

30

10. Modify the hello.txt and save the change.

11. Add It and commit again.

31

10.Use the ‘’git log’’ command to view your versions.

Head:

A reference to where you are currently working on.

Master:

The default branch in a Git repository, typically where

the final, stable version of the project is maintained.

32

11. Go to specific version with the ‘’git checkout’’

command and version ID

Version ID

12. Reopen the HelloGit.txt find yourself back to

version 1 !

34

13. Use the “git checkout master” command to go

back to the final vesion of your project

14. Reopen the HelloGit.txt again. Back to the lastest

version.

LIFE IS
TOO SHORT
TO TYPE THAT
VERSION ID!

which is 40 characters long…
35

36

15. Use the ‘’git log --oneline’’ command to get the

shorter version ID.

16. Use shorter version ID to check specific version.

Outline
• General Rule

• Introduction to Git

• Version control

• Branch and merge

• How to Submit Your Code to Gitlab

• Tools & References

48

Develop

Master

Branching Merging

Git Branch

49

• Branching steps

• Creating a new branch

• Checking out the branch

git branch [branch name]

git checkout [branch name]

Git commands (1/2)

50

• Merging steps

• Checking out a branch to merge

• Merging another branch

git checkout [branch 1 name]

git merge [branch 2 name]

Git commands (2/2)

51

scenario

• Assume you are working on a new feature in a Git
repository and want to create a separate branch
work on it and then merge it back into master
branch

•

52

53

1. Initially there is a file.txt

in ~.\NetDB\my_project

with git already initalized

Initial content in file.txt

Initial log of master branch

54

2. Create a new Branch using the “git branch

[branch name] ” command

3. Switch to the new branch using the “git

checkout [branch name] ” command

55

4. Make Changes in the feature branch

5. Add and commit the check in feature

branch. (use ‘’git add *’’ to stage all files in the

current directory)

Since we already switch to

feature branch. ‘’git log” will

show the log in feature branch

56

6. Perform another change, repeat the previous

steps, and observe the Git log.

57

7. Switch Back to master branch

8. The log remains unchanged in the

master branch."

9. Reopen the file.txt and the content go

back to initial

Reopen file.txt, and the content reverts to its initial state.

58

10. Try to also make change in master

branch and commit the change

59

As observed in the log, a commit in

one branch will not affect another

branch.

60

11. Ensure to move back to master

branch (or any target branch you want to

merge with)

12. Use the “git merge [branch

name]” to merge the branch

Note that there is a merge conflict

13. Reopen the file.txt file then you found that there is

merge conflict mark

<<<<<<<< HEAD:

Show the change from your target branch.

======:

Separator between the conflicting change

>>>>>>>> feature-branch

The changes from the branch you are trying to marge

with the target branch

15. Add and commit again

61

14. Decide which version to keep

and edit the file to resolve a marge

conflict and save the change. In this

case I reserve all the version.

Outline
• General Rule

• Introduction to Git

• Version control

• Branch and merge

• How to Submit Your Code to Gitlab

• Tools & References

62

Collaboration
• To work with others using git, you’ll need a server

that store the repository.

• Git is distributed, which means

• Everyone can store a copy of the repository
downloaded from the server to their computer
and do their jobs independently.

63

Collaboration Workflows (1/2)

1. If you don’t have the project, clone (download) the
repository from the server.

2. Do your work and commit the changes at local. Once

done, push (upload) the repository to the server.

3. If someone else modified the project, you can pull
(sync) the repository to get the updated project.

4. Repeat 2 and 3.

64

Collaboration Workflows (2/2)

Local A Local B

Server

Clone Clone

65

Collaboration Workflows (2/2)

Local A Local B

Server

Commit

A

66

Version A

AA

Collaboration Workflows (2/2)

Local A Local B

Server

Push

67

Version A

A

Collaboration Workflows (2/2)

Local A Local B

Server

A

Pull

A

68

Version A

Version A

A

Collaboration Workflows (2/2)

Local A Local B

Server

A

Pull

A

A

69

Version A

Something went wrong.

70

AA

Authentication Failed

Local A Local B

Server

Push

71

Version A

Authentication
Failed

Why Authentication Failed?

72

Collaboration Workflow
• If you tried to clone the code template from a

server and want to push the modified file.

• You will get authentication failed.

