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Your Term Project

To design & implement an
intellectual app that solves real

problems.
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Example: Intention Identification
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Example: Spam Detection
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Example: Product Recommendation
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Example: Image Understanding
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Example: Chat Bot & Service Automation
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Example: Marketing & Advertisement

All based on Machine Learning & AI technologies
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AI vs. Machine Learning

Artificial Intelligence (AI): the goal
Creating systems that can function intelligently and independently
Mirroring or surpassing human capabilities

Machine Learning (ML): a means of achieving AI
Enabling machines to learn from data
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Prior vs. Posteriori Knowledge

To solve a problem, we need an algorithm
E.g., sorting

A priori knowledge is enough

For some problem, however, we do not have the a priori knowledge
E.g., to tell if a post is toxic or not
The correct answer varies in time and from site to site

Machine learning algorithms use the a posteriori knowledge to solve
problems

Takes examples as additional input to algorithm
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General ML Step 1: Data Preparation
Pre-process data (e.g., integration, cleaning, etc.)
Define vector features to have a dataset:

X= {(x(i),y(i))}N
i=1, where x(i) ∈ RD and y(i) ∈ RK ,

E.g., in toxic post detection:
x(i) represents counts of different tokens
y(i) ∈ {0,1} indicates if the post x(i) is toxic or not
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General ML Step 2: Model Development

1 Assume a model {f (· ;w)}w that is a collection of candidate functions
f ’s

Each f predicts label ŷ given an input x
f is assumed to be parametrized by w

2 Define a cost function
C(w;X)

that measures “how good a particular f (· ;w) can explain the training
data X” (posteriori knowledge)

3 Training: employ an algorithm that solves

w∗ = argmin
w

C(w;X)

Where “learning” happens

Shan-Hung Wu (CS, NTHU) Making Smarter Apps Software Design & Studio 15 / 35



General ML Step 2: Model Development

1 Assume a model {f (· ;w)}w that is a collection of candidate functions
f ’s

Each f predicts label ŷ given an input x
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General ML Step 3: Testing & Deployment

1 Testing: evaluate the performance of the learned f (· ;w∗) using
another, unseen test dataset X′

Examples in X′ should have the same distribution with those in X
A model minimizing C(w;X) does not necessarily give hight test
performance

2 If f (· ;w∗) has satisfactory test performance, deploy it to solve
real-world problem
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What is Deep Learning?

ML where an f (· ;w) has many (deep) layers

ŷ = f (L)(· · · f (2)(f (1)(x;w(1));w(2)) · · · ;w(L))

Pros:
Learns features from raw data automatically, called representation
learning
Learns a complex function (e.g., visual objects to labels)

Cons:
Usually needs large data to train a model well
High computation costs (at both training and test time); needs GPU
acceleration
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ŷ = f (L)(· · · f (2)(f (1)(x;w(1));w(2)) · · · ;w(L))

Pros:
Learns features from raw data automatically, called representation
learning
Learns a complex function (e.g., visual objects to labels)

Cons:
Usually needs large data to train a model well
High computation costs (at both training and test time); needs GPU
acceleration

Shan-Hung Wu (CS, NTHU) Making Smarter Apps Software Design & Studio 18 / 35



What is Deep Learning?

ML where an f (· ;w) has many (deep) layers
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Representation Learning

Automatically learned features
also called embeddings

Helps understanding what’s
learned
Also enable new ways of using
deep models

To be discussed later
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Generative AI
The goal
To generate structural and novel output (such as images, text,
music, etc.) that cannot be deemed fake by humans
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Generative Models
The means
Dataset: X= {(x(i),y(i))}N

i=1, where y(i) can be as complex as x(i)and
cannot be exhausted
Image generation models (e.g., diffusion models)
Text/language generation models (e.g., GPTs)
Cross-modal generation models (e.g., GPT4 with vision)
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Autoregressive Models for Text Generation
Text can be considered as 1D time-series data
Autoregressive model takes its previous output as current input

Learns the conditional transition distributions of tokens
Rather than the join distribution of all tokens
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Diffusion Models for Image Generation

Note a time-series data naturally; need other strategy to simplify
learning

Forward diffusion is stepwise and deterministic (no learning)
Model learns to de-noise at each step to generate images

Input: noisy image xt, step t, and y (e.g., text prompt)
Output: less noisy image xt−1
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Training Trick 1: Self-Supervised Pre-training

Before training on X= {(x(i),y(i))}N
i=1

Pre-train model on
X′ = {(x(i,1),x(i,2))}M

i=1, where x(i,1)

and x(i,2) are parts of the same
structural data point

Applicable to both text and images
Why?

M ≫ N
GPT-4 is trained on ~13 trillion
tokens (~10 trillion words)
LAION has 400 million 256X256
images

Use “common sense” to learn y(i) of
limited numbers

x(i) y(i)
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Byproduct: Semantic Embeddings
After pre-training, embeddings of different data points have mutual
distances reflecting human understanding
E.g., word2vec [3, 2]: “... the cat sat on...”

CBOW Skip Gram
Powers modern search and recommendation systems

Google Search, Instagram Feeds, Spotify playlists, etc.
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Training Trick 2: Large Models

Training costs [4]:
110M params: $2.5k–$50k
340M params: $10k–$200k
1.5B param: $80k–$1.6m
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Size Does Matter!

Emerging abilities of Large Language Models (LLMs) [5]

A balance: 70B parameters + 1.4T training tokens [1]
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Using Existing ML Models

Today, we can easily integrate the power of ML models into our apps
to make impact
Example: Flutter warpper of ML Kit from Google

Designed to be run locally on mobile devices
Supported image tasks:

Barcode scanning, doc scanning, face detection, image labeling, object
detection, etc.

Supported NLP tasks:
Language identification, translation, entity (date/time/address/phone
number) extraction, smart reply, etc.
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Integrating Advanced Generative Models

Example: OpenAI’s APIs
Chat, image generation, embeddings, etc.

Demo
Install the “http” package
Obtain your API key
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Customizing Models (1/2)

How to customize a model for your specific tasks?

Fine-tuning model using your own data
Not possible if weights are unavailable

Write better prompts
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Customizing Models (2/2)

Enable Retrieval Augmented Generation (RAG) though Assistant
API

Demo
Does not modify model’s weights

Ask model to perform “actions” defined by you via Function Calling
API
E.g., “Code Interpreter” plugin of ChatGPT
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