
Lab 6:
Testing

Software Studio
DataLab, CS, NTHU



Notice
• This lab is about software development good 

practices

• Interesting for those who like software 
development and want to go deeper

• Good to optimize your development time



Outline
• Introduction to Testing

• Simple testing in JS

• Testing with Karma

• Configuring Karma

• Karma demo: Simple test

• Karma demo: Weather Mood

• Karma demo: Timer App

• Conclusions



Outline
• Introduction to Testing

• Simple testing in JS

• Testing with Karma

• Configuring Karma

• Karma demo: Simple test

• Karma demo: Weather Mood

• Karma demo: Timer App

• Conclusions



What is testing? 
Is it important?



Actually, we are always 
doing some kind of 

testing..



And expecting some 
result..



And expecting some 
result.. 



Sometimes we just open 
our app and start clicking 

to see results





Why test like a machine? 
We can write programs to 

automatically test our 
application!



Most common type of 
test: Unit test



Unit test
• “Unit testing is a method by which individual units 

of source code are tested to determine if they are 
fit for use. A unit is the smallest testable part of an 
application.”

- Wikipedia



Good unit test properties
• It should be automated and repeatable

• It should be easy to implement

• Once it’s written, it should remain for future use

• Anyone should be able to run it

• It should run at the push of a button

• It should run quickly

The art of Unit Testing, Roy Osherove



Many frameworks for unit 
tests in several languages



Common procedure
• Assertion: A statement that a predicate is expected 

to always be true at that point in the code. 

-Wikipedia



Common procedure
• We write our application and want it to do 

something, so we write a test to see if it’s behaving 
as we expect



Common procedure
• Pseudocode:



But how to do that in JS?



Outline
• Introduction to Testing

• Simple testing in JS

• Testing with Karma

• Configuring Karma

• Karma demo: Simple test

• Karma demo: Weather Mood

• Karma demo: Timer App

• Conclusions



Simple testing: 
expect library and jsbin

https://github.com/mjackson/expect
http://jsbin.com/
https://github.com/mjackson/expect








Test passed:



Test didn’t pass:



This is ok for testing some 
simple functions.. But 
what about our React 

app?



Outline
• Introduction to Testing

• Simple testing in JS

• Testing with Karma

• Configuring Karma

• Karma demo: Simple test

• Karma demo: Weather Mood

• Karma demo: Timer App

• Conclusions



Karma
• Karma is a JavaScript test runner created by the 

AngularJS team. Karma uses your test framework 
to run tests in various environments of your choice



Karma
• Karma has several configurations for our tests and 

can run code using several JS testing frameworks 
such as Mocha, Jasmine and QUnit



Karma
• Karma has several configurations for our tests and 

can run code using several JS testing frameworks 
such as Mocha, Jasmine and QUnit

• For this lab, we are going to focus on Mocha



Mocha framework
• Mocha is a JavaScript test framework featuring 

browser support, asynchronous testing, test 
coverage reports, and use of any assertion library



Karma + Mocha
• Use Karma to configure tests for application 

• Use Mocha framework tools to write the tests

• Use Karma to run the tests



Outline
• Introduction to Testing

• Simple testing in JS

• Testing with Karma

• Configuring Karma

• Karma demo: Simple test

• Karma demo: Weather Mood

• Karma demo: Timer App

• Conclusions



Configuring Karma
• First, install required dependencies:



Configuring Karma
• Create config file for Karma named 

“karma.config.js” – same folder as package.json 
and webpack.config.js



Configuring Karma
• Create config file for Karma named “karma.conf.js” 

– same folder as package.json and 
webpack.config.js





Configuring Karma
• In package.json, change the script for “test” with 

“karma start”



Configuring Karma
• If you are having problems with the tests, it might 

be cached code

• To solve this, inside webpack.config.js, modify 
plugins:



Configuring Karma
• CommonChunks is a feature from webpack that 

caches code in chunks for faster reloading



Configuring Karma
• Create folder src/tests where our test files will be



Configuring Karma
• To test the Main.jsx component, we create a 

Main.test.jsx file in that folder



Configuring Karma
• For other components that we want to test, we 

create similar files inside the tests folder



Outline
• Introduction to Testing

• Simple testing in JS

• Testing with Karma

• Configuring Karma

• Karma demo: Simple test

• Karma demo: Weather Mood

• Karma demo: Timer App

• Conclusions



Karma demo: Simple test
• Inside Main.test.jsx:



Karma demo: Simple test
• Run tests on terminal with “npm test”

• Output:



Outline
• Introduction to Testing

• Simple testing in JS

• Testing with Karma

• Configuring Karma

• Karma demo: Simple test

• Karma demo: Weather Mood

• Karma demo: Timer App

• Conclusions



Karma demo: Weather 
mood

• We can write tests for the components of the 
weather app

• Example: Today.test.jsx



Karma demo: Weather 
mood

• Test if today component exists:



Karma demo: Weather 
mood

• Test if today component renders default city:



Karma demo: Weather 
mood

• Test if today component renders non default city:



Karma demo: Weather 
mood

• Test if today component renders metric unit:



Karma demo: Weather 
mood

• Output of tests:



Outline
• Introduction to Testing

• Simple testing in JS

• Testing with Karma

• Configuring Karma

• Karma demo: Simple test

• Karma demo: Weather Mood

• Karma demo: Timer App

• Conclusions



Karma demo: Timer App



Karma demo: Timer App



Karma demo: Timer App



Karma demo: Timer App
• What can we test in this app?



Karma demo: Timer App
• Test if seconds are rendered correctly



Karma demo: Timer App
• Test if seconds are rendered correctly



Karma demo: Timer App
• Rendering of controls



Karma demo: Timer App
• Check if app functionalities are working (start/stop)



Karma demo: Timer App
• Countdown functions (remember errors countdown 

from nightmare mode in color game?)



Outline
• Introduction to Testing

• Simple testing in JS

• Testing with Karma

• Configuring Karma

• Karma demo: Simple test

• Karma demo: Weather Mood

• Karma demo: Timer App

• Conclusions



Conclusions
• For this lab we used Karma runner with Mocha, but 

you could try other testing frameworks

• For each new language you learn there are testing 
frameworks that you can use to automate this work 
and reduce errors

• We are humans and sometimes we can forget to 
test something manually, it’s better to let your 
testing framework do this work for you



Today’s mission

• Clone the Weather Mood repository and explore 
the written tests

• Clone the Timer App repository and explore the 
written tests

• Try writing tests for these applications or your own 
application

• Optional assignment!



Optional assignment
• Bonus 10 points for those who want it

• This assignment will be due in 1 week (04-13) at 
23:59



Optional assignment
• Create a fork for the hello-react repository

• Create at least 1 test for this project 

• Not just expect(1).toBe(1)

• Not just expect().toExist()

• Actually test some component (Try to test some 
function)



Optional assignment
• The created tests must run correctly 

• Submit your merge request



References
• Karma

• Mocha

• Karma Tutorial - Unit Testing JavaScript

• Client side testing with Karma and Mocha

https://karma-runner.github.io/1.0/index.html
https://karma-runner.github.io/1.0/index.html
http://mochajs.org/
http://mochajs.org/
http://www.bradoncode.com/blog/2015/02/27/karma-tutorial/
http://www.bradoncode.com/blog/2015/02/27/karma-tutorial/
https://sean.is/writing/client-side-testing-with-mocha-and-karma/
https://sean.is/writing/client-side-testing-with-mocha-and-karma/