• It’s because it was a project of others, which
means you are not able to save the changes
back to the server.

• So, how can I copy a project from others on a open
source platform like Github?

73

Fork
Introducing

74

A

A

A1 A2

Forked from Red Commit Commit

A2

Open a Merge Request

Original

Project

Forked

Project

75

Author

Editor

A

A

A1 A2

A2

Accept

76

Author

Editor

A

A

A1 A2

A2

77

Author

Editor

A

A

A1 A2

A2

A2

Forked from Red A2

78

Git Collaboration Workflow

1. Fork a repository to make a copy of it.

2. Clone the repository you forked to your
workspace.

3. Do your work and commit the changes in your
workspace.

4. Push the repository to the server to synchronize
them.

5. Open a merge request to origin repository .

79

• git clone [url]

• Clone a repository from remote server

• git push [url] [branch-name]

• Push committed file to remote server

Basic Git Commands (2/2)

80

Outline
• General Rule

• Introduction to Git

• Version control

• Git Basics

• Try Git!

• Remote Repositories

• How to Submit Your Code to Gitlab

• Tools & References

81

82

Gitlab
• We have created account for you

• Account: student ID (e.g. 106012345)

• Password: student ID (e.g. 106012345)

83

Gitlab

84

Gitlab

85

Gitlab

86

Username : studendID

Email: your email

Passward: studentID

Workflow
• For each lab, you should follow the workflow below

1. Fork our template repository on Gitlab

2. Clone the forked repository to your computer

3. Finish your lab

4. Commit in your computer

5. Push to Gitlab

6. Send merge request of your branch to our template
repository

87

Workflow
• For each lab, you should follow the workflow below

1. Fork our template repository on Gitlab

2. Clone the forked repository to your computer

3. Finish your lab

4. Commit in your computer

5. Push to Gitlab

6. Send merge request of your branch to our template
repository

88

You can access course projects in this group

89

https://shwu10.cs.nthu.edu.tw/courses/software-studio/2024-spring

90

1. Click to fork

91

4. Click to fork

3. Click Private

2. Select your name

92

5. Check if this repository is under your account

6. Go to settings

93

7. Set project to private

94

8. Scroll down and save changes

Workflow
• For each lab, you should follow the workflow below

1. Fork our template repository on Gitlab

2. Clone the forked repository to your computer

3. Finish your lab

4. Commit in your computer

5. Push to Gitlab

6. Send merge request of your branch to our template
repository

95

96

1. Choose HTTPS

2. Copy the link

If You use Windows

97

3. Create a folder to put your repos

4. Type "git clone {URL}"

5. The repo has been successfully cloned

98

Workflow
• For each lab, you should follow the workflow below

1. Fork our template repository on Gitlab

2. Clone the forked repository to your computer

3. Finish your lab

4. Commit in your computer

5. Push to Gitlab

6. Send merge request of your branch to our template
repository

99

1. -A means all files

2. Check if your file is added to git

3. Commit your changes

10
0

If you see these message, type
git config --global user.name

"{name}"
git config --global user.email "{email}"

{email} is the email you use on gitlab

10
1

Workflow
• For each lab, you should follow the workflow below

1. Fork our template repository on Gitlab

2. Clone the forked repository to your computer

3. Finish your lab

4. Commit in your computer

5. Push to Gitlab

6. Send merge request of your branch to our template
repository

10
2

Type "git push -u origin master"

10
3

Workflow
• For each lab, you should follow the workflow below

1. Fork our template repository on Gitlab

2. Clone the forked repository to your computer

3. Finish your lab

4. Commit in your computer

5. Push to Gitlab

6. Send merge request of your branch to our template
repository

10
4

10
5

1. Click Merge Requests

10
6

2. New merge request

10
7

3. Choose the branch
you pushed in your repo

Ensure that the commit in the version record of the
selected branch matches the commit name of the final

version you have in mind.

10
8

4. Choose the branch
named after your ID

Ensure that the source of the selected branch is the class folder
(courses/software-studio/2025-spring/submission-exercise) and your

student ID (not master or someone else’s student ID).

10
9

5. Compare branches

11
0

6. Set title to "{ID} Submission"

You can also confirm or change whether the selected branch is correct in this
section. For instance, in the picture, the course branch selected is master,

which is incorrect. The correct one should be courses/software-studio/2025-
spring/submission-exercise: {your student ID}.

