
Lab 01
How to Survive &
Introduction to Git

Software Studio
DataLab, CS, NTHU

1



Notice
• These slides will focus on how to submit you code 

by using Git command line 

• You can also use other Git GUI tool or built-in Git 
tool in other IDE/editor

2



Outline
• General Rule

• Introduction to Git

• Version control
• Git Basics
• Try Git!
• Remote Repositories

• How to Submit Your Code to Gitlab

• Tools & References

3



Outline
• General Rule

• Introduction to Git

• Version control
• Git Basics
• Try Git!
• Remote Repositories

• How to Submit Your Code to Gitlab

• Tools & References

4



Teaching Assistants

5



How to Find Us?
• Office Hour (TAs)

- Wed. 3:30-5:20pm at Delta 729
• Email (Personal question only)

- Cheng-Hong Lin : chlin@datalab.cs.nthu.edu.tw
- I-Luh Wu : ilwu@datalab.cs.nthu.edu.tw

• Online Forum
- iLms

6



If I have Question?

7



If I have Question?
• Always Google first ! 

• Learn how to google is important.

• If you try your best but still can’t catch it.

• Feel free to ask us on iLMS or office hour.

8



The Policy of Labs
• All labs need to be submitted to GitLab.

• Late submission will not be accepted.

• Plagiarism will not be tolerated.
- If we find you copy someone’s code, you will get 

0 point for that lab.

• Grading
- Submission before lab ends gets 100% score
- Submission before 11:59pm gets 60% score

9



Team Up
• 2~4 people each team

• 2 people is accepted if you can do as well as 
others.

• Please register your team here before 3/6 23:59
- Register form : https://goo.gl/KVeKNE
- After that day we will match the rest student.

11

https://goo.gl/KVeKNE


Outline
• General Rule

• Introduction to Git

• Version control
• Git Basics
• Try Git!
• Remote Repositories

• How to Submit Your Code to Gitlab

• Tools & References

12



Why use version control?

13



We want to track what we 
did and when we did it.

14



Students’ VCS

15



How to work with others?

??

16



Dropbox VCS in 
Reality

Dropbox VCS in Reality

17



Why use VCS?
• Managing your projects - tracking your files and 

modifications.

• Synchronization between modifications made by 
different developers.

• Revision history is still very helpful even if you work 
alone.

18



Outline
• General Rule

• Introduction to Git

• Version control
• Git Basics
• Try Git!
• Remote Repositories

• How to Submit Your Code to Gitlab

• Tools & References

19



Git

20



Git
• Git is a popular version control system which is

• Fast

• Easy to use

• Distributed

• A git repository is a mini database that tracks your 
files.

21



Git Workflow (1/2)
• With a local repository in your computer, you’ll need 

following operations to make git track your work:

1. Create/modify files

2. Let git monitor the files by adding them to 
staging files.

3. Commit your changes to and git will create 
snapshots (versions) of the files for you.

22



Modifying Files

Staging Modified Files Committing A Version

Git Workflow (2/2)

add

commit

modify file

23



Develop

Master

Branching Merging

Git Branch

24



Outline
• General Rule

• Introduction to Git

• Version control
• Git Basics
• Try Git!
• Remote Repositories

• How to Submit Your Code to Gitlab

• Tools & References

25



Be Professional

26



Basic Git Commands
• git init

• Initialize a repository at current directory.

• git add [file_name]

• Add files to git repository and let git track them.

• git commit -m "commit messages"

• Save the changes to the git repository and create snapshots of the files.

• git checkout [version]

• Go to a specific version.

27



1. Find current directory

2. Go to that directory

28



3. Add a new folder

5. Create a new file

4. Go to that folder

6. Put some contents and save

29



$ git config --global user.name "name"
$ git config --global user.email "email"

7. Setup user information

With --global: for all repositories in computer
Without --global: for current repository 

30



$ cd git-demo 
$ dir
$ git init

8. Go to “git-demo”

9. Show the files in “git-demo”

10. Initialize a Git repository

31



11. Add HelloGit.txt to staging files

12. Commit your changes

$ git add HelloGit.txt 

$ git commit -m "version 1"
32



14. Add it and commit again

13. Make some changes and save

33



15. View your versions

Version�ID

Commit�messages

$ git log

34



16. Go to a specific version

$ git checkout {version_id}

35



LIFE IS 
TOO SHORT
TO TYPE THAT
VERSION ID!

which�is�40�characters�long…

36



$ git log --oneline

15. Show versions with short version ID

Version�ID

56%�shorter!

37



16. Go to a specific version

$ git checkout {short_version_id}

38



17. Close and reopen HelloGit.txt

18. Back to the version 1!

39



• Branching steps

• Creating a new branch

• Checking out the branch

git branch [branch name]

git checkout [branch name]

Try yourself (1/2)

40



• Merging steps

• Checking out a branch to merge

• Merging another branch

git checkout [branch 1 name]

git merge [branch 2 name]

Try yourself (2/2)

41



Outline
• General Rule

• Introduction to Git

• Version control
• Git Basics
• Try Git!
• Remote Repositories

• How to Submit Your Code to Gitlab

• Tools & References

43



Collaboration
• To work with others using git, you’ll need a server 

that store the repository.

• Git is distributed, which means

• Everyone can store a copy of the repository 
downloaded from the server to their computer 
and do their jobs independently. 

44



Collaboration Workflows (1/2)
1. If you don’t have the project, clone (download) the 

repository from the server.

2. Do your work and commit the changes at local. Once 
done, push (upload) the repository to the server.

3. If someone else modified the project, you can pull
(sync) the repository to get the updated project.

4. Repeat 2 and 3.

45



Collaboration Workflows (2/2)

Local A Local B

Server

Clone Clone

46



Collaboration Workflows (2/2)

Local A Local B

Server

Commit

A

47



AA

Collaboration Workflows (2/2)

Local A Local B

Server

Push

48



A

Collaboration Workflows (2/2)

Local A Local B

Server

A

Pull

A

49



A

Collaboration Workflows (2/2)

Local A Local B

Server

A

Pull

A

A

50



Why Authentication Failed?

51



Collaboration Workflow
• If you tried to clone the code template from a server 

and want to push the modified file.
• You will get authentication failed.
• It’s because it was a project of others, which 

means you are not able to save the changes 
back to the server.

• So, how can I copy a project from others on a open 
source platform like Github?

52



Fork
Introducing

53



A

A

A1 A2

Forked from Red Commit Commit

A2

Open a Merge Request

Original�Project

Forked�Project

54



A

A

A1 A2

A2
🇭 Accept

55



A

A

A1 A2

A2

56



A

A

A1 A2

A2

A2

Forked from Red A2

57



Git Collaboration Workflow
1. Fork a repository to make a copy of it.

2. Clone the repository you forked to your workspace.

3. Do your work and commit the changes in your 
workspace.

4. Push the repository to the server to synchronize 
them.

5. Open a merge request to origin repository .

58



• git clone [url]

• Clone a repository from remote server

• git push [url] [branch-name]

• Push committed file to remote server

Basic Git Commands (2/2)

59



Outline
• General Rule

• Introduction to Git

• Version control
• Git Basics
• Try Git!
• Remote Repositories

• How to Submit Your Code to Gitlab

• Tools & References

60



Gitlab
• We have created account for you

• Account: student ID (e.g. 106012345)

• Password: cloudb+studentID (e.g. cloudb106012345)

61



Workflow
• For each lab, you should follow the workflow below

1. Fork our template repository on Gitlab

2. Clone the forked repository to your computer

3. Finish your lab

4. Commit in your computer

5. Push to Gitlab

6. Send merge request of your branch to our template 
repository

62



Workflow
• For each lab, you should follow the workflow below

1. Fork our template repository on Gitlab

2. Clone the forked repository to your computer

3. Finish your lab

4. Commit in your computer

5. Push to Gitlab

6. Send merge request of your branch to our template 
repository

63



You can access course projects in this group

64

https://shwu10.cs.nthu.edu.tw/courses/software-studio/2020-spring


65

1. Click to fork



66

2. Check if this repository is under your account

3. Go to settings



67

4. Set project to private 



68

5. Scroll down and save changes



Workflow
• For each lab, you should follow the workflow below

1. Fork our template repository on Gitlab

2. Clone the forked repository to your computer

3. Finish your lab

4. Commit in your computer

5. Push to Gitlab

6. Send merge request of your branch to our template 
repository

69



70

1. Choose HTTPS

2. Copy the link



If You use Windows

71



3. Create a folder to put your repos

4. Type "git clone {URL}"

5. The repo has been successfully cloned

72



Workflow
• For each lab, you should follow the workflow below

1. Fork our template repository on Gitlab

2. Clone the forked repository to your computer

3. Finish your lab

4. Commit in your computer

5. Push to Gitlab

6. Send merge request of your branch to our template 
repository

73



1. -A means all files

2. Check if your file is added to git

3. Commit your changes

74



If you see these message, type
git config --global user.name "{name}"
git config --global user.email "{email}" 

{email} is the email you use on gitlab

75



Workflow
• For each lab, you should follow the workflow below

1. Fork our template repository on Gitlab

2. Clone the forked repository to your computer

3. Finish your lab

4. Commit in your computer

5. Push to Gitlab

6. Send merge request of your branch to our template 
repository

76



Type "git push -u origin master"

77



Workflow
• For each lab, you should follow the workflow below

1. Fork our template repository on Gitlab

2. Clone the forked repository to your computer

3. Finish your lab

4. Commit in your computer

5. Push to Gitlab

6. Send merge request of your branch to our template 
repository

78



79

1. Click Merge Requests



80

2. New merge request



81

3. Choose the branch 
you pushed in your repo

4. Choose the branch 
named after your ID

5. Compare branches



82

6. Set title to "{ID} Submission"



83

7. If everything is OK, 
submit your merge request



Notice

84



85



86



87



Here!!!!!

88



Outline
• General Rule

• Introduction to Git

• Version control
• Git Basics
• Try Git!
• Remote Repositories

• How to Submit Your Code to Gitlab

• Tools & References

89



Tools
• Git GUI

- GitKraken

• Editor / IDE
- Visual Studio Code
- Atom
- Sublime Text
- Brackets
- Notepad++
- Webstorm

90



91



92



93



94



95



Reference
• Learn Git branching (interactive)

• http://pcottle.github.io/learnGitBranching/

• Pro Git

• http://git-scm.com/book/

• 寫給大家的 Git教學

• http://www.slideshare.net/littlebtc/git-5528339

96

http://pcottle.github.io/learnGitBranching/
http://git-scm.com/book/
http://www.slideshare.net/littlebtc/git-5528339


Today’s exercise
• Install Git command line tool in your computer.

• Follow appendix A.

• Try to submit in GitLab.

• No score but very important! 

97