Courses/software-studio/2025-spring/submission-exerice: {ID}

11
1

7. If everything is OK,
submit your merge request

Notice - Don’t do this

11
2

11
3

Notice - Don’t do this

11
4

Notice - Don’t do this

Here!!!!!

11
5

The GitLab setup in our laboratory is

accessible through the link.

Outline
• General Rule

• Introduction to Git

• Version control

• Branch and merge

• How to Submit Your Code to Gitlab

• Tools & References

11
6

Tools
• Git GUI

- GitKraken

• Editor / IDE

- Visual Studio Code

- Atom

- Sublime Text

- Brackets

- Notepad++

- Webstorm
11
7

11
8

11
9

12
0

12
1

12
2

Reference

• Learn Git branching (interactive)

• http://pcottle.github.io/learnGitBranching/

• Pro Git

• http://git-scm.com/book/

• 寫給大家的 Git 教學

• http://www.slideshare.net/littlebtc/git-5528339

12
3

http://pcottle.github.io/learnGitBranching/
http://git-scm.com/book/
http://www.slideshare.net/littlebtc/git-5528339

Today’s exercise

• Install Git command line tool in your computer.

• Follow appendix “Git Command-line Tool
Installation”.

• Try to submit in GitLab.

12
4

	投影片 1: Lab 00 How to Survive & Introduction to Git
	投影片 3: Teaching Assistants
	投影片 4: How to Find Us?
	投影片 5: If I have Question?
	投影片 6: If I have Question?
	投影片 7: Today’s exercise
	投影片 8: Outline
	投影片 9: Outline
	投影片 10: The Policy of Labs
	投影片 11: Grading Example
	投影片 12: Outline
	投影片 13: Why should we use version control?
	投影片 14: We want to track what we did and when we did it.
	投影片 15: Why use version control system?
	投影片 16: Students’ VCS
	投影片 17: Git
	投影片 18: Git
	投影片 19
	投影片 20: Outline
	投影片 21: Git VCS (1/2)
	投影片 22
	投影片 23: Basic Git Commands
	投影片 24: scenario
	投影片 25
	投影片 26
	投影片 27
	投影片 28
	投影片 29
	投影片 30
	投影片 31
	投影片 32
	投影片 34
	投影片 35
	投影片 36
	投影片 48: Outline
	投影片 49
	投影片 50
	投影片 51
	投影片 52: scenario
	投影片 53
	投影片 54
	投影片 55
	投影片 56
	投影片 57
	投影片 58
	投影片 59
	投影片 60
	投影片 61
	投影片 62: Outline
	投影片 63: Collaboration
	投影片 64: Collaboration Workflows (1/2)
	投影片 65: Collaboration Workflows (2/2)
	投影片 66: Collaboration Workflows (2/2)
	投影片 67: Collaboration Workflows (2/2)
	投影片 68: Collaboration Workflows (2/2)
	投影片 69: Collaboration Workflows (2/2)
	投影片 70: Something went wrong.
	投影片 71: Authentication Failed
	投影片 72: Why Authentication Failed?
	投影片 73: Collaboration Workflow
	投影片 74
	投影片 75
	投影片 76
	投影片 77
	投影片 78
	投影片 79: Git Collaboration Workflow
	投影片 80
	投影片 81: Outline
	投影片 82
	投影片 83: Gitlab
	投影片 84: Gitlab
	投影片 85: Gitlab
	投影片 86: Gitlab
	投影片 87: Workflow
	投影片 88: Workflow
	投影片 89
	投影片 90
	投影片 91
	投影片 92
	投影片 93
	投影片 94
	投影片 95: Workflow
	投影片 96
	投影片 97: If You use Windows
	投影片 98
	投影片 99: Workflow
	投影片 100
	投影片 101
	投影片 102: Workflow
	投影片 103
	投影片 104: Workflow
	投影片 105
	投影片 106
	投影片 107
	投影片 108
	投影片 109
	投影片 110
	投影片 111
	投影片 112
	投影片 113
	投影片 114
	投影片 115
	投影片 116: Outline
	投影片 117: Tools
	投影片 118
	投影片 119
	投影片 120
	投影片 121
	投影片 122
	投影片 123
	投影片 124

